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Matthieu Roy†, Stéphane Paquelet†, Luc Le Magoarou†, Matthieu Crussière‡
†b<>com Rennes, France

‡Univ Rennes, INSA Rennes, IETR - UMR 6164 F-35000 Rennes, France

Abstract—In a multiple-input-multiple-output (MIMO)
communication system, the multipath fading is averaged over
radio links. This well-known channel hardening phenomenon
plays a central role in the design of massive MIMO systems. The
aim of this paper is to study channel hardening using a physical
channel model in which the influences of propagation rays and
antenna array topologies are highlighted. A measure of channel
hardening is derived through the coefficient of variation of the
channel gain. Our analyses and closed form results based on the
used physical model are consistent with those of the literature
relying on more abstract Rayleigh fading models, but offer
further insights on the relationship with channel characteristics.

Index Terms—channel hardening, physical model, MIMO

I. INTRODUCTION
Over the last decades, multi-antenna techniques have been

identified as key technologies to improve the throughput and
reliability of future communication systems. They offer a
potential massive improvement of spectral efficiency over
classical SISO (single-input-single-output) systems proportionally
to the number of involved antennas. This promising gain has
been quantified in terms of capacity in the seminal work of
Telatar [1] and has recently been even more emphasized with
the newly introduced massive MIMO paradigm [2].

Moving from SISO to MIMO, the reliability of communication
systems improves tremendously. On the one hand in SISO,
the signal is emitted from one single antenna and captured
at the receive antenna as a sum of constructive or destructive
echoes. This results in fading effects leading to a potentially very
unstable signal to noise ratio (SNR) depending on the richness
of the scattering environment. On the other hand in a MIMO
system, with appropriate precoding, small-scale multipath fading
is averaged over the multiple transmit and receive antennas. This
yields a strong reduction of the received power fluctuations, hence
the channel gain becomes locally deterministic essentially driven
by its large-scale properties. This effect, sometimes referred to as
channel hardening [3] has recently been given a formal definition
based on the channel power fluctuations [4]. Indeed, studies on
the stability of the SNR are essential to the practical design
of MIMO systems, in particular on scheduling, rate feedback,
channel coding and modulation dimensioning [2], [3], [5]. From
the definition in [4], we propose in this paper a comprehensive
study on channel hardening through a statistical analysis
of received power variations derived from the propagation
characteristics of a generic ray-based spatial channel model.
Related work. Channel hardening, measured as the channel gain
variance, has recently been studied from several points of view.
The authors in [6] used data from measurement campaigns and
extracted the variance of the received power. A rigorous definition
of channel hardening was then given in the seminal work [4]

based on the asymptotic behavior of the channel gain for large
antenna arrays. This definition was applied to pinhole channels,
i.i.d. correlated and uncorrelated Rayleigh fading models [7].
Contributions. Complementary to this pioneer work, we
propose a non-asymptotic analysis of channel hardening, as
well as new derivations of the coefficient of variation of the
channel not limited to classically assumed Rayleigh fading
models. Indeed, channel hardening is analyzed herein using
a physically motivated ray-based channel model widely used
in wave propagation. Our approach is consistent with previous
studies [4], [6], but gives deeper insights on channel hardening.
In particular, we managed to provide an expression of the
channel hardening measure in which the contributions of
the transmit and receive antenna arrays, and the propagation
conditions can easily be identified, and thus interpreted.
Notations. Upper case and lower case bold symbols are used
for matrices and vectors. z∗ denotes the conjugate of z. ~u
stands for a three-dimensional (3D) vector. 〈.,.〉 and ~a·~u denote
the inner product between two vectors of CN and 3D vectors,
respectively. [H]p,q is the element of matrix H at row p and
column q. ‖H‖F , ‖h‖ and ‖h‖p stand for the Frobenius norm,
the euclidean norm and the p-norm, respectively. HH and HT

denotes the conjugate transpose and the transpose matrices.
H̄ denote the normalized matrix H/||H||F . E{.} and Var{.}
denote the expectation and variance.

