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The transition to unsteadiness of a three-dimensional open cavity flow is investigated
using the joint application of direct numerical simulations and fully three-dimensional
linear stability analyses, providing a clear understanding of the first two bifurcations
occurring in the flow. The first bifurcation is characterized by the emergence of
Taylor–Görtler-like vortices resulting from a centrifugal instability of the primary
vortex core. Further increasing the Reynolds number eventually triggers self-sustained
periodic oscillations of the flow in the vicinity of the spanwise end walls of the
cavity. This secondary instability causes the emergence of a new set of Taylor–Görtler
vortices experiencing a spanwise drift directed toward the spanwise end walls of the
cavity. While a two-dimensional stability analysis would fail to capture this secondary
instability due to the neglect of the lateral walls, it is the first time to our knowledge
that this drifting of the vortices can be entirely characterized by a three-dimensional
linear stability analysis of the flow. Good agreements with experimental observations
and measurements strongly support our claim that the initial stages of the transition
to turbulence of three-dimensional open cavity flows are solely governed by modal
instabilities.

Key words: bifurcation, instability, nonlinear dynamical systems

1. Introduction
Centrifugal forces are ubiquitous in nature and can have a tremendous impact on

a large variety of physical systems, ranging from astrophysical objects to man-made
experimental devices. Typical examples are accretion disks and planetary cores
(Gurnett et al. 2007) where centrifugal forces can cause an instability of the system
giving rise to spatial patterns strongly affecting its dynamics (Sisan et al. 2004). At
human scale, these centrifugal forces can be found in granular or stratified flows
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between concentric cylinders (Molemaker, McWilliams & Yavneh 2001; Conway,
Shinbrot & Glasser 2004), in separated boundary layer flows (Theofilis, Hein &
Dallmann 2000; Cherubini et al. 2010) as well as in a number of confined flows
such as the flow within a lid-driven cavity (Ramanan & Homsy 1994; Albensoeder,
Kuhlmann & Rath 2001; Theofilis et al. 2004). In all cases, if the underlying
unstable equilibrium is a two-dimensional flow, centrifugal instabilities trigger a
three-dimensionalization of this flow. One of the first striking observations of these
three-dimensional centrifugal patterns was reported by Denham & Patrick (1974)
for the flow over a backward-facing step. This behaviour was later explained by a
stability analysis conducted on a spanwise-homogeneous two-dimensional base flow,
as reported in Barkley, Gomes & Henderson (2002). In such a flow, the primary
instability has the form of flat rolls, eventually saturating into counter-rotating
elongated vortical structures, the so-called Taylor–Görtler vortices (Beaudoin et al.
2004).

The flow investigated in the present work is the incompressible open cavity flow,
also known as the shear-driven cavity flow. It is a geometrically induced separated
boundary layer flow having a number of applications in aeronautics. Based on the
assumption of two-dimensionality, it has been shown that the leading two-dimensional
instability of this flow is mostly localized along the shear layer developing at the
interface between the outer boundary layer flow and the inner cavity flow (Sipp
et al. 2010). This oscillatory global instability of the external shear layer relies
on two essential mechanisms: the convectively unstable nature of the shear layer
which causes perturbations to grow as they travel downstream, and the instantaneous
pressure feedback when the perturbation impacts the downstream corner of the cavity,
allowing these same perturbations to eventually re-excite the upstream shear layer and
hence giving rise to a linearly unstable feedback loop at sufficiently high Reynolds
numbers. For compressible shear-driven cavity flows, a similar unstable feedback loop
exists wherein the feedback is given by upstream-propagating acoustic waves (Rossiter
1964; Rowley, Colonius & Basu 2002; Yamouni, Sipp & Jacquin 2013). This strictly
two-dimensional linearly unstable flow configuration has served multiple purposes
over the past decade: illustration of optimal control and reduced-order modelling
(Barbagallo, Sipp & Schmid 2009), investigation of the nonlinear saturation process
of globally unstable flows (Sipp & Lebedev 2007) and introduction to dynamic modes
decomposition (Schmid 2010) to name just a few.

Considering strictly two-dimensional perturbations on top of this already two-
dimensional base flow is however quite often an over-idealization of the problem.
In order to circumvent this drawback, the perturbations are now considered as
being spanwise periodic. This ansatz has proved necessary in order to capture the
centrifugal instability experienced by the flow. Since the early work of Ramanan
& Homsy (1994) on the stability of a two-dimensional lid-driven cavity toward
spanwise-periodic perturbations, a large body of literature has been published wherein
this ansatz enables the description of physical instabilities and mechanisms in
qualitative agreement with necessarily three-dimensional experimental set-ups. For
the lid-driven cavity flow, one can cite Ding & Kawahara (1998), Albensoeder et al.
(2001), Guermond et al. (2002), Theofilis et al. (2004), Albensoeder & Kuhlmann
(2006), Non, Pierre & Gervais (2006), Chicheportiche et al. (2008), while the reader
is referred to the recent works of Meseguer-Garrido et al. (2014) and Citro et al.
(2015a) and references therein for the shear-driven cavity flow.

