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Natural uranium (NU), a component of the earth’s crust, is not only a heavy metal but also an alpha particle emitter, with chemical
and radiological toxicity. Populations may therefore be chronically exposed to NU through drinking water and food. Since the
central nervous system is known to be sensitive to pollutants during its development, we assessed the effects on the behaviour and
the cerebrospinal fluid (CSF) metabolome of rats exposed for 9 months from birth to NU via lactation and drinking water (1.5, 10,
or 40mg⋅L−1 for male rats and 40mg⋅L−1 for female rats). Medium-termmemory decreased in comparison to controls in male rats
exposed to 1.5, 10, or 40mg⋅L−1 NU. In male rats, spatial working memory and anxiety- and depressive-like behaviour were only
altered by exposure to 40mg⋅L−1 NU and any significant effect was observed on locomotor activity. In female rats exposed to NU,
only locomotor activity was significantly increased in comparison with controls. LC-MS metabolomics of CSF discriminated the
fingerprints of the male and/or female NU-exposed and control groups. This study suggests that exposure to environmental doses
of NU from development to adulthood can have an impact on rat brain function.

1. Introduction

Natural uranium (NU) is an alpha particle emitter radionu-
clide of the actinide series and a ubiquitous environmental
trace metal found in almost all types of rocks, soils, plants,
and water. Its distribution in the earth is heterogeneous,
because of geochemical processes. Surface water and espe-
cially groundwater play a significant role in themigration and
redistribution of this nuclide in the environment. Increased
NU levels in groundwater are associated with uranium-rich
ores and its high solubility under oxidising conditions in soft
and bicarbonate-rich waters [1]. Consequently, populations
may be exposed to NU in some countries and regions with
high NU levels in drinking water [2–4]. The harmful effects

on human health of high levels of NU in drinking water are
naturally of great interest to the scientific community and the
general public.

NU comprises three isotopes: 238U, 99.28%; 235U, 0.715%;
and 234U, 5.5 × 10−3%. 235U is of particular interest due
to its ability to sustain nuclear chain reactions. Techniques
have been developed in which uranium ore is chemically
enriched, thereby increasing the concentration of 235U to 2–
4% [5]. The different stages of nuclear fuel cycle lead to the
production of enriched uranium (EU) and a by-product with
a lower proportion of 235U, called depleted uranium (DU).
The radiological hazard is more important into the following
order: EU > NU > DU, but all these uranium have the same
chemical toxicity.
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2 Neural Plasticity

Although the central nervous system is a target organ
for many toxic heavy metals and is a radiosensitive organ
[6–8] few studies have looked for in vivo neurological and
neurobehavioural effects following internal contamination
with uranium. A few studies on nuclear workers or Gulf War
veterans have looked at its brain effects [9–11]. Experimental
studies show that after exposure, uranium can reach the
brain and lead to neurobehavioural effects on locomotor
activity, the sleep-wake cycle, memory, and anxiety [12].
Almost all of these data have been recorded with DU and
supraenvironmental levels (i.e., ≥40mg⋅L−1). The toxicity of
DU is expected to bemainly chemical rather than radioactive,
so the radiological hazards of uranium have been little
investigated.

Several in vivo studies have shown that uranium can
affect the brain, but a still more sensitive approach is
necessary to overcome the specific limitations due to low
doses. Metabolomics, the comprehensive analysis of a wide
range of metabolites, provides a novel tool in the search
for new biomarkers of exposure or diagnostic and is an
alternative and complementary approach to establish more
-omics techniques such as genomics, transcriptomics, or
proteomics. Metabolomics provides the ultimate response of
a biological system through the analysis of small molecules
(<1000Da) and the characterisation of metabolic pheno-
types. Metabolomics has recently been found efficient for
identifying a discriminant metabolic signature of chronic
low-dose cesium 137 or uranium contamination in urine
of rats [13, 14]. Metabolites in biofluids are in dynamic
equilibrium with those in cells and tissues. The metabolites
in cerebrospinal fluid (CSF) reflect central nervous system
metabolism and the balance between blood and CSF. Their
analysis can be helpful in identifying markers of neurological
disorders [15].