II. CHANNEL MODEL

We consider a narrowband MIMO system (interpretable as
an OFDM subcarrier) with Nt antennas at the transmitter and
Nr antennas at the receiver, such that

y=Hx+n,
with x ∈ CNt×1, y ∈ CNr×1 and n ∈ CNr×1 the vectors of
transmit, receive and noise samples, respectively. H∈CNr×Nt
is the MIMO channel matrix, whose entries [H]i,j are the
complex gains of the SISO links between transmit antenna j
and receive antenna i. The capacity of the MIMO channel can
be expressed as [1]

C=log2(det(INt+ρQ̄H̄HH̄)) bps/Hz, (1)

where ρ= Pt
N0
||H||2F with Q̄∈CNt×Nt , Pt and N0 the input

correlation matrix (precoding), emitted power and noise power.
C is a monotonic function of the optimal received SNR ρ [8],
hence ‖H‖2F directly influences the capacity of the MIMO
channel. It is then of high interest studying the spatial channel
gain variations to predict the stability of the capacity.



In the sequel, we will consider that the channel matrix H is
obtained from the following generic multi-path 3D ray-based
model considering planar wavefronts [9], [10], [7, p. 485]

H(f)=
√
NtNr

P∑
p=1

cper(~urx,p)et(~utx,p)
H . (2)

Such channel consists of a sum of P physical paths where cp is
the complex gain of path p and ~utx,p (resp. ~urx,p) its direction
of departure - DoD - (resp. of arrival - DoA -). In (2) et and er

are the so-called steering vectors associated to the transmit and
receive arrays. They contain the path differences of the plane
wave from one antenna to another and are defined as [10]

et(~utx,p)=
1√
Nt

[
e2jπ

~atx,1·~utx,p
λ ,···,e2jπ

~atx,Nt
·~utx,p
λ

]T
, (3)

and similarly for er(~urx,p). The steering vectors depend not
only on the DoD/DoA of the impinging rays, but also on the
topology of the antenna arrays. The latter are defined by the
sets of vectors Atx={~atx,j} and Arx={~arx,j} representing
the positions of the antenna elements in each array given an
arbitrary reference.

Such channel model has already been widely used (especially
in its 2D version) [9], [10], verified through measurements
[11] for millimeter waves and studied in the context of channel
estimation [12]. In contrast to Rayleigh channels, it explicitly
takes into account the propagation conditions and the topology
of the antenna arrays.

In the perspective of the following sections, let c =
[|c1|,···,|cP |]T denote the vector consisting of the amplitudes
of the rays. ‖c‖2 is the aggregated power from all rays, corre-
sponding to large-scale fading due to path-loss and shadowing.

III. CHANNEL HARDENING

Definition. Due to the multipath behavior of propagation
channels, classical SISO systems suffer from a strong fast fading
phenomenon at the scale of the wavelength resulting in strong
capacity fluctuations (1). MIMO systems average the fading
phenomenon over the antennas so that the channel gain varies
much more slowly. This effect is called channel hardening. In
this paper, the relative variation of the channel gain ‖H‖2F ,
called coefficient of variation (CV ) is evaluated to quantify the
channel hardening effect as previously introduced in [4], [7]:

CV 2 =
Var
{
‖H‖2F

}
E{‖H‖2F }

2 =
E
{
‖H‖4F

}
−E
{
‖H‖2F

}2
E{‖H‖2F }

2 (4)

In (4) the statistical means are obtained upon the model which
govern the entries of ‖H‖2 given random positions of the
transmitter and the receiver. This measure was previously applied
to a Nt×1 correlated Rayleigh channel model h∼CN (0,R)
[4], [7, p. 231]. In that particular case, (4) becomes

CV 2 =
E
{
|hHh|2

}
−Tr(R)2

Tr(R)2
=

Tr(R2)