Despite its qualitative success, linear stability analysis of a strictly two-dimensional
base flow toward spanwise-periodic perturbations is still a relatively restrictive
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hypothesis, real flows being rarely homogeneous in the spanwise direction. More
often than not, flows studied experimentally necessarily have spanwise end walls
whose influence cannot be accounted for with the previously cited approach. The
existence of such spanwise end walls moreover gives rise to the formation of
lateral boundary layers which can induce large-scale secondary motions, which
in turn can influence the stability of the flow as demonstrated experimentally by
Faure et al. (2007, 2009) and Douay, Pastur & Lusseyran (2016b). In order to take
properly into account the influence of the spanwise end walls on the stability of
the flow, these need to be included in the analysis. The linear stability analysis
of a three-dimensional base flow toward three-dimensional perturbations is thus
mandatory to obtain a realistic picture. Such fully three-dimensional stability analysis,
however, is still a formidable computational task and very few references exist in
the literature at this time. One can cite the original work of Bagheri et al. (2009b),
Ilak et al. (2012) and Peplinski, Schlatter & Henningson (2015) on jets in cross-flow,
or Loiseau et al. (2014) and Citro et al. (2015b) on roughness-induced transition
in boundary layer flows. Feldman & Gelfgat (2010), Gómez, Gómez & Theofilis
(2014), Kuhlmann & Albensoeder (2014) and Loiseau, Robinet & Leriche (2016)
have also studied the three-dimensional linear stability of lid-driven cavity flows.
To our knowledge, however, the body of literature existing on the instability and
transition of realistic three-dimensional shear-driven cavities is essentially limited to
Liu, Gómez & Theofilis (2016). These authors have reported a linear stability analysis
of the flow over a long rectangular open cavity with a narrow span. Their key finding
is that, for such long and narrow cavities, the transition to unsteadiness results from
an instability of the shear layer reminiscent of the two-dimensional Rossiter modes.

Joining experimental observations, direct numerical simulations and fully three-
dimensional linear stability analyses, the present work aims at shedding more light
onto the initial stages of transition to unsteadiness of a realistic three-dimensional
shear-driven cavity flow. Contrary to Liu et al. (2016), we consider herein a relatively
large cavity whose aspect ratios are given by L :D : S = 1 : 1 : 6, where L, D and S
are the streamwise length, the depth and the span of the cavity, respectively. Among
other things, the results presented herein illustrate the importance of lateral walls to
the stability of the flow. They particularly highlight how the spanwise drift of the
Taylor–Görtler vortices, reported in a number of experimental studies (Faure et al.
2009; Douay et al. 2016b), is triggered by a secondary instability of the flow which
cannot be captured using a traditional two-dimensional assumption of the base flow
field. The extremely good agreement between the experimental observations and
the predictions of linear stability analyses enables us to provide a simple scenario
of the transition to unsteadiness experienced by the flow. The agreement between
experimental evidence and theoretical predictions, moreover, strongly supports our
claim that the initial stages of transition of the three-dimensional shear-driven cavity
flow are solely governed by modal instabilities. The present manuscript is organized
as follows. The experimental set-up is presented in § 2 while § 3 describes the
numerical set-up and methods used. The fully three-dimensional linear stability
analyses performed are presented in § 4. A thorough comparison of the numerical
predictions and the experimental observations is given in § 5.1. Finally, § 6 presents
our conclusions and some perspectives on this work.

2. Experimental set-up
Experiments reported in the present work were performed in the wind tunnel facility

at LIMSI-Orsay (Faure et al. 2009; Basley et al. 2013, 2014; Douay et al. 2016b).

https://doi.org/10.1017/jfm.2018.169
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


A

B

S

L

D

x

y

z

FIGURE 1. (Colour online) Picture of the experimental set-up at LIMSI (Orsay, France),
as described by Faure et al. (2007).

The experimental set-up is shown in figure 1. The flow is made laminar by a
calming section located downstream of the centrifugal fan: it is made of a settling
chamber followed by a convergent and two honeycomb panels at the inlet of the
contraction duct. The outlet of the wind tunnel is open to the room. The origin of the
boundary layer is fixed by an elliptical leading edge, 300 mm upstream of the cavity
leading edge, where a Blasius-like velocity profile develops. Background turbulence,
estimated by laser Doppler velocimetry, is smaller than 1 %. The wind tunnel force
frequencies were mainly distributed between 0 and 10 Hz, with a maximal power
around 1 Hz, three orders of magnitude smaller than the cavity flow spectrum for
the same frequency range. The span of the wind tunnel is S = 300 mm, while
the top-to-bottom distance is 75 mm. The cavity depth is D = 50 mm. Centrifugal
instabilities develop at very low incoming velocity, typically less than 1 m s−1,
which is challenging for the flow rate regulation. The incoming velocity stability
is approximately 0.025 m s−1, which also provides the lower limit of the velocity
step. Complete optical access is made available using coated glass walls for the test
section and the cavity. The cavity itself consists of three distinct rectangular elements,
in coated glass. The first element is a forward-facing step at the inlet of the test
section, much deeper than the cavity depth. The second element is the base floor
which sets the cavity depth D. Finally, the last element is a D-deep forward-facing
step which can slide above the flat floor of the second element, so as to adjust the
cavity length L. As the flow is sensitive to inaccuracies in the cavity assembly, we
had to pay particular attention to suppress any leak that could be present at the edges
and corners of the cavity. In addition, the incoming flow has a very small, though
non-vanishing, spanwise component, introducing a systematic bias in the incoming
flow direction which is not strictly streamwise. Visualizations of the flow patterns
presented later on are carried out by lighting up the smoke produced by a fog
machine with a laser sheet generated by a 200 mJ Quantel twin-pulsed YAG laser. A
standard, single-frame video camera (AVT Cameras, Marlin, 1024 pixel × 768 pixel
of size 4.65 µm× 4.65 µm with resolution depth of 8 bit) snaps images at a frame
rate of 20 Hz. An electronic delay generator (R&D Vision) is used to synchronize
flash lamps and Q-switches of both laser cavities together with the camera’s through
the lens (TTL) signal.
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FIGURE 2. Sketch of a three-dimensional open cavity flow, showing the geometrical
features. The shaded areas highlight the walls where no-slip boundary conditions are
imposed.

3. Problem statement and numerical methods
3.1. Governing equations

The dynamics of the incompressible flow of a Newtonian fluid over an open cavity is
governed by the Navier–Stokes equations

∂u
∂t
=−(u · ∇)u−∇p+

1
Re
∇

2u, (3.1)

∇ · u= 0, (3.2)

where u = (u(x, t), v(x, t), w(x, t))T is the velocity field and p(x, t) is the pressure
field. The Reynolds number is defined as Re=U∞L/ν, where U∞ is the free-stream
velocity, L is the length of the cavity and ν is the kinematic viscosity of the fluid. The
reference frame x= (x, y, z)T is chosen such that x is the streamwise, y the wall-normal
and z the spanwise direction. The flow configuration is sketched in figure 2, where the
boundary conditions are indicated using the symbols listed in table 1. Following Sipp
& Lebedev (2007) and Citro et al. (2015a), a fully three-dimensional boundary layer
is obtained from a free-slip/no-slip discontinuity in the boundary condition.