The purpose of the present work was to establish for
the first time whether chronic exposure to NU can induce
behavioural effects andwhether theCSFmetabolome ismod-
ified. To mimic environmental contamination of drinking
water, especially among children, who are known to be a
sensitive subgroup in toxicology [16] and radiobiology [17,
18], male rats were exposed from birth to adulthood, that
is, over a continuous 9-month period, through lactation and
next drinking water containing concentrations of NU known
not to be toxic to the kidneys. We used NU concentrations
of 1.5, 10, and 40mg⋅L−1, since the highest concentration of
naturally occurring uranium in springwater is 12mg⋅L−1 [19].
In order to determine the influence of sex, female rats were
exposed to the highest NU concentration (40mg⋅L−1).

2. Materials and Methods

2.1. Animals and Exposure. Female Sprague-Dawley rats
(𝑛 = 48) were purchased at gestational day 18 (Charles
River, France) and were individually housed under standard
conditions (21 ± 1∘C) with a 12:00 h/12:00 h light/dark cycle
(lights on from 08:00 a.m. to 08:00 p.m.). Animals had
free access to food and water. The study was conducted in
accordance with French legislation concerning the protection

of animals used for experimental purposes. All procedures
were performed by scientists certified by the FrenchMinistry
of Agriculture (license of first author number 92-254).

At the birth of their pups, mothers were subdivided into
four groups (𝑛 = 12mothers for each group). One group was
contaminated using mineral drinking water supplemented
with NU (in its uranyl nitrate form; from AREVA) at a
concentration of 1.5mg⋅L−1 (dose about 0.04mg⋅day−1 per
female rat). A second group was contaminated using mineral
drinking water supplemented with NU (in its uranyl nitrate
form; from AREVA) at a concentration of 10mg⋅L−1 (dose
about 0.25mg⋅day−1 per female rat). A third group was con-
taminated with NU in drinking water at a concentration of
40mg⋅L−1 (dose about 1mg⋅day−1 per female rat).The specific
activity of NU is 2.42× 10+4 Bq⋅g−1. Pups were exposed toNU
throughout lactation via the mother’s milk. Control mothers
drank noncontaminated water (fourth group). After weaning
on postnatal day 21, male pups were still exposed to NU via
drinking water (1.5, 10, or 40mg⋅L−1) until they reached 9
months of age. Female pups were also still exposed to NU via
drinking water (40mg⋅L−1) until they reached 9 months of
age. One male or female offspring per litter was assigned to
behavioural tests (𝑛 = 12 for each group). Health parameters,
that is, body weight, water consumption, and food intake,
were measured at the end of NU exposure (at 9 months of
age).

2.2. Behavioural Analysis. Male or female pups (𝑛 = 12
for each experimental group) were submitted to behavioural
evaluation tests at 9 months of age. None of the tests required
food deprivation, reward, or punishment. The same animals
underwent all the tests. Six days are necessary to perform all
behavioural tests following this order.

On the first and second days, each animal was individ-
ually placed in an open field (45 × 45 cm) and was moni-
tored by an automated activity monitoring system (Bioseb,
Chaville, France). Lateral and horizontal movements were
recorded over a 15min session, only on the first day.

On the third day when the rats were acclimated to the
open field, they were tested in a two-object recognition task.
The animal was placed in the open field with two identical
objects for 3min (first session). After a 1-hour delay, the rat
was returned to the open field and allowed to explore two
objects, one identical to those presented at the first session
(familiar object) and the other different (novel object), for
an additional 3min period (second session). The time spent
exploring each object was measured during the 2 sessions
[20].

Spatial working memory was assessed on the fourth
day in a Y-maze with three arms (70 cm long, 50 cm high,
10 cm wide at the bottom, and 20 cm wide at the top) which
converged at an equal angle.The apparatus was placed on the
floor of the experimental room. Each rat was placed at the
centre of the maze and was allowed to move freely through
the maze for a 10min test session. The sequence and number
of visited arms were manually recorded. Alternation was
defined as entries in the three different arms, consecutively
[21].
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Anxiety was assessed on day five in an elevated plus
maze comprising a wooden cross at a height of 70 cm with
two open (10 cm ∗ 70 cm) and two closed arms with walls
(10 cm ∗ 55 cm ∗ 70 cm), arranged such that the arms of
the same type were opposite to each other and connected
by a common open central platform (5 cm ∗ 5 cm). At the
beginning of the session, the rat was placed at the centre of the
maze always facing the same open arm.The animal was then
freed to explore the maze for 5min. Standard spatiotemporal
measures were recorded, including the number of entries in
the open and closed arms and the cumulative time spent in
the different parts of the maze (open and closed arms). An
arm entry was recorded if all four of the animal’s paws were
in the arm [22]. Between the testing of each animal, the maze
was cleaned with a 10% ethanol solution.

