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Droplets are ubiquitous and have been studied for century. However, the flow pattern and insta-
bilities occurring during evaporation are still under investigations and their origin is still debated. In
this letter, we are comparing an ethanol drop evaporating onto a heated substrate under weightless-
ness conditions and with pinned contact line with a 3D unsteady computation of thermo-convective
instabilities to determine with accuracy the type of instabilities. Our one-sided model, devoid of
fitting parameters, demonstrates quantitative agreement with experimental data and confirms that
experimentally observed instabilities are driven by thermocapillary stress, and not by the gas con-
vection. By creating creating a numerical infrared image, we can conclude with certitude that the
experimentally observed thermo-convective instabilities in evaporating sessile drops of volatile liq-
uids, which in infrared spectrum look similar to hydrothermal waves (HTWs), are actually nothing
else than unsteady Bnard-Marangoni instability.

PACS numbers: 68.03.Fg, 07.05.Tp, 47.55.pf, 47.20.Ma

Evaporating sessile drops of various liquids are widely
encountered in nature and have a variety of industrial and
biomedical applications: heat exchangers [? ], nanopar-
ticles deposition (coffee-ring effect) [? ], spraying of her-
bicides and pesticides on hydrophobic leaves [? ], inkjet
printing [? ? ], blood analysis [? ? ? ]. As a result, evap-
orating sessile drops constitute an interest for both aca-
demic community and industry. This problem is rich with
numerous physical phenomena: diffusive and convective
vapour transport, kinetics of vapour molecules trans-
fer across liquid-gas interface (Hertz-Knudsen-Langmuir
equation), evaporative interface cooling, radiative heat
transfer, Marangoni flows and instabilities, particles sed-
imentation and deposition, adsorption of chemicals on
interfaces, adsorbed precursor films, contact line insta-
bilities and pinning/depinning processes. Many of these
phenomena can be visualized with the aid of modern op-
tical instruments. For example, field of vapour concen-
tration around the droplet can be observed with the aid
of digital holographic interferometry [? ]. Observations
in infrared (IR) spectrum give visual information about
thermal processes in a droplet [? ? ? ? ? ? ], and
allow estimating temperature field on its surface [? ? ?
? ]. Among all observable phenomena, a particular inter-
est has been given to the one distinctive type of sponta-
neously developed thermo-capillary instabilities, so called
hydrothermal waves (HTWs). Conventional HTWs are
observed in thin liquid layers whose surface is subject to
a lateral temperature gradient [? ? ? ? ? ]. In ses-
sile droplets, however, HTWs are driven by evaporation,
which generates these temperature gradients naturally.
In droplets they have been observed, for the first time, in
IR spectrum in volatile liquids (methanol, ethanol, FC-

72) on heated substrates by Sefiane et al. [? ] and later
by few other researchers [? ? ? ? ]. According to Smith
and Davis [? ? ] (see also [? ] and p. 115 in [? ]), HTWs
are distinguished from other thermo-capillary instabil-
ities by the following attributes: they appear only as
a secondary unsteady thermo-convective instability in a
basic shear flow (primary thermo-capillary flow) directed
along the longitudinal temperature gradient at the liq-
uid surface; the mechanism of HTWs propagation does
not require any deflection of the free surface of the liquid
layer.

It is still not clear what exactly is observed in sessile
droplets: are we observing hydrothermal waves or un-
steady Benard-Marangoni (BM) instabilities, or a com-
bination of both? In order to answer this question, it is
necessary to understand underlying hydrodynamics and
heat transfer, identify major sources of IR radiation con-
tributing to the experimentally observed IR image. In
the present work, we study this problem numerically us-
ing a one-sided model solving 3D unsteady hydrodynamic
and heat transfer equations in a sessile drop of ethanol
on a heated substrate. We assume a pinned contact
line and a spherical-cap shape of the liquid-gas interface.
The computed temperature field is used for the numer-
ical reconstruction of the top-view IR image of a semi-
transparent (in IR spectrum) droplet, which is then vali-
dated against the experimental IR image. The presented
numerical model gives the idea of internal 3D flow struc-
ture in the droplet, reveals the driving mechanism and
energy sources of the observed thermo-convective insta-
bility, and thus clarifies its nature. For our calculations,
we will use a Cartesian system of coordinates (x, y, z)
with the origin at the geometrical center of the droplet-
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substrate contact area, and with z-axis directed perpen-
dicular to the liquid-solid interface and pointing into liq-
uid phase. Let x̂, ŷ and ẑ be the constant unit vectors in
direction of x, y and z axes, respectively. Earlier [? ] we
have presented a semi-analytical formula predicting the
mass flow rate, J (in kg/s), of unsteady diffusion-limited
evaporation for a non-isothermal pinned sessile droplet,
taking into account Stefan flow in the gas:

JStefan(L, Tav, θ(t), t) = 2πD∗effLF (θ(t))

×
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ρ∗v,sat = ρv,sat (Tav) , (8)

L is contact radius, Tav and T∞ are correspondingly
average temperature of the liquid-gas interface Γ (see
Eq. (4)) and the ambient one, t is time, θ(t) is time-
dependent contact angle, F (θ) is function of contact an-
gle, derived by Picknett and Bexon [? ] and equivalent
to the one derived later by Popov [? ], asterisk stands
for a dependence on Tav: D

∗
eff is effective diffusion co-

efficient for vapour in ambient gas, pg is ambient gas
pressure, (Dpg)ref = 1.337 Pa·m2/s at Tref = 298 K for
ethanol vapour in air [? ], ρ∗g (see Eq. (5)) and M∗g =
Mair (1−X∗v ) + MvX

∗
v are correspondingly density and

molar mass of the gas at Γ, where Mair and Mv are
molar masses of correspondingly air and vapour (0.046
kg/mol for ethanol) and X∗v = ρ∗v,satRTav/ (Mvpg) is
vapour molar fraction, ρv,sat (T ) is local saturated vapour
density at Γ (Clausius-Clapeyron equation, see Eq. (7)),
R is the universal gas constant, Λ∗ = c1 (1− Tav/Tc)c2
is latent heat of vaporization with c1 = 55789 J/mol,

c2 = 0.31245 and Tc = 514 K for ethanol, prefv,sat = 13838

Pa at T refsat = 308.15 K, ρv,∞ is vapour density in the
ambient gas far away from the droplet. Equation (1) has
been used in a two-parametric approximation, japprox,
for a non-isothermal vapour flux distribution along the

droplet surface (see [? ]):

japprox = j∗i (r, θ) [1 +B(T − Tav)] + ∆h∇Γ · jτ , (9)

where

r =
√
x2 + y2, (10)

jτ = −D(T )∇Γρv,sat (T ) + ρv,sat (T )uτ , (11)

B and ∆h are two parameters, ∇ = x̂ ∂
∂ x + ŷ ∂

∂ y + ẑ ∂
∂ z

is the nabla-operator, ∇Γ = (I− nn) · ∇, where I is the
identity tensor and n is unit normal vector at the liquid-
gas interface pointing into gas phase, jτ is tangential com-
ponent of the vapour flux (see Eq. (11)), D(T ) = AT 3/2

is local diffusion coefficient, uτ = (I− nn) · u is tangen-
tial component of the velocity vector, ρv,sat (T ) is local
saturated vapour density, ∇Γ · jτ is a surficial divergence
(see Eq. (23)) of the surficial vector jτ , and finally j∗i (r, θ)
is an isothermal version of the vapour flux distribution
along the droplet surface:

j∗i (r, θ) = j∗0χ
−λ(1− ω) (12)

for 0 ≤ θ ≤ π/2 and 0 ≤ r < L,

where
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Defining liquid-gas interface Γ : z = f (x, y), we can rep-
resent jτ as a function v of only two coordinates:

jτ (x, y, z) = jτ (x, y, f (x, y)) ≡ v (x, y) . (22)

Then, provided that nz 6= 0, term ∇Γ · jτ in Eq. (9) can
be expressed as:

∇Γ · jτ = a · (v)
′
x + b · (v)

′
y , (23)

where symbols (·)′x and (·)′y denote partial derivatives
with respect to x and y, and vectors a and b are given
as follows:

a = (I− nn) · x̂ =
(
1− n2

x, −nxny, −nxnz
)
,

b = (I− nn) · ŷ =
(
− nynx, 1− n2

y, −nynz
)
,
(24)
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with nx = −f ′xnz, ny = −f ′ynz and nz = 1√
1+(f ′

x)2+(f ′
y)

2

being the components of the normal vector n. Expression
(23) is ready to be implemented in the program code. We
use Eq. (9) in our numerical model as a boundary condi-
tion for the local normal vapour flux, j, at the liquid-gas
interface: j = japprox. All input data, which are re-
quired for the computation of japprox, such as Tav, θ(t),
jτ , are directly available from the numerical model in