The Navier–Stokes equations are solved using the incompressible flow solver
NEK5000 (Fischer et al. 2008) which is based on the spectral element method (SEM).
A PN − PN−2 formulation has been used: the velocity field is discretized using Nth
degree Lagrange interpolants, defined on the Gauss–Legendre–Lobatto quadrature
points, as basis and trial functions, while the pressure field is discretized using
Lagrange interpolants of degree N − 2 defined on the Gauss–Legendre quadrature
points. Finally, the time integration is performed using the BDF3/EXT3 scheme:
integration of the viscous terms relies on the backward differentiation (BDF3), while
the convective terms are integrated via extrapolation (EXT3), both methods being
third-order accurate. The Navier–Stokes equations are discretized on a mesh of
30 000 spectral elements with polynomials of order 8. Thus, the problem to be
solved consists of over 61 million degrees of freedom for describing the velocity and
pressure fields.
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Identifier Description

Din (u, v,w)= (1, 0, 0)
Ds (∂yu, v, ∂yw)= (0, 0, 0)
Dss (∂zu, ∂zv,w)= (0, 0, 0)
Dw (u, v,w)= (0, 0, 0)

Dout

(
p−

1
Re
∇u
)
· n= 0

TABLE 1. Description of the boundary conditions, with reference to figure 2.

3.2. Linear stability analysis

Steady solutions Q(x) = (Ub, Pb)
T to the Navier–Stokes equations are known as

base flows or fixed points of the system. Their linear stability is dictated by the
fate of infinitesimal perturbations evolving in their vicinity. The dynamics of such
perturbations is governed by the linearized Navier–Stokes equations, which can be
compactly written as

∂u
∂t
= Ju (3.3)

once projected onto a divergence-free vector space. As this linear dynamical system
is autonomous in time, the perturbation u can be expanded into normal modes, such
that u(x, t)=

∑
∞

k=1 ûk(x) exp(λkt). Injecting this normal mode ansatz into (3.3) yields
an eigenvalue problem

λû= Jû, (3.4)

where λ=σ + iω is the eigenvalue and û its associated eigenvector. The linear stability
of the fixed point is then dictated by the real part σ of the most unstable/least stable
eigenvalue: the base flow is linearly unstable if σ > 0, otherwise it is linearly stable.
Boundary conditions used to solve (3.4) are the same as those given in table 1, except
at the inflow where a zero-velocity Dirichlet condition is now prescribed. It has to
be noted however that because of the large number of degrees of freedom, solving
the eigenproblem (3.3) using direct methods (i.e. QR or QZ algorithms) is hardly
possible at the moment. Following Edwards et al. (1994) and Bagheri et al. (2009a),
a time-stepper formulation of the problem is thus used. The leading eigenpairs of
the linearized Navier–Stokes operator are then obtained based on the iterative Arnoldi
algorithm (Arnoldi 1951) described by Loiseau et al. (2014) using a Krylov subspace
of dimension K= 250 and a sampling period 1T = 2.5 in non-dimensional time units.
For this selected set of parameters, each stability computation employs a wall-clock
time of 15 to 20 h on 512–1024 cores. Thus, up to 20 000 CPU hours are needed to
obtain one eigenvalue spectrum (without considering the CPU time for computing the
base flow by continuation).

4. Results
4.1. Primary bifurcation

4.1.1. Base flow
As will be shown, the first bifurcation experienced by the flow results from an

eigenvalue of the linearized Navier–Stokes operator crossing the neutral growth rate
axis, which is characterized by a zero frequency. The corresponding eigenmode
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FIGURE 3. (Colour online) (a) Colour map of the velocity magnitude of the base flow at
Re= 3300 in the symmetry z= 0 vertical plane. Only a subset of the whole computational
domain is considered. (b) Visualization of the path lines of two particles located initially
at (x, y, z) = (0.5, −0.5, ±2.99). The incoming flow is directed toward the reader. The
colour scale indicates the trajectory integration time.

thus experiences an exponential growth but does not exhibit periodic oscillation.
Consequently, the popular selective frequency damping (Åkervik et al. 2006) cannot
quench its development, and a continuation method similar to Theofilis & Colonius
(2003) is thus used to compute linearly unstable base flows close to the first
bifurcation threshold.

Figure 3 depicts some of the key features of the primary base flow. Though it is
fully three-dimensional due to the spanwise end walls being taken into consideration,
it can be seen that the flow within the central plane (given by z = 0) looks quite
similar to its two-dimensional counterpart: see figure 3(a). Despite this apparent
resemblance, the three-dimensionality of the flow within the cavity is clearly visible
in figure 3(b) depicting some of the streamlines of the inner cavity flow. Fluid
particles in the vicinity of the spanwise end walls are attracted toward the z= 0 plane
along the central vortex. This spanwise flow results from the interaction between the
swirling flow within the central plane and the zero-velocity condition prescribed at
the spanwise end walls. Because of the friction along these end walls, the x- and
y-velocity components are damped. However, due to the incompressibility of the
flow, this deceleration of the (x, y) in-plane motion gives rise to a secondary flow
which is directed along the z-axis as illustrated by the streamline visualizations. This
secondary flow, from the spanwise end walls toward the central plane of the cavity,
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FIGURE 4. (Colour online) (a) Eigenspectra of the linearized Navier–Stokes operator for
Re=3400 (blue squares) and Re=3475 (red circles). The shaded region corresponds to the
stable part of the complex plane. (b) Spanwise velocity isocontours of the leading unstable
mode at Re = 3475. (c) Motion induced by this mode in the y = −0.5 horizontal plane.
The colour map depicts the amplitude of the out-of-plane (vertical) velocity component
while the vectors show the in-plane motion.

occurs within the core of the primary vortex which experiences a solid-body-like
rotation. Once it has reached the central plane, the fluid particles stay in its vicinity
for a while before being expelled toward the end walls.