The forced swimming test, which was the most stressful
test, was performed last, on day 6. The rats were individually
placed in a glass cylinder (height of 60 cm and diameter
of 40 cm), containing enough water such that the hind legs
could not reach the bottom of the cylinder but the tail could.
The water was maintained at 23–25∘C and the rats were left
for 10min. Immobility was measured during the last 5min of
the test (the animal was judged to be immobile when it floated
in an upright position andmade only minimal movements to
keep its head above water) [23].

All the tests were recorded by a video camera and were
read by an observer blind to the exposure conditions.

2.3. CSF Sampling and Preparation for Metabolomic Analysis.
At the end of behavioural tests, each animal was euthanised
with isoflurane, placed prone on the stereotaxic instrument
and the head of the rat was fixed in a holder. A terminal CSF
sample was obtained by direct insertion of an insulin syringe
needle (Myjector, 29G 9 1/200) via the arachnoid membrane
into the cisterna magna. For this purpose a skin incision was
made followed by a horizontal incision in the descending part
of the trapezius muscle to reveal the arachnoid membrane.
A maximum volume of 100 𝜇L was collected per animal.
Each sample was transferred into a polypropylene tube,
immediately snap frozen in liquid nitrogen, and stored at
−80∘C for further analysis. Previous experiments have shown
that collecting up to 100 𝜇L using this technique and these
conditions provides haemoglobin-free CSF samples.

2.4. Metabolomics Analysis. Metabolomics analyses have
been performed by Criblage Biologique Marseille
(CRIBIOM) platform. For the analysis of CSF, protein
of 50 𝜇L was removed by methanol precipitation using
200𝜇L of cold methanol (−20∘C) followed by 5min
centrifugation at 14000 rpm. The supernatant was recovered
and filtered through 10 kDa filters to remove all proteins.
The extracts were evaporated to dryness under a stream of
nitrogen at room temperature and redissolved with 25 𝜇L of
water/acetonitrile = 90/10 (v/v). To check for data quality, a
blank sample (deionised water) and a pool sample (a mixture
of all CSF samples) were extracted/diluted and analysed
repeatedly along with the sample series [24].

The samples were analysed on a Dionex UltiMate 3000
(Thermo Fisher Scientific, France) coupled to a Q-Exactive
Plus mass spectrometer (Thermo Fisher Scientific, France).
The LC conditions were autosampler temperature, 4∘C; col-
umn temperature, 40∘C; solvent flow, 0.4mL/min (solvent
A: water, 10mM ammonium formate, 0.1% formic acid, and
solvent B: acetonitrile, 10mM ammonium formate, 0.1%
formic acid); and gradient, 5% B for 1min, 5–50% B for
2min, 50–97% B for 6min, 97% B for 2min, 97–5% B
for 1min, and 5% B for 4min (running time, 16min). The
MS conditions were as follows: acquisition mode, positive
electrospray ionisation, and full scan 80–1000 m/z; capillary
voltage, 4.5 kV; capillary temperature, 320∘C; cone voltage,
55V; drying gas flow rate, 8 L⋅min−1.

Multivariate statistical analyses were performed using
SIMCA-P+ (version 12, Umetrics). Statistical models were
validated by ANOVA in the cross-validation mode, where
𝑝 values less than 0.05 were considered significant. The
robustness of the models was assessed by calculating the
explained variance values (R2Y) and predicted variances
(Q2Y) and by the decrease to negative values of the predicted
variance after multiple permutations. Principal component
analysis and partial least squares discriminant analysis (PLS-
DA) were performed on the processed data in log 10[1+10𝑒9]
and scaled in Paretomode [25]. Data quality and filtering was
performed using appropriately tuned XCMS and less stable
features removal [14, 25].

To select the most discriminant variables, we found
most appropriate to examine the clustering of features
with the variable score values as calculated by hierarchical
cluster analysis applied to 𝑤 ∗ 𝑐 loadings of the PLS-DA
model. The most discriminant mass features were tentatively
annotated using MZedDB [26] from the chemical formulas
generated from the accurately measured masses (accuracy
< 5 ppm) generated by the Thermo Xcalibur Qual Browser
molecular formula engine. The KEGG compound ID of any
hits was recorded, and all recorded IDs were inserted into
the KEGG Mapper (http://www.genome.jp/kegg/tool/map
pathway2.html) for tentative pathway identification.

