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Abstract

This paper is devoted to the study of the modal basis reduction method in the framework of the dynamical behavior of a
mechanical system with multiple joint clearances. The final objective is to estimate contact forces in a confined tube bundle
during a dynamic loading for nuclear components sizing. The modal basis reduction combined with an explicit integration
scheme is envisioned to deal with the large number of tubes and potential contact zones. In this paper, method is first applied to
the example of a clamped-free beam impacting on a spring on its free edge. A semi-analytical resolution allows assessing the
validity of the modal basis reduction method depending of some parameters, like frequency truncation and ratio between the
bending stiffness and the spring stiffness. This study leads to criteria on numerical parameters which have to be respected to
ensure stability and accuracy of results.

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.
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Nomenclature

u(x, t): Beam’s bending M, C, K : Mass, damping and stiffness matrices — physical basis
Uy, Vo' Initial displacement and velocity &: Eigenvector matrix

q;(t): Modal contribution - mode i ®;(x): Mode shape — mode i

I': Power spectral density K, K}, : Shock stiffness and damping, Bending stiffness

SRy Ratio of contact force integer R, : Ratio of shock and bending stiffness. (K;/K},)

fi: frequency — mode i ftrunc: Frequency truncation of numerical computation

&, : Structural damping — mode i Retrync: Ratio of fy, and first natural mode frequency

1. Introduction
1.1. Contacts in dynamical simulation

Multibody collisions are one of the strongest non-linearity in mechanics. Contact modelling is an ancient topic, which started
with works of Hertz in 1882 [1] on the contact between two optical lenses. Many authors have expanded thereafter this theory by
introducing friction, tangential force and dynamic effects [2],[3]. But, the numeric implementation of contact condition remains
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very complex, whereas it is usually met in industrial context. Impacts occur during very brief time, and cause high forces and
accelerations [4]. Standard numerical methods struggle to converge or to remain stable, leading to inaccurate or very slow
calculations [5]. Several dedicated integration schemes have been created to solve contact problems, using a time-step cutting
[6], energy consistency [7] or high frequency damping [8]. There are two main kinds of integration schemes, implicit ones which
require an iterative process minimizing the error, and the explicit ones where the calculation is direct. In most cases, explicit
schemes are more relevant to deal with contact issues, because they are faster than implicit ones and remain stable as long as
time step is short [5]. But implicit schemes are sometimes used because of their accuracy for contact problem ([9], [10]).

The integration scheme choice and the manner to model contact are linked. Reference [4] summarizes main ways to model
contact in structural dynamics; they are two major categories: non-smooth laws for which the contact is instantaneous and the
velocity is discontinuous versus smooth laws for which the solids in contact will be able to interpenetrate each other. In non-
smooth contact dynamics, a restitution parameter is introduced to model the damping ([11], [12], [13]) but does not allow to
estimate contact forces. In smooth contact dynamics, a non-linear force is added to the other loads depending joint clearance
between solids in contact [14]. Several formulations of the contact laws can be found in literature [4], from the expression of
Hertz [1] until the most complicated formulation of Thornton [13]. These laws have been confronted to solve the Newton’s
cradle [15]. For now, a linear formulation is considered. Then, a modal basis reduction is used to decrease the size of the model
[16] even if it’s not commonly done for non-linear problem.

1.2. Industrial issue

In sodium fast reactor (SFR), the fuel is enclosed in pins, composed of slender steel tubes (the sleeve) and a helical spacer
wire around the sleeve. (Figure 1-a)

Spacer Wire

FUEL PELLETS x

-

Clad of a fuel pin

Hexagonal tube

Figure 1 — ASTRID fuel pin (a) and cross section of the pins bundle in its hexagonal tube (b)

Fuel pins are arranged in a bundle enclosed inside a hexagonal tube (Figure 1-b). The whole forms fuel assemblies which are
main constituents of the reactor core. During a dynamic load, assemblies impact each other locally on spacer pads. The shock
generates acceleration on pins and cause dynamic stresses. At virgin state, clearances are nearly homogeneous in the bundle.
During irradiation, clads swell due to thermal and pressure loads and clearances are also modified unevenly. The industrial aim is
to develop a calculation methodology to identify contact forces caused by dynamic loads (earthquake, handling or
transportation), throughout the life of assembly. Then, a local model will allow assessing maximum stresses in pins and sizing
them. All calculations shown in the follow-up have been made with the finite-element software CAST3M [17] for numerical
aspects and Scilab for reference computations.

This paper is the first step to simulate dynamic behavior of large structures made of large number of sub-structure in
contact with clearance similar to our industrial case. First studies are made on a standard problem presented §2, for which semi-
analytical results can be established (§2.2). Comparisons between analytical results and the modal basis reduction method result
are made (§2.4) leads to identify the validity domains of the numerical methods with respect to key parameters.