4.1.2. Eigenspectra and eigenfunctions
Figure 4(a) depicts the eigenspectra of the linearized Navier–Stokes operator

at Re = 3400 and Re = 3475. All the eigenmodes are stable at Re = 3400 (blue
squares). Increasing the Reynolds number, a real eigenvalue crosses the neutral
axis becoming unstable (red dots). A linear interpolation gives a critical Reynolds
number ReC1 = 3450. Spanwise velocity contours of the eigenvector corresponding
to the leading eigenvalue are depicted in figure 4(b), while the motion induced
in the y = −0.5 horizontal plane is highlighted in figure 4(c). It consists of
a set of counter-rotating Taylor–Görtler-like vortices. Similar unstable structures
also appear in the canonical lid-driven cavity flow (Albensoeder et al. 2001;
Ramanan & Homsy 1994; Non et al. 2006; Chicheportiche et al. 2008; Theofilis
et al. 2004; Feldman & Gelfgat 2010; Loiseau et al. 2016). Similar modes for
the two-dimensional shear-driven cavity flow have been computed by Bres &
Colonius (2008), Meseguer-Garrido et al. (2014), de Vicente et al. (2014) and
observed experimentally by Faure et al. (2007, 2009), Douay et al. (2016b) and
Douay, Lusseyran & Pastur (2016a). A Fourier decomposition of the mode in
the spanwise direction indicates that the dominant wavelength is λz = 0.515, in
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z

FIGURE 5. (Colour online) Motion induced by the least unstable mode in the y=−0.5
horizontal plane at Re= 3475. The colour map depicts the amplitude of the out-of-plane
(vertical) velocity component while the vectors show the in-plane motion. Note that,
contrary to the unstable mode, this one is characterized by a mirror antisymmetry.

good agreement with previous findings. Finally, it has to be noted that, on the
eigenspectra depicted in figure 4(a), a second real eigenvalue is almost indiscernible
from the leading unstable one, their growth rates differing by less than 1 %. The
spatial distribution of the eigenvector associated with this eigenvalue is shown in
figure 5. Comparing figures 4(c) and 5, these two eigenfunctions appear to be quite
similar, both exhibiting the same spanwise wavenumber λz ' 0.51. However, while
the eigenfunction associated with the most unstable eigenvalue exhibits a mirror
symmetry, the one associated with the least unstable eigenvalue displays a mirror
antisymmetry. Although this antisymmetric eigenmode is linearly unstable at the
Reynolds numbers considered, it has never been observed in our direct numerical
simulations. A similar observation has also been reported by Loiseau (2014) for
three-dimensional lid-driven cavity flows. From a mathematical point of view, both of
these two modes can be traced back to the same leading spanwise-periodic instability
mode û(x, y, β) of the two-dimensional shear-driven cavity. The mirror-symmetric
mode would then asymptotically tend to

lim
S→∞

u(x, y, z)= û(x, y) cos(βz), (4.1)

where S is the spanwise extent of the cavity, while the mirror-antisymmetric mode
would tend to

lim
S→∞

u(x, y, z)= û(x, y) sin(βz). (4.2)

It is unclear at the present time whether these two eigenvalues are non-degenerate
eigenvalues or if they are the same degenerate eigenvalue with a multiplicity 2.

4.1.3. Physical mechanism
Following Albensoeder et al. (2001), the velocity field u of the leading eigenvector

is decomposed as
u= u‖ + u⊥, (4.3)

where u‖ is everywhere parallel to the direction of the base flow velocity vectors,
while u⊥ is its orthogonal complement. Using such a decomposition, the unstable
eigenmode can be understood as the superposition of two structures: counter-rotating
rolls (u⊥) and streaky structures (u‖) aligned with the flow. While the rolls account
for 40 % of the perturbation’s kinetic energy, the remaining 60 % is provided by
the streaky structure. Introducing this decomposition into the Reynolds–Orr equation
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I1 I2 I3 I4 D

0.009 0.197 0.039 0.032 −0.27

TABLE 2. Contribution of the different production terms Ii and the viscous dissipation D
to the total kinetic energy budget of the unstable mode at Re= 3500.

governing the evolution of the perturbation’s kinetic energy, the production term
P=−

∫
V u · (u · ∇)Ub dV can be decomposed into the following four terms:

I1 =−

∫
V

u⊥ · (u⊥ · ∇)Ub dV, I2 =−

∫
V

u‖ · (u⊥ · ∇)Ub dV, (4.4a,b)

I3 =−

∫
V

u⊥ · (u‖ · ∇)Ub dV, I4 =−

∫
V

u‖ · (u‖ · ∇)Ub dV. (4.5a,b)

A different physical mechanism is associated with each of these four contributions.
For instance, the I2 term is associated with the lift-up mechanism (Landahl 1980),
consisting of the transport of the base flow shear by counter-rotating rolls u⊥,
which induce streaky structures u‖, whereas the I3 term is linked to the anti-lift-up
mechanism, an energy amplification mechanism typically found in stable columnar
vortices (Antkowiak & Brancher 2007). The sign of the different integrals Ii then
indicates whether the associated physical mechanism acts to promote (positive) or
quench (negative) the instability considered. The contributions of these different
production terms to the total kinetic energy budget are summarized in table 2. This
energy budget is dominated by the I2 term, characterizing the transfer of energy
between the base flow and the perturbation through the lift-up mechanism (Landahl
1980). Very similar energy budgets have been obtained for lid-driven cavity flows
by Albensoeder et al. (2001) and Loiseau et al. (2016), pointing to an instability of
centrifugal type.