2.5. Uranium Concentrations. Samples (cerebral cortex and
CSF) were prepared by adding 8mL of 70% ultrapure nitric
acid and 2mL of hydrogen peroxide. Samples were thenmin-
eralised using a 1000W microwave (Ethos Touch; Milestone
Microwave Laboratory Systems; Begamo, Italy) with a 20min
ramp to 180∘C, followed by 10min at 180∘C. The uranium
content of samples was determined using an inductively cou-
pled plasma mass spectrometer (ICPMS-VGPQ, EXCELL,
Thermo Electron Corporation) with bismuth (1 𝜇g⋅L−1) as
internal standard. For uranium, ICPMS limit detection was
10−4 𝜇g⋅L−1. Two measurements were performed per sample.
Values were expressed as nanograms per gram of fresh tissue
or nanograms per 𝜇L of CSF and presented as mean ± SEM.

2.6. Statistical Analyses. In all the experiments, data are
expressed as mean ± SEM and were analysed by two-way
ANOVA with the main factors of group and dose. Post hoc
comparisons were made with the Student-Newman-Keuls
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Table 1: Body weight, food consumption, water consumption, and cortical uranium concentration of male rats at the end of the experiments.

Weight (g) Food consumption
(g⋅day−1⋅rat−1)

Water consumption
(mL⋅day−1⋅rat−1)

Cortical NU
concentration

(ng⋅g−1)
Control 650.9 ± 13.5 28.8 ± 0.9 24.9 ± 0.8 0.51 ± 0.06
NU 1.5 639.1 ± 17.2 27.7 ± 0.4 24.8 ± 2.0 0.43 ± 0.04
NU 10 635.5 ± 15.3 28.3 ± 0.6 26.2 ± 2.0 1.07 ± 0.11∗∗

NU 40 651.5 ± 21.5 28.2 ± 0.8 28.0 ± 2.7 1.62 ± 0.23∗∗

Results are expressed asmean± SEM for control and exposed animals to 1.5, 10, and 40mg⋅L−1 NU; 𝑛 = 12/group; NU: natural uranium; ∗∗𝑝 < 0.01, significant
difference from control.
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Figure 1: Total activity of male rats exposed to 1.5, 10, or 40mg⋅L−1 NU from birth for 9 months. (a) shows the number of lines crossed and
reflecting locomotor activity. The number of rearings is presented in (b) and reflects exploratory activity. The data are presented as mean ±
SEM; 𝑛 = 12 for each group; NU: natural uranium.

test. Differences were considered to be significant if 𝑝 < 0.05
or 𝑝 < 0.01.

3. Results

3.1. Health Parameters. Body weight was not significantly
modified in rats exposed to 1.5, 10, or 40mg⋅L−1 NU com-
pared with the control group (Table 1). Food intake was also
not significantly changed in NU-exposed rats in comparison
with control rats (Table 1). Daily water consumption did not
significantly change in rats exposed to 1.5, 10, or 40mg⋅L−1
NU, when compared with control rats (Table 1).

3.2. Behavioural Tests in Male Rats

3.2.1. Open-Field Activity. The locomotor and exploratory
behaviours of rats were assessed by the total number of lines
crossed and total number of rearings in the open field over
15 minutes. The results for both parameters are depicted in
Figure 1.

In rats exposed to 1.5, 10, or 40mg⋅L−1 NU, no significant
effect on lines crossed or rearing was observed in comparison
with controls (Figure 1).

3.2.2. Object Recognition. Themedium-term memory of rats
was assessed by the time spent exploring novel and familiar
objects. The results are shown in Figure 2. During the first
session, all groups of animals spent the same overall time
exploring the left and right objects (Figure 2(a)). But during

the second session, control group rats spent significantly
more time exploring the novel object than the familiar object
(5.1 ± 1.4 versus 2.3 ± 0.4 s) (Figure 2(b)). This preference for
the novel object indicates a memory of the familiar object.
Groups exposed to 1.5, 10, or 40mg⋅L−1 NU did not prefer
the novel object to the familiar object (Figure 2(b)). This
indicated a loss of medium-term memory in rats exposed to
NU without dose effect.

3.2.3. Y-Maze. The spatial workingmemory capacities of rats
were assessed by spontaneous alternation and number of
arm visits, in the Y-maze. The results for both parameters
are shown in Figure 3. The percentage alternation was
significantly higher than 50%, indicating that spatial memory
was present for the four groups.