2. Analysis of the numerical method on a simple contact problem
2.1. Presentation of the issue

A simple contact problem is first considered: a cantilever beam initially bent at rest with null velocity and comes to impact on
a spring at its free end (Figure 2) which has a stiffness K. The initial bent configuration is taken as the first vibration mode.
This case is similar to experiments realized at the CEA on the shock of an assembly filled with a tube bundle on a hard stop.
Semi-analytical results are established and will be compared to numerical results obtained with the modal basis projection
method.

All results will be observed according to the dimensionless factor Ry, ratio of spring and bending stiffnesses (Kgnock /Kpena)»
with K,eng = 3EI/L%. Numerical application are made for a beam with the following properties: Koy = 4,5.105N /m, total
massm = 127kg.
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a) b)

Figure 2 - Clamped beam impact on a spring. a) free edge - b) contact on the spring
2.2. Semi-analytical reference solution

The issue is split in two phases, when the end of the beam is free, and when the end is in contact with the spring. In each case,
the linear problem is solved with modal reduction, by using the decomposition (1) on N modes whose natural frequencies are
lower than frequency truncation finc :

u(x, t) = XL, ®;(x)q;(1), (1)

The solution of the fundamental equation of dynamic on modal basis is given by (2):

q:(t) = e~5iit (A; cos(wyt) + B; sin(wgt)), )

_ fnuu-q)i . _ fﬂVo-q’i i

= ) B =
Jo ®i®: ;i [o(P.D) w |1-8

Eigen values w; can be found analytically. Computation is complex for the fixed-spring configuration, Refer to Behn [18] for
a full resolution. The continuous expression (2) gives all the values of modal displacements for each configuration. The full
displacement u(x, t) can be calculated by using the expression (1). With this approach, the exact solution is unreachable, given
that it requires decomposing the solution on infinity of modes, a truncation frequency f;,,n is introduced on equation (1) which
is choose arbitrarily high for comparison analysis in §2.4.

The main difficulty is to obtain transition times between the two configurations presented Figure 2. We will observe a
configuration change when u(L) = 0, with L the spring abscissa. A root finding algorithm, the secant method [19], is used to
find the first time the displacement u(L, t) becomes zero using formula (2). When the transition time is found accurately the
configuration change, initial conditions u, and v, are updated (so are A; and B;) and (2) gives the new equation to use in the
following computation. Then the procedure is iterated until reaching a predetermined number of rebound or time. Finally, when
all the contact and take off times are determined, the solution can be built using equations (2) for each phase. Attention must be
given to damping parameters; they have to be calculated to ensure damping equivalence between both configurations.

The methodology allows us to simulate analytically the fall of a clamped beam on a spring. It’s a novel approach which has
the main advantage to solve a non-linear contact issue with continuous expressions using only beam theory hypothesis. This
computation will be used as reference in §2.4 with the aim to assess the accuracy of numerical method (Figure 3).

A; 4; ; wg=w(1-8).

3)

2.3. Modal basis reduction method

The Equation of the Dynamics for a numerical issue is written (4), with Fgj, ., nonlinear contact forces.

Miit + Cu' + Ku® = F* + F& 0 (W) 4)

Fsnock = keAu(L) si Au(L) < 0 Fsnock = 0 otherwise )

Then, computation time is heavily linked to the size of the matrices M, K and C used. A way to reduce drastically the size of
these matrices is to project them on the modal bases [20]. Modes are obtained by solving the equation (6):

(K — 0*M)® =0 (6)
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This calculation gives the eigenvalues w and the eigenvectors & of the structure without contact. Unlike the analytical
solution, only the clamped free modal basis is used, the spring effect is moved to the right hand-side of the equation (4). The
displacement of the structure can be divided for each mode by using (1), with a certain frequency truncation which will be
discussed in §2.4. The equation of the dynamic (4) can be re-written using the decomposition (1) :

P'MPG + PICDG + P'KPg = DP'F,py + PF g0 () @)

By construction, matrices M = ®*M® and K = ®*K® are diagonal.

The contact force is defined on “physical” basis. So during the computation, physical displacement of each contact point is
calculated, contact forces are deducted from these displacements and contact force are projected on the set of modal basis [21].

For the computation, a classical central difference integration scheme is used. It allows very fast calculations, but requires
using an appropriate time step to ensure stability.

2.4. Assessment tools and comparison analytical/numerical computation
Figure 3 shows the displacement of the right end of the beam during time obtained by numerical or analytical method. A
dimensionless ratio is used in following studies: Rfirync = frrunc/f1, ratio between the frequency truncation and the frequency of

the first natural mode. Numerical computation results concurs with reference ones when Rytyyn is high (Figure 3 — b). Some
assessment tools are necessary to quantify differences between numerical results and references ones.