4.1.4. Nonlinear evolution
Starting from the linearly unstable base flow at Re = 3500, a direct numerical

simulation has been run until nonlinear saturation is reached in order to gain a better
understanding of the saturation process of the instability and of the flow it is giving
rise to. Figure 6 depicts the evolution of the flow’s kinetic energy once an almost
statistical steady state has been reached. Although the linear stability predicts a
non-oscillatory instability, a surprising low-frequency (ω ≈ 0.009) and low-amplitude
(std ≈ 2.5 × 10−5) oscillation of the perturbation’s energy can be observed. At the
present time, it is not clear how this oscillation arises. Two different hypotheses can
be formulated.

(i) The combination of the Krylov subspace’s dimension and of the sampling period
of the snapshots does not allow us to span a sufficiently large number of periods
of this low-frequency oscillation for the Arnoldi algorithm to appropriately
estimate its phase, and hence the imaginary part of the leading eigenvalue.

(ii) Assuming the linear eigenmode is indeed non-oscillatory, the low-frequency low-
amplitude oscillation observed might arise from nonlinear interaction between this
mode and the secondary low-energy spanwise flow induced by the existence of
the spanwise end walls discussed earlier.
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FIGURE 6. (Colour online) Evolution of the perturbation’s kinetic energy as a function
of time in the nonlinearly saturated regime at Re= 3500. Note that the vertical axis has
been re-scaled by a factor 104. The red dots indicate the instants of time for which the
corresponding helicity fields are depicted in figure 7.

The first hypothesis highlights potential limitations of the time-stepping approach
when applied to linear stability analysis. Unfortunately, given our computational
resources, it is not currently possible to increase significantly the dimension of the
Krylov subspace and the associated sampling period in order to span several periods
of this low-frequency oscillation. On the other hand, verifying the second hypothesis
would rely on weakly nonlinear analyses (Sipp & Lebedev 2007) which are still
very challenging for fully three-dimensional flow configurations and are beyond the
scope of the present work. Figure 7 depicts the instantaneous spatial distribution of
the helicity h(x, t) = u(x, t) · ω(x, t) within the y = −0.5 horizontal plane at six
different instants of time. As shown, the linearly unstable eigenmode reported in
the previous section gives rise to five pairs of Taylor–Görtler-like vortices, the three
central ones being largely more energetic than the outermost ones. These helicity
maps also underline the strong swirling motion experienced by the fluid particles in
the vicinity of the lateral walls and already outlined previously for the primary base
flows: see figure 3(b). Looking at these different snapshots, it can finally be observed
that the low-frequency oscillation observed in the flow’s kinetic energy evolution
depicted on figure 6 spatially corresponds to a small spanwise oscillation of these
Taylor–Görtler-like vortices. Although a small change in the amplitude of the helicity
is noticeable, one needs to recall that it occurs over several hundreds of convective
time units. Moreover, it can be seen that these Taylor–Görtler vortices remain within
the central part of the cavity delimited by −1.5 6 z 6 1.5.

4.2. Secondary bifurcation
4.2.1. Base flow

As shown in the previous section, the primary bifurcation gives rise to a flow
characterized by a very low-frequency and low-amplitude oscillation of the central
Taylor–Görtler-like vortices. Figure 8 depicts the instantaneous spatial distribution
of the helicity h(x) within the y = −0.5 horizontal plane at Re = 3700. It can be
seen that the structure of the bifurcated flow is hardly modified when increasing
the Reynolds number. A similar observation can be made regarding the frequency
of the low-amplitude oscillation of the flow’s kinetic energy (not shown). From
a quantitative point of view, the total rate of change of the velocity field over
1t = 2.5× 10−3 non-dimensional time units is of the order of 10−6–10−7. For linear
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FIGURE 7. (Colour online) Snapshots of the instantaneous helicity field h(x, t)=ω(x, t) ·
u(x, t) at the different instants of time highlighted in figure 6 (Re = 3500). The colour
scale has been kept constant over the different figures.

stability analysis purposes, such a slowly evolving flow can thus be considered as
being quasi-stationary and be used as a base flow. Since this small unsteadiness is
moreover limited to the region −1.5 6 z 6 1.5, this quasi-static assumption is further
strengthened a posteriori given that the spatial support of the second linearly unstable
mode is almost entirely localized within the ‖z‖ > 1.5 region, as will be shown in
the next section.
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FIGURE 8. (Colour online) Helicity field of the bifurcated base flow within the y=−0.5
horizontal plane. The Reynolds number is set to Re= 3700.

4.2.2. Eigenspectra and eigenfunctions
Figure 9(a) depicts the eigenspectra of the linearized Navier–Stokes operator at Re=

3600 and Re = 3800. While for Re = 3600 all the modes are stable, it can be seen
that at Re = 3800 two complex conjugate pairs of eigenvalues lie in the upper-half
complex plane: λ2 = 0.0013 ± i0.0496 and λ3 = 0.0008 ± i0.0272, respectively. A
linear interpolation gives a critical Reynolds number ReC2 = 3730 for the eigenvalue
λ2. The second bifurcation of the flow hence results from a pair of complex conjugate
eigenvalues moving into the upper-half complex plane, i.e. an Andronov–Poincaré–
Hopf bifurcation. Consequently, it leads the flow to exhibit self-sustained oscillations
characterized by a circular frequency ω=±0.0496, i.e. four to five times larger than
the low frequency of the low-amplitude oscillation of the base flow. The fact that
a second unstable mode, λ3, is observed at Re = 3800 indicates the existence of a
second Hopf bifurcation, at a critical Reynolds number ReC3 = 3770 resulting from
the eigenvalue λ3 stepping into the upper-half complex plane.