Tr(R)2
, (5)

where the rightmost equality comes from the properties of
Gaussian vectors [7, Lemma B.14]. This result only depends on
the covariance matrix R, from which the influences of antenna
array topology and propagation conditions are not explicitly
identified. Moreover, small-scale and large-scale phenomena are
not easily separated either. In this paper, (4) is studied using a
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Fig. 1. Simulated CV 2 for growing number of rays. Asymptotes are the black
dashed lines.

physical channel model that leads to much more interpretable
results.
Assumptions on the channel model. The multipath channel
model described in Section II relies on several parameters
governed by some statistical laws. Our aim is to provide an
analytical analysis of CV while relying on the weakest possible
set of assumptions on the channel model. Hence, we will consider
that:
• For each ray, gain, DoD and DoA are independent.
• arg(cp)∼U [0,2π] i.i.d.
• ~utx,p and ~urx,p are i.i.d. with distributions Dtx and Drx.

The first hypothesis is widely used and simply says that no
formal relation exists between the gain and the DoD/DoA
of each ray. The second one raisonnably indicates that each
propagated path experiences independent phase rotation without
any predominant angle. The last one assumes that all the rays
come from independent directions, with the same distribution
(distributions Dtx at the emitter, Drx at the receiver).

It has indeed been observed through several measurement
campaigns that rays can be grouped into clusters [13], [14].
Considering the limited angular resolution of finite-size antenna
arrays, it is possible to approximate all rays of the same cluster
as a unique ray without harming a lot the channel description
accuracy [12]. It then makes sense to assume that this last
hypothesis is valid for the main DoDs and DoAs of the clusters.
Simulations. A preliminary assessment of the coefficient of
variation is computed through Monte-Carlo simulations of (4)
using uniform linear arrays (ULA) with inter-antenna spacing
of λ

2 at both the transmitter and receiver and taking a growing
number of antennas. A total of P ∈ {2,4,5,6} paths were
randomly generated with Complex Gaussian gains cp∼CN (0,1),
uniform DoDs ~utx,p∼US2 and DoAs ~urx,p∼US2 .

Simulation results of CV are reported in Fig. 1 as a function
of the number of antennas. It is observed that all curves seem
to reach an asymptote around 1/P for large Nt and Nr . Hence,
the higher the number of physical paths, the harder the channel.
The goal of the next sections is to provide further interpretation
of such phenomenon by means of analytical derivations.

IV. DERIVATION OF CV 2

In this section, CV 2 is analytically analyzed from (4).



Expectation of the channel gain. From (2) and (3) the channel
gain ‖H‖2F =Tr(HHH) can be written as

‖H‖2F =NtNr
∑
p,p′

c∗pcp′γp,p′ ,

where the term γp,p′ is given by
γp,p′=〈er(~urx,p),er(~urx,p′)〉〈et(~utx,p),et(~utx,p′)〉∗.

Using the hypothesis arg(cp)∼U [0,2π] i.i.d. introduced in the
channel model and γp,p=1, the expectation of the channel gain
can further be expressed as

E
{
‖H‖2F

}
=NtNrE

{
‖c‖2

}
. (6)

Thus the average channel gain increases linearly with Nr and
Nt, which is consistent with the expected beamforming gain Nt
and the fact that the received power linearly depends on Nr.
Coefficient of variation. The coefficient of variation CV is
derived using the previous hypotheses and (6). We introduce:{

E2(Atx,Dtx)=E
{
|〈et(~utx,p),et

∗(~utx,p′)〉|2
}

E2(Arx,Drx)=E
{
|〈er(~urx,p),er(~urx,p′)〉|2

}
.

(7)

These quantities are the second moments of the inner products
of the transmit/receive steering vectors associated to two distinct
rays. They represent the correlation between two rays as observed
by the system. They can also be interpreted as the average
inability of the antenna arrays to discriminate two rays given
a specific topology and ray distribution. From such definitions,
and based on the derivations given in Appendix A, CV 2 can be
expressed as a sum of two terms,

CV 2 =E2(Atx,Dtx)E2(Arx,Drx)
E
{
‖c‖4−‖c‖44

}
E{‖c‖2}2

+
Var
{
‖c‖2

}
E{‖c‖2}2

.