Displacement of the head of the beam for Rk = 3000 Displacement of the head of the beam for Rk = 3000
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Figure 3 - Displacements on the beam's edge for numerical computation and analytical standard - @) Rriryne = 10, R =3000, ETr =35%. b) Rrfryme = 300,
R,=3000, Err =3%

An error function Err(R;) (8) is introduced. It quantifies differences between power spectral densities I,y and [.qr
obtained with the two methods and it falls between 0% (superposed signals) and 100% (decorrelated signals)

max(lrnum - Frefl) 8
max([lrnuml' |F‘f8f|]) ®

Err =

This function accounts for the correlation between numerical curves and reference ones and is plotted Figure 4 — a). It is
globally responsive to amplitude or phase error, but doesn’t take into account short signal variations induced by contact.Thus,
another assessment tool based on the ratio of contact forces integrated on the first shock time is proposed Eq. (9) and is defined
between 1 (same contact forces) and 0 (contact forces infinitely distinct), see Figure 4 — b.:

SR, = min (fshock.l FShOCknum ’ fshockl FShOCkref)
¢ =

©)

max (fshockl FShUCknum ’ fshockl FShOCkref)

First, one must note that explicit schemes have a standard criterion to avoid divergence [5] : dt < 1/4f;;ync- The function
Err and SR¢ are plotted Figure 4, depending of the stiffness ratio, for various modal truncation ratio. Same functions are plotted
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for computations with a classical implicit scheme (average acceleration method) without modal reduction. Note that implicit
problem solving is at least 30 times slower with equal spatial discretization.

Rfstock Rfshock

4] > Rftrunc=10(2m
90| ® Rftrunc=30(4m 0.97
4| * Rftrunc = 100 (5 modes)
80| < Rftrunc = 300 (11 moc 084
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704 0.7
60+ 06
2 g
\h-' 50 o 0.5
k-]
ARPIE S 04
304 0.3
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20 0249 ® Retrunc = 30 (4 modes)
1 + Rftrunc = 100 (6 modes)
104 0.1 _ R
1 - < Rftrunc = 300 (11 modes)
L& implicit
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Figure 4 — a) Error function Er7 and b) ratio SRy depending on modal truncation Ry(yyy. and Ry ratio

For a low modal truncation (Rf¢rync = 10) and a ratio R, higher than 102, the “error” Err is about 35% (Figure 4 - a). It
represents an overvaluation of the amplitude of about 30% and a phase offset (Figure 3-a). With a higher modal truncation
(Rftrunc = 300), analytical and numerical displacements are more or less the same and the error function is close to zero (Figure
3-b). In term of contact force, numerical model gives similarly very bad results for low frequency truncation, since R; > 102.
Moreover, Figure 4 — b) shows that when R is high (>10%), a ratio Rytrune = 300 is necessary to give an acceptable estimate of
the contact force (SR > 0,8). Classical computations with implicit scheme give poor results for a hard contact due to the larger
time discretization. When R, is very high (>10° here, but the value is dependant of the time step chosen), numerical
computations diverges with explicit scheme, contrary to an implicit computation as observed in [22] (Figure 4-a).

With further examination, you can assess than computation is approximately accurate when the criterion (10) is respected:

fh k
th'runc > SfOC = Rfshock = vV Rk
1

f _ 1 1 Kshockf_l 3EI
shock — tshock ~on m I T opAl 13

fsnock corresponds to the frequency of the shock of a mass m on a spring of stiffness K. Figure 4-a shows that error Err
starts to raise when R fsnock > Rftrunc-The standard criterion on explicit scheme, the shock frequency criterion (10) and the
Figure 4 — b give us several recommendation for the choice of fi,ync (11).

(10)

1
4dtfy

> Retrunc > /R and Rpgpyne > 300 if R, > 102, (11)

3. Extension to a 2D multicontact problem.

This methodology is now applied on the larger structure presented in §1.2. (Figure 5 — a)). It’s an extension of the simple
problem treated in §0, the beam impacting is a hexagonal tube containing a pin bundle with clearance. The hexagonal tube and
cach tube of the bundle are modelled as a beam. Due to pin’s wire, locations of potential contact zones are known, and a
unilateral condition (5) can be integrated for each zone. Computation is made with a set of modal basis, one basis for each pin.
During the dynamical calculation, all contact force conditions are checked during each time step, and the force vector is updated
for the following time step. Considering that contact forces are calculated for a large number of time step, it is easy to retain
values of these forces and to use them for sizing purpose (Figure 5-b). This numerical methodology, as described in §2.3, allows
very fast computation (around 30s for the calculation shown Figure 5) and lead to accurate results as soon as the choice of
numerical parameters is appropriate. Knowing material and geometrical properties of the system, criteria given in this paper and
in studies on time step and spatial discretization enable to choose best numerical parameters for computation.
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Maximal contact forces
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Figure 5 - a) 2D Finite element model of an assembly containing a tube bundle, b) Schematic representation of maximal contact force during a dynamic load.
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4. Conclusion

In this paper, we investigated some criteria to assess the validity of the modal basis reduction method on a simple contact
problem for which a semi-analytical resolution can be established. Influence of numerical modal truncation has been analyzed,
and this leads to advice to choose the optimal value of this parameter. The same kind of studies can be made on the influence of
time and spatial discretization. It leads us to build a validity domain of the modal basis reduction method, which will allow us to
choose best numerical parameters to provide both a good accuracy and fast computation, even for complex problem. The next
step will be to use these criteria on several structures with clearance as the problem presented in this paper.
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