Spanwise velocity contours of the eigenvector corresponding to the leading
eigenvalue λ2 are depicted in figure 9(b), while the motion induced in the y=−0.5
horizontal plane is depicted in figure 9(c). Note that the eigenvector associated with λ3
is quite similar and is thus not shown for the sake of conciseness. Whereas the spatial
support of the unstable eigenmode at the bifurcation point ReC1 = 3430 is mostly
localized in the central part of the cavity (‖z‖ 6 1.5) (see figure 4), that depicted
in figure 9 is essentially located in the outer part of the cavity given by ‖z‖ > 1.5.
Although its spatial support lets us hypothesize that it is related to the existence
of the spanwise end walls, it nonetheless takes the form of Taylor–Görtler-like
vortices characterized by a spanwise wavelength λz = 0.49. As previously, this
unstable eigenmode can be decomposed as u = u‖ + u⊥, with 61 % of the kinetic
energy of the mode contained in the streaky structure u‖ while the rolls account
for the remaining 39 %. Despite their different spatial locations, both the primary
and secondary unstable eigenmodes hence appear to rely on the same underlying
physical mechanisms. This is further confirmed by table 3, providing the contribution
of the different productions terms Ii to the total kinetic energy budget. Once again,
this energy budget is dominated by the I2 term, hence implying that this secondary
instability is also of centrifugal type. Finally, it is worth noting that the pair of
complex conjugate eigenvalues now becoming unstable could already be foreseen at
lower Reynolds numbers: see the least stable complex conjugate eigenvalues in the
eigenspectrum shown in figure 4(a).

4.3. Sensitivity analysis
As explained in § 4.2.1, the stability analysis performed in the present section relies
on the assumption that the time scale over which the secondary instability is evolving
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FIGURE 9. (Colour online) (a) Eigenspectra of the linearized Navier–Stokes operator for
Re=3600 (blue squares) and Re=3800 (red circles). The shaded region corresponds to the
stable part of the complex plane. (b) Spanwise velocity isocontours of the leading unstable
mode at Re = 3800. (c) Motion induced by this mode in the y = −0.5 horizontal plane.
The colour map depicts the amplitude of the out-of-plane (vertical) velocity component
while the vectors show the in-plane motion.

I1 I2 I3 I4 D

0.0123 0.1782 0.0363 0.0225 −0.2463

TABLE 3. Contribution of the different production terms Ii and the viscous dissipation D
to the total kinetic energy budget of the unstable mode at Re= 3800.

is significantly smaller than the period of the very low-frequency oscillation of the
underlying base flow. Such an assumption is verified a posteriori, given that the
frequency of the instability is four to five times larger than the low frequency of the
base flow’s oscillation. As shown in figure 9(c), the spatial support of the secondary
mode moreover differs from that of the primary instability. Despite these key elements,
one might nonetheless wonder how this secondary instability is influenced by the
evolution of the flow within the central part of the cavity. Formally, one would need
to perform a Floquet analysis, something which is beyond our current capabilities.
Within our quasi-static assumption, such questioning can nonetheless be rephrased
as: how sensitive is this secondary instability to base flow modifications? In order to
answer this question, let us first introduce the adjoint Navier–Stokes equations

∂u†

∂t
=−∇u†

·Ub + (∇Ub)
T
· u†
−∇p†

+
1

Re
∇

2u†,

∇ · u†
= 0,

 (4.6)
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where u† is the adjoint velocity field and p† the adjoint pressure. As for the linearized
Navier–Stokes equations, equation (4.6) can be recast as

∂u†

∂t
= J†u†, (4.7)

where J† is the projection of the adjoint Jacobian matrix onto the divergence-free
vector space. As this linear dynamical system is autonomous in time, the variable
u† can once again be expanded into normal modes, such that one finally obtains the
following eigenvalue problem:

λ†û†
= J†û†

. (4.8)

For each eigenpair (λi, ûi) of the linearized Navier–Stokes operator, there exists an
associated adjoint eigenpair (λ†

i , û†
i ) such that

λ†
i = λ

∗

i and
∫
Ω

ûi · û
†
j dΩ = δij, (4.9a,b)

where ∗ denotes the complex conjugate operation. Given these direct and adjoint
eigenpairs, it has been shown by Marquet, Sipp & Jacquin (2008) that the sensitivity
of an eigenvalue λ of the linearized Navier–Stokes operator to modifications of the
underlying base flow Ub is given by

∇Uλ=−(∇û)H · û†
+∇û†

· û∗, (4.10)

where H denotes the transconjugate operation. The real part of (4.10) characterizes
how and where the eigenvalue’s growth rate σ is sensitive, while the imaginary
part characterizes the sensitivity of the circular frequency ω to modification of the
underlying base flow. For more details about the derivation of the adjoint equations,
the sensitivity gradient and the boundary conditions to be applied, please refer
to Barkley, Blackburn & Sherwin (2008), Blackburn, Barkley & Sherwin (2008),
Marquet et al. (2008) or the recent review by Luchini & Bottaro (2014).

Figure 10 depicts the spanwise velocity field of the adjoint mode associated with
the leading eigenmode depicted in figure 9 within the y=−0.5 horizontal plane, while
the sensitivity of the corresponding growth rate within the same plane is shown in
figure 11. Looking at these two figures, it is clear that the secondary instability is
mostly sensitive in the vicinity of z=±2, while modification within the central part
of the cavity (i.e. where the very low-frequency oscillation of the base flow occurs)
hardly influences it. Similar results have been obtained for the eigenmode associated
with λ3. Along with the very different spatial supports of the primary and secondary
instability modes, these sensitivity results strongly justify a posteriori the validity of
the frozen base flow assumption used in this section.