(8)

Note that this result only relies on the assumptions introduced
in section II. The second term can be identified as the
contribution of the spatial large-scale phenomena since it simply
consists in the coefficient of variation of the previously defined
large-scale fading parameter ‖c‖2 of the channel. To allow
local channel behavior interpretation, conditioning the statistical
model by ‖c‖2 is required. It results in the cancellation of the
large-scale variations contribution of CV 2 which reduces to
what is called hereafter small-scale fading.

V. INTERPRETATIONS
A. Large-scale fading

The contribution of large-scale fading in CV 2 is basically
the coefficient of variation of the total aggregated power ‖c‖2
of the rays. To better emphasize its behavior, let us consider a
simple example with independent |cp|2 of mean µ and variance
σ2. The resulting large scale fading term is then

Var
{
‖c‖2

}
E{‖c‖2}2

=
1

P

(
σ

µ

)2

.

It clearly appears that more rays lead to reduced large-scale
variations. This stems from the fact that any shadowing
phenomenon is well averaged over P independent rays, hence
becoming almost deterministic in rich scattering environments.
This result explains the floor levels obtained for various P in
our previous simulations in Section II and is consistent with
the literature on correlated Rayleigh fading channels where high
rank correlation matrices provide a stronger channel hardening
effect than low rank ones [7].
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Fig. 2. Numerical evaluation of E(Atx,US2
) for various array types and

increasing antenna spacing ∆d. The values are normalized so the asymptote is 1.

B. Small-scale fading
The coefficient of variation particularized with the statistical

conditional model can easily be proven to be:
CV 2
‖c‖2 =E2(Atx,Dtx)E2(Arx,Drx)α2(c)

where α2(c)=1−
Ec|‖c‖2

{
‖c‖44

}
‖c‖4

.
(9)

The small-scale fading contribution to CV 2 thus consists of
a product of the quantities defined in (7) that depend only on
the antenna array topologies (Atx/Arx) and ray distributions
(Dtx/Drx) multiplied by a propagation conditions factor α2(c)
that depends only on the statistics of the ray powers c.
Ray correlations. This paragraph focuses on the quantity
E2(Atx, Dtx) (the study is done only at the emitter, the obtained
results being equally valid at the receiver). Eq. (7) yields

E2(Atx, Dtx)=
1

N2
t

E


∣∣∣∣∣
Nt∑
i=1

e2jπ
~atx,i·(~utx,p−~utx,p′ )

λ

∣∣∣∣∣
2
.

A well-known situation is when the inner sum involves exponen-
tials of independent uniformly distributed phases and hence corre-
sponds to a random walk with Nt steps of unit length. The above
expectation then consists in the second moment of a Rayleigh dis-
tribution and E2(Atx, Dtx)= 1

Nt
. A necessary condition to such

a case is to have (at least) a half wavelength antenna spacing ∆d
to ensure that phases are spread over [0,2π]. On the other hand,
phase independences are expected to occur for asymptotically
large ∆d. It is however shown hereafter that such assumption
turns out to be valid for much more raisonnable value of ∆d.

Numerical evaluations of E2 are performed versus ∆d (Fig. 2),
and versus Nt (Fig. 3). Uniformly distributed rays over the 3D
unit sphere (Dtx=Drx=US2 ) and Uniform Linear, Circular and
Planar Arrays (ULA, UCA and UPA) are considered. As a re-
minder, the smaller E(Atx,Dtx) the better the channel hardening.
In Fig. 2, E2 reaches the asymptote 1/Nt for all array types with
∆d= λ

2 and remains almost constant for larger ∆d. Fig. 3 shows
that E2 merely follows the 1/Nt law whatever the array type.
We thus conclude that the independent uniform phases situation
discussed above is a sufficient model for any array topology
given that ∆d≥ λ