However, in rats exposed to 40mg⋅L−1 NU, a significant
decrease in the percentage of spontaneous alternation was
observed in comparison with the control group (−16%, 𝑝 <
0.05) (Figure 3(b)). This decrease in alternation behaviour
was not associatedwith changes of general locomotor activity,
measured as the number of arm visits (Figure 3(a)).

For rats exposed to 1.5 or 10mg⋅L−1 NU, no significant
effect was found on the percentage alternation or on the
number of visits to each arm, when compared with controls
(Figure 3).

3.2.4. Elevated Plus Maze. The anxiety-like behaviour of rats
was assessed by the time spent in the closed arms and
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Figure 2:Medium-termmemory ofmale rats exposed to 1.5, 10, or 40mg⋅L−1 NU from birth for 9months. (a) shows the time spent exploring
one of the two identical objects (left or right objects) during the first session. (b) shows the time spent on the familiar or new objects during
the second session.The data are expressed in seconds (s). Results are expressed as mean ± SEM; 𝑛 = 12 for each group; NU: natural uranium;
&
𝑝
< 0.05, significant difference from familiar object.
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Figure 3: Locomotor activity and spatial workingmemory ofmale rats exposed to 1.5, 10, or 40mg⋅L−1 NU from birth for 9months. (a) shows
the number of arm entries in the Y-maze and reflects locomotor activity. (b) shows the alternation between arms, expressed as a percentage
(%), in the Y-maze and reflects spatial working memory.The data are presented as mean ± SEM; 𝑛 = 12 for each group; NU: natural uranium;
∗

𝑝
< 0.05, significant difference from control; #𝑝 < 0.05, significant difference from 1.5mg⋅L−1 NU.

the number of closed arm entries in the elevated plus maze.
The results for both parameters are shown in Figure 4.

Rats exposed to 40mg⋅L−1 NU spent significantly more
time in the closed arms than did the controls (31%, 𝑝 < 0.01),
the rats exposed to 1.5mg⋅L−1 NU (+18%, 𝑝 < 0.05), and the
rats exposed to 10mg⋅L−1 NU (+18%, 𝑝 < 0.05) (Figure 4(b)).
Their number of visits to the closed arms did not differ
significantly from that of the other groups (Figure 4(a)).

For rats exposed to 1.5 or 10mg⋅L−1 NU, no significant
difference was observed in the time spent in or the number of
visits to the closed arms compared with controls (Figure 4).

3.2.5. Forced Swimming Test. The depressive-like behaviour
of rats was assessed by the time they spent immobile during
the 5 lastminutes of the test.The results are shown in Figure 5.
The immobility time did not differ in rats exposed to 1.5 or
10mg⋅L−1 NU in comparison with control rats (Figure 5),
but it increased significantly (+163%, 𝑝 < 0.05) when
rats were exposed to 40mg⋅L−1 for 9 months (Figure 5).

As this parameter is usually used to evaluate “depressive-
like” behaviour, this result indicates that the depressive-like
behaviour was not affected by exposure to 1.5 or 10mg⋅L−1
NU but increased after 9 months of exposure to 40mg⋅L−1
NU.

3.3. Behavioural Tests in Female Rats at 40mg⋅L−1 NU. The
number of lines crossed during the open-field test and the
number of closed arm entries in the elevated plus maze
increased significantly (+26%, 𝑝 < 0.05 and +27%, 𝑝 < 0.05,
resp.) in females exposed to NU compared with controls
(Figures 6(a1) and 6(c1)). The number of rearings during the
open-field test, spontaneous alternation and the number of
arm visits in the Y-maze, the time spent in the closed arms
of the elevated plus maze, and the immobility time during
the forced swimming test were not significantly modified
in female rats exposed to 40mg⋅L−1 NU compared with
control female rats (Figure 6). During the object recognition
test, exposed and controls groups spent significantly more
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Figure 4: Locomotor activity and anxiety-like behaviour of male rats exposed to 1.5, 10, or 40mg⋅L−1 NU from birth for 9 months. (a) shows
the number of visits to the closed arms of the elevated plusmaze and reflects locomotor activity. (b) shows the time spent, expressed in seconds
(s), in the closed arms of the elevated plus maze and reflects anxiety level. The data are presented as mean ± SEM; 𝑛 = 12 for each group; NU:
natural uranium; ∗∗𝑝 < 0.01, significant difference from control.
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Figure 5: Depressive-like behaviour of male rats exposed to 1.5, 10,
or 40mg⋅L−1 NU from birth for 9 months. Time of immobility is
expressed in seconds and reflects the depression level. The data are
presented as mean ± SEM; 𝑛 = 12 for each group; NU: natural
uranium; ∗𝑝 < 0.05, significant difference from control.

time exploring the novel object than the familiar object
(Figure 6(d)).