5. Discussion
5.1. Comparisons with experiments

The analyses reported in the previous sections have underlined how the flow can
transition from steady state to the emergence of self-sustained periodic oscillations
giving rise to a spanwise drift of the Taylor–Görtler-like vortices. Let us now compare
the predictions of linear stability analyses and direct numerical simulations against
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FIGURE 10. (Colour online) Spanwise velocity of the adjoint eigenmode û† associated
with the eigenvalue λ= 0.001± i0.049 at Re= 3800 in the y=−0.5 horizontal plane.
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FIGURE 11. (Colour online) Sensitivity to base flow modification ∇Uλ of the eigenvector
û associated with the eigenvalue λ=0.001± i0.049 at Re=3800 in the y=−0.5 horizontal
plane. Only the magnitude of real part of ∇Uλ is shown, i.e. the sensitivity to base flow
modification of the eigenvalue’s growth rate.
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FIGURE 12. Experimental smoke visualization (a) (Faure et al. 2007) and numerically
computed streamlines (b). The visualization technique enhances the detection of
mushroom-shaped Taylor–Görtler-like vortical structures. Top views in the y= 0.8 plane.

observations obtained using the experimental set-up described in § 2. Figure 12 depicts
a visual comparison of the experimental smoke visualizations and the numerically
computed streamlines within a horizontal plane cutting through the cavity at two
different Reynolds numbers. It is clear that the flow patterns observed experimentally
and numerically for the two Reynolds numbers considered are qualitatively similar.
As the Reynolds number is increased from Re = 2300 up to Re = 4030, both the
smoke and streamlines visualizations highlight the emergence of mushroom-like
structures. These vortical structures are the Taylor–Görtler-like vortices resulting from
the different centrifugal instabilities underlined in the previous sections.

Table 4 summarizes the critical Reynolds numbers, wavelengths and circular
frequencies observed in our experimental work (see § 2), in direct numerical
simulations as well as in our linear stability analyses, while figure 13 provides
a schematic representation of the evolution of the flow’s morphology as the
Reynolds number increases. As assessed from linear stability analyses, three different
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FIGURE 13. Sketch of the evolution of the morphology of the inner cavity’s flow as
a function of the Reynolds number. NoTG, STG and UTG stand for no Taylor–Görtler
vortices, (quasi-) stationary Taylor–Görtler vortices and unsteady Taylor–Görtler vortices,
respectively.

ReC1 ReC2 λz ω

Experimental ≈ 3370± 84 ≈ 3750± 94 0.53L 0.035
DNS 3450 3730 0.52L 0.0343 (Re= 3900)
GLSA 3450 3730 – 3770(ReC3) 0.49L 0.049 – 0.027 (ω3)

TABLE 4. Summary of the critical Reynolds numbers, spanwise wavelength and circular
frequencies observed experimentally, and predicted by linear stability analyses. DNS
and GLSA stand for direct numerical simulation and global linear stability analysis,
respectively.

flow regimes have been observed. The first one (figure 13a) is a stationary flow
characterized by the absence of Taylor–Görtler vortices and sharing strong similarities
with its two-dimensional counterpart. The second flow regime sees the emergence of
Taylor–Görtler-like (TGL) vortices localized in the central part of the cavity. Although
linear stability analyses predict a stationary flow, direct numerical simulations have
revealed that these TGL vortices experience a very low-amplitude and low-frequency
oscillation. Such oscillations are extremely difficult to observe owing to their small
amplitude and the long time scale over which they take place. Nonetheless, the critical
Reynolds number predicted by stability analysis is in extremely good agreement with
both direct numerical simulations and experimental observations (only 2 % difference),
as is the dominant wavelength of this vortical flow structure. On top of these
quasi-stationary TGL vortices, travelling waves are observed in the third flow regime
investigated due to the appearance of additional sets of linearly unstable TGL vortices
now located in the vicinity of the spanwise end walls. Figure 14 depicts experimental
and numerical spatio-temporal diagrams taken along the line (x, y) = (0.1, 0.8)
for Re = 3900. These diagrams once again highlight the good agreement obtained
between the experimental and numerical flow patterns. In both configurations, the
central region of the cavity, given by ‖z/D‖< 1, is mostly dominated by quasi-steady
Taylor–Görtler-like vortices characterized by a spanwise wavelength λz ' 0.5. On the
other hand, the flow pattern in the outer parts of the cavity, given by ‖z/D‖> 1.5, is
dominated by a right- or left-travelling wave resulting from the instability reported in
§ 4.1.2. Physically, this travelling wave corresponds to a spanwise drift of the TGL
vortices due to the existence of the secondary flow discussed in § 4.1.1 and already
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FIGURE 14. Numerical and experimental space–time diagrams of the pattern dynamics
at Re = 3900 along the line (x, y) = (0.1, 0.8). Streamwise velocity for DNS on the
left, experimental smoke visualization on the right. The latter has been rectified using the
constant asymmetrical drift velocity obtained for ReC1 6 Re 6 ReC2.

investigated experimentally by Faure et al. (2007), Faure et al. (2009) Douay (2014)
and Douay et al. (2016b). As for the primary bifurcation, the critical experimental
and theoretical critical Reynolds numbers differ by less than 1 %. It has to be noted
finally that some small discrepancies exist regarding the oscillation frequency of the
lateral TGL vortices. This difference very likely results from small limitations of the
experimental set-up highlighted in § 2, namely the existence of a small non-vanishing
spanwise component of the incoming flow introducing a systematic bias in the flow
direction. Another source of error might reside in the quasi-static assumption made
for the secondary base flow. Overcoming this limitation, however, requires the use of
Floquet analysis, which is beyond our present capabilities.

5.2. Influence of the aspect ratio
The results presented so far have been obtained in the case of a relatively large-span
square cavity of aspect ratio L :D : S= 1 : 1 : 6, recovering two successive bifurcations
leading the flow to transition. Nonetheless, it is not clear yet whether the scenario
observed herein might be extended to the flow in open cavities of different aspect
ratios. Previous experimental works on square cavities (L/D = 1, see Faure et al.
2009) have shown how the spatial support of the flow instabilities changes drastically
when the span to depth ratio, S/D, is decreased to values lower than 3. In these
short-span cavities, isolated pairs of vortices are recovered instead of the spanwise
rows of centrifugal vortices generally observed for large-span cavities, indicating that
the strong spanwise flow induced by the presence of two neighbouring lateral walls
may prevent the generation of the centrifugal vortices. However, for cavities having
a sufficiently large-span size (S/D> 3), no abrupt change of the main features of the
bifurcated flow is observed, the instability modes keeping a very similar shape when
S/D is increased. In the limit of an infinitely large cavity, a spanwise-homogeneous
open cavity flow is obtained, which has been studied numerically by Citro et al.
(2015a) for the case L/D= 1. These authors have shown that the flow undergoes the
first bifurcation at a critical Reynolds number of 1370, the most unstable mode being
steady, localized inside the cavity and three-dimensional with spanwise wavelength
of approximately 0.47 cavity depths. A structural sensitivity analysis provided by
the same authors indicates that, for the considered infinite-span square cavity, the
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mechanism of generation of the primary unstable mode is completely driven by
the recirculating flow inside the cavity. Thus, the primary instability mechanism
characterizing an infinite-span square cavity flow appears qualitatively similar to that
recovered herein for a large-span cavity, although the critical Reynolds number as
well as the dominating wavelengths and shape of the vortical structures are different
to those obtained in the present work.