2 . It is therefore assumed in the sequel that,

E2(Atx,US2)≈1/Nt, E2(Arx,US2)≈1/Nr.
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Propagation conditions. It is now interesting to point out that
the propagation factor α(c) introduced in (9) is bounded by

0≤α2(c)≤1−1/P. (10)
Those bounds are deduced from the following inequality:

‖c‖42/P ≤‖c‖44≤‖c‖42. (11)
The right inequality comes from the convexity of the square
function. Equality is achieved when there is only one contributing
ray, i.e. no multipath occurs. In that case CV 2

‖c‖2 =0 and the
MIMO channel power is deterministic. The left part in (11) is
given by Hölder’s inequality. Equality is achieved when there
are P rays of equal power. Then, taking the expectation on each
member in (11) yields (10).

In contrast to the large-scale fading, more rays lead to more
small-scale fluctuations. It is indeed well known that a richer
scattering environment increases small-scale fading.
Comparison with the simulations. Based on the general
formula given in (8), on the interpretations and evaluations
of its terms, we can derive the expression of channel hardening
for the illustrating simulations of Section II:

CV 2
illustration =

1

NtNr
(1−1/P )+1/P.

Simulation and approximated formula are compared in Fig. 4
in which small-scale and large-scale contributions are easily
evidenced, as intuitively expected from simulations of Fig. 1.
Comparison with the Gaussian i.i.d. model. This model

assumes a rich scattering environment. Using (5) with R=I:

CV 2
iid=

1

NtNr
.

Using the realistic model in a rich scattering environment, the
large-scale part of (8) vanishes leading to a deterministic ‖c‖2
and small-scale variations reach the upper bound of (10). This
yields the limit

CV 2 P→∞−−−−→CV 2
iid (12)

which is coherent with the interpretation of the model.
VI. CONCLUSION

In this paper, previous studies on channel hardening have
been extended using a physics-based model. We have separated
influences of antenna array topologies and propagation char-
acteristics on the channel hardening phenomenon. Large-scale
and small-scale contributions to channel variations have been
evidenced. Essentially, this paper provides a general framework
to study channel hardening using accurate propagation models.

To illustrate the overall behavior of channel hardening, this
framework have been used with generic model parameters and
hypotheses. The scaling laws evidenced for simpler channel
models are conserved provided the antennas are spaced by at
least half a wavelength. The results are consistent with state
of the art and provide further insights on the influence of array
topology and propagation on channel hardening. The proposed
expression can easily be exploited with various propagation
environments and array topologies to provide a more precise
understanding of the phenomenon compared to classical channel
descriptions based on Rayleigh fading models.
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APPENDIX A
COEFFICIENT OF VARIATION (8)

For the sake of simplicity, an intermediary matrix A is
introduced. It is defined by

[A]p,p′=

{
2|γp,p′ |cos(φp,p′) if p 6=p′

1 if p=p′

with φp,p′ = arg(c∗pcp′γp,p′) the whole channel phase
dependence. ‖H‖2F can be written using a quadratic form with
vector c and matrix A, which can be decomposed into two
terms I (identity) and J

‖H‖2F
NtNr

=cTAc=cT c+cTJc

where J=A−I. E{J}=0 so:
E
{
‖H‖4F

}
(NtNr)2

=E
{
‖c‖4

}
+E
{

(cTJc)2
}
.

The ray independence properties yields the following weighted
sum of coupled ray powers

E
{

(cTJc)2
}

=
∑
p 6=p′

E
{
|cp |2|cp′ |2

}
E
{

[J]2p,p′
}
.

Considering i.i.d. rays, all the weights E
{

[J]2p,p′
}

are
identical. Using the weights notations introduced in (7) and
the definition of the 4-norm yields the second order moment
E
{
‖H‖4F

}
. With the expectation (6) we derive the result (8).
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