All of these results demonstrated that NU induced
behavioural effects linked to the gender. The next step
should be the identification of markers of these neurological
disorders.

3.4. CSF Metabolome. The variables responsible for the
discrimination between control rats and rats exposed to
40mg⋅L−1 NU are shown in Figure 7. Using principal
component analysis, PLS-DA and hierarchical ascendant
classification, a model was created with the 86most discrimi-
nating variables from the initial 1244 detected CSF analytical
features.Thismodel was built on a single PLS-DA component
and it was validated by permutation tests and CV-ANOVA
(𝑝 = 3.91721𝑒−014). From this model, we were able to
observe and select the best discriminating variables of the 86
significant ones that discriminate control from exposed rats,
for male, female, and both animals.

When comparing males to females, from the top 18 con-
trol to NU discriminating variables, 7 were found exclusively
related to female rats from control rats and 7 others to male
rats. Four variables were common for female rats and male

rats, corresponding to variables discriminating exposed rats
versus control rats, regardless of gender (Figure 7). These 4
variables have been putatively identified as N2-succinyl-L-
arginine, N4-acetylaminobutanoate, andN-methylsalsolinol,
which decreased in NU-exposed rats compared to control
rats, and butyric acid, which increased in NU-exposed rats
(Table 2).

This metabolomics analysis thus showed that some
metabolites differed in the CSF of male versus female and the
NU-exposed versus control groups, whereas others were only
specific of NU exposure, irrespective of gender.

3.5. UraniumConcentrations. Uranium concentrations in the
cerebral cortex of male rats are shown in Table 1. Uranium
concentrations in the cortex of male rats exposed to 10
or 40mg⋅L−1 NU were significantly increased (resp., +110%
and +218%) in comparison with control rats (Table 1). No
significant difference was observed between rats exposed to
1.5mg⋅L−1 NU and control rats (Table 1).

The concentration of uranium in CSF increased signifi-
cantly in male rats exposed to 40mg⋅L−1 NU compared with
control rats (19.7 ± 6.0 ng⋅L−1 versus 8.1 ± 2.5 ng⋅L−1, 𝑝 <
0.05).

4. Discussion

Although there is an undeniable risk of radiological toxicity
from orally ingested NU, the hazards of NU have been little
investigated, especially after chronic exposure. The primary
objective of this experimental study was to obtain new data to
shed light on the long-term central effects of NU chronically
ingested through drinking water at environmental doses.
More specifically, we sought to obtain (i) a phenotypic brain
signature associated with NU exposure and (ii) a comparison
of the gender related response to NU to reveal any sexual
dimorphism associated with exposure. The strength of the
present study lies in its combination of a wide range of
uranium levels (1.5 to 40mg⋅L−1), a large panel of behavioural
tests (locomotor activity, memory, anxiety, and depression),
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Figure 6: Total activity, spatial working memory, anxiety-like behaviour, medium-term memory, and depressive-like behaviour of female
rats exposed to NU at 40mg⋅L−1 from birth for 9 months. (a1) shows the number of lines crossed, reflecting locomotor activity. The number
of rearings is presented in (a2) and reflects exploratory activity. (b1) shows the number of arm entries in the Y-maze and reflects locomotor
activity. (b2) shows the alternation between arms, expressed as a percentage (%), in the Y-maze and reflects spatial working memory. (c1)
shows the number of visits to the closed arms of the elevated plus maze and reflects locomotor activity. (c2) shows the time spent, expressed
in seconds (s), in the closed arms of the elevated plus maze and reflects anxiety level. (d) shows the time spent on the familiar or new objects
during the second session expressed in seconds (s) and reflects medium-termmemory. (e) shows the time of immobility expressed in seconds
(s) and reflects the depression level. Results are expressed as mean ± SEM for control and exposed animals to 40mg⋅L−1 NU; 𝑛 = 12/group;
NU: natural uranium. ∗𝑝 < 0.05, significant difference from control. &𝑝 < 0.05, significant difference from familiar object.

and the use of a highly relevant, innovative, and sensitive
metabolomics approach, which yields ametabolic fingerprint
relevant to NU exposure.