Concerning the case of large-span cavities, Douay (2014) has experimentally
investigated their flow dynamics for different aspect ratios. In particular, it has been
observed that, for a span ratio S/D = 6, for any L/D ratio, the frequency of the
primary bifurcation remains rather low (the associated Strouhal number, St, being of
order 10−3), being associated with quasi-steady spanwise-alternated Taylor–Görtler
modes. For S/D = 12, two different behaviours have been recovered depending on
the aspect ratio L/D. For L/D < 1.3, the primary modes pertain to the previously
mentioned quasi-steady family, whereas for L/D > 1.4, the Strouhal number abruptly
increases by one order of magnitude, being associated with propagating modes
similar to those previously identified by Bres & Colonius (2008), Faure et al. (2009),
Meseguer-Garrido et al. (2014). This indicates that not only the span ratio but
also the length ratio may be a critical parameter for the destabilization of open
cavity flows, as previously observed in several experimental studies (Gharib &
Roshko 1987). This is further confirmed by the results recently provided by Liu
et al. (2016), who performed a global stability analysis on the flow over a long
cavity of aspect ratio L :D : S = 6 : 1 : 2. For Re < 1050, the leading (although
stable) mode is steady and driven by a centrifugal mechanism. This mode is
rapidly overtaken by a shear-layer-driven travelling eigenmode, characterized by
a relatively high frequency (St≈ 0.23), which becomes unstable at Re≈ 1080, leading
to laminar–turbulent transition. Also for this long cavity, the typical structure of the
centrifugal steady mode is reminiscent of the pattern found in previous investigations
of spanwise-homogeneous cavity flows (Bres & Colonius 2008). However, when a
spanwise-homogeneous long cavity with L/D= 6 is considered (see Sun et al. 2014)
no steady modes are recovered in the flow dynamics. This suggests that shear-layer
modes may be dominant for long cavities, whereas steady centrifugal ones would
prevail in short ones, although modifying the span of the cavity might induce
a further change in the flow dynamics. A spanwise-homogeneous approximation
might, in some particular cases, succeed at detecting (although qualitatively) the
main instability mechanisms driving the flow, but will fail at predicting the critical
thresholds for transition as well as the dominant frequencies and wavelengths. This
confirms the need of performing global stability analyses for accurately investigating
the dynamics of such three-dimensional flows for different aspect ratios.

6. Conclusion

The transition scenario of an incompressible shear-driven cavity flow has been
investigated by the joint application of experimental observations, direct numerical
simulations and linear stability analyses. Based on the good agreement obtained
using these different approaches, a clear scenario is here proposed to explain the
transition to unsteadiness. This scenario relies on the occurrence of two successive
bifurcations. The first one, happening at a critical Reynolds number ReC1 = 3430, is
associated with the emergence of (quasi-)steady Taylor–Görtler vortices. Analysis of
the different production terms has revealed the centrifugal nature of the instability, in
agreement with previous studies on the two-dimensional shear-driven and lid-driven
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cavities (Albensoeder et al. 2001). Further increasing the Reynolds number up to
ReC2 ' 3730 eventually causes a second bifurcation to occur. This second bifurcation
is an Andronov–Poincaré–Hopf bifurcation. The flow thus transitions from its
quasi-stationary bifurcated state and exhibits self-sustained periodic oscillations.
Though a kinetic energy analysis has revealed that the underlying instability is also
of centrifugal type, it has to be noted that it nonetheless differs quite significantly
from the primary instability. Indeed, while the first instability occurring in the flow is
exclusively related to the primary vortex core, the second instability reported in the
present work is clearly related to the interplay between the primary vortex core and
the existence of the spanwise end walls of the cavity. As a result of this secondary
instability, the periodic oscillations of the flow are characterized by a spanwise drift
of the vortical structures toward the end walls very likely induced by the existence
of the spanwise secondary flow. Although it has been hypothesized in the past (Faure
et al. 2009; Douay 2014) that this drift might result from a global instability of the
flow, it is the first time to our knowledge that it has been properly demonstrated by
means of fully three-dimensional stability analyses.

Despite linear stability analysis having proved helpful since the early 1900s to
gain a better understanding of the fundamental physical mechanisms on which
transition to turbulence relies, it fully explains the transition scenario only for a
limited number of flow configurations, e.g. Rayleigh–Bénard or the two-dimensional
cylinder flow, for instance. Given its wall-bounded nature, it is thus remarkable that
linear stability analyses can fully characterize the first two bifurcations taking place
in the fully three-dimensional shear-driven cavity flow. Building on this success,
our joint experimental and numerical efforts are thus currently aiming at the proper
characterization of the second and third bifurcations by means of Floquet analyses.
It has to be noted finally that the transition scenario presented in this work is quite
different from the one originally proposed by Liu et al. (2016) for a similar flow
configuration and relying on the emergence of Rossiter-like instability modes. This
apparent contradiction, however, results from the significantly different geometry
of the cavities considered in these two works. Researchers and engineers willing
to pursue this work are thus strongly encouraged to perform parametric studies in
order to fully elucidate the influence of the cavity’s dimensions on these transition
scenarios.
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