Body weight, food intake, and water consumption were
evaluated as endpoints of the general toxicity of NU. They
were not significantly affected by NU exposure in our

experimental conditions, which is in accordance with previ-
ous studies in adult rats chronically exposed to DU [27, 28].
We observed no substantial brain weight loss or macroscopic
brain tissue damage suggestive of deterioration in health
status. These results are not surprising since low doses of NU
were used in the present study.
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Figure 7: Principal component analysis of the 85 most discriminatory CSF metabolites in male and female rats, control or those exposed to
40mg⋅L−1 NU from birth for 9 months (PLSDAmodel built with the 1244 CSF metabolites followed by a hierarchic ascendant classification).
C: control; NU: natural uranium.

To study the potential adverse effects of uranium on
the neurobehaviour of rats chronically exposed to NU, we
first investigated total activity. The open-field procedure
involves primary motor activity, evaluated by calculating
the number of line crossings, and exploratory activity, eval-
uated by calculating the number of rearings on the hind
limbs. In our experimental conditions, motor activity and
exploratory activity were not significantly modified in male
rats exposed to NU, regardless of the dose. These results are
in accordance with a report that there was no significant
effect on motor/exploratory activity after 9-month exposure
to 40mg⋅L−1 DU or 4%-EU in adult rats [27]. However,

the opposite results, that is, hyperactivity or hypoactivity,
in terms of line crossing and rearing or the distance trav-
elled, have also been observed in rats exposed to DU [29–
31]. Locomotor activity is closely related to the cholinergic
system [32] and exploratory rearing behaviour is evidently
related to glutamatergic mechanisms [33]. It is also known
that dopamine modulates glutamatergic inputs in the brain
[34] and that dopamine-excitatory amino acid interaction
is involved in the locomotor behaviour [35]. Verification
is therefore needed where uranium-induced impairment
of activity is mediated by changes in glutamatergic and
dopaminergic neurotransmitters.
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Table 2: Putative identification of the variables most responsible for the discrimination between the male and female rats, control, and those
exposed to NU at 40mg⋅L−1 from birth for 9 months.

LC-MS ID Putative identification Proposed adduct
Adduct
chemical
formula

Database ID Function

M307T229 N2-succinyl-L-
arginine [M + H + CH

3

OH]1+ C
11

H
23

N
4

O
6

C03296 Arginine and
proline metabolism

M128T53 N4-
acetylaminobutanoate [M + H −H

2

O]1+ C
6

H
10

NO
2

C02946 Arginine and
proline metabolism

M194T229 N-methylsalsolinol [M + H]1+ C
11

H
16

NO
2

HMDB03892
Endogenous amine
found in brain and

CSF

M89T61 Butyric acid [M + H]1+ C
4

H
9

O
2

C00246

Butanoate
metabolism,

protein digestion,
and absorption

NU: natural uranium.

We also analysed the effects of NU on emotional behav-
iour using the forced swimming test, which is generally
considered as an animal model of depression [36]. Forced
swimming data revealed thatmale rats that received the high-
est dose of NU showed increased susceptibility to depressive-
like behaviour. The results of the present study suggest also
that exposure to 40mg⋅L−1 NU significantly affects anxiety-
like behaviour in the elevated plus maze test, one of the tests
most frequently used in behavioural psychopharmacology to
assess the potential anxiolytic properties of drugs. This result
is consistent with previous data demonstrating a significant
effect on anxiety-like behaviour in rats exposed to 4%-EU or
DU since birth [27, 37]. Increased depressive-like behaviour
is perhaps related to increased anxiety. Monoamine transport
systems might play a physiological role in the response to
mood disorders induced by uranium. Among them, OCT2, a
member of the polyspecific organic cation transporter family,
is expressed notably in the limbic system, is implicated in
anxiety and depression-related behaviour [38], and could be
a target of uranium.

Data obtained with the Y-maze test indicated that expo-
sure of male rats to 40mg⋅L−1 NU resulted in impairment
of spatial working memory, as previously observed in adult
rats exposed to 4%-EU for 9 months, but not in adult rats
exposed to DU for 9 months [27], suggesting that the percent
of 235U plays a role. Whatever the dose used in the present
experimental study, NU induced a significant decrease in
medium-term memory. These results suggest that sensitivity
to NU may differ according to the kind of memory studied.
The hippocampus for working spatial memory and the
hippocampus/entorhinal cortex for medium-term memory
may be responsible for this differential sensitivity.

Our behavioural tests showed a strong gender effect, with
changes more evidently in males than in females. The single
study to date of the involvement of sexual dimorphism in
the effects of uranium on behaviour showed increased loco-
motor activity in male rats, but not females, after ingestion
of DU [29]. Brain differences between males and females
are a common phenomenon, since sexual differentiation in

the brain takes place during a perinatal sensitive window as
a result of gonadal steroid hormone-induced developmental
organisation [39]. There is considerable evidence for the
involvement of sex steroid hormones, such as oestrogen and
androgen, in neurotransmitter systems and consequently in
possible interactions with cognitive impairment [40]. This
difference between males and females heightens the need to
investigate this question further.

The brain appears very sensitive to NU. A NOAEL
(No-Observed-Adverse-Effect Level) threshold, less than
1.5mg⋅L−1, may be suggested on the basis of these observed
behavioural effects. Dublineau et al. recently demonstrated
that the brain is the organ most sensitive to chronic exposure
byDU ingestion [41].These results also revealed that uranium
is present in the brain. The next question to consider is how
uranium penetrates brain cells. It is becoming evident that
uptake transporters are essential in mediating the entry of
large numbers of xenobiotics into cells. Some transporters
present at the blood-brain barrier, such as organic anion
transporting polypeptide 1c1 (Oatp1c1) and monocarboxy-
late transporter 8 (Mct8), may alter brain development,
locomotion, or cognition [42]. This raises the question
of their role after NU exposure and thus opens up new
perspectives in studying the mechanisms of its toxicity. The
exact mechanisms underlying these neurotoxic effects of
uranium have not yet been specifically addressed and are
probably complex. There are several mechanisms by which
uranium may potentially affect the brain. Legrand et al. have
demonstrated that some steps of neurogenesis, that is, cell
proliferation and cell death, are disturbed during prenatal and
postnatal brain development after DU exposure [43]. These
effects on neurogenesis could impair synaptic plasticity and
might cause cognitive dysfunction in adulthood.

The presence of behavioural impairments suggests that
the brain is a target ofNU.Weused aMS-basedmetabolomics
approach to reveal any metabolic disruption associated to
NU exposure that we found highly suitable to reveal low-
dose radionuclide contamination [13, 14]. The objective of
this preliminary study was to use CSF metabolomics to
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discriminate between groups of rats exposed or not to NU
and to determine whether there is a difference betweenmales
and females. We have shown here that some variables specif-
ically discriminated either male and/or female rats exposed
to NU from controls at the onset of behavioural deficits,
whereas others were only NU specific, irrespective of gender.
Among these latter variables that discriminated exposed and
nonexposed rats to NU, 4 metabolites were putatively iden-
tified as N2-succinyl-L-arginine, N4-acetylaminobutanoate,
N-methylsalsolinol, and butyrate. This result demonstrates
for the first time that NU has an effect on metabolism
of CSF. These metabolites are important for the proper
physiological functioning of the brain. For instance, the
two first belong to the metabolic pathway of arginine and
proline and N-methylsalsolinol is implicated on the balance
impairment between dopamine and acetylcholine. These
results could be paralleled to studies using metabolomics as
a diagnostic marker in neurodegenerative diseases and/or
cognitive impairment [44]. Butyric acid which can be found
in CSF (database accession number hmdb00039) is also an
end-product of ketone bodies metabolism (Kegg pathway
map00650), which are compounds used by brain for alter-
native energy production to glucose. When injected in CSF
it has been associated with memory function [45] as well as
mood stabilization [46] in rats.

In conclusion, our study demonstrates that the behav-
ioural approach and the application of metabolomics are
relevant in the field of low-doses radiation toxicology. Our
finding is the first evaluation of the NU-induced health risk
in the case of chronic environmental exposure. It suggests
that exposure to low-dose NU during development and
adulthood can have an impact on behaviour and on the CSF
metabolome, highlighting an impact on the brain function
and activity in our rat model. The next question is to find
out whether and how the changes in the CSF metabolome
are related to behavioural changes. The goal now is to
continue the identification of these metabolites in order
to understand signalling pathways that could explain the
behavioural observed effects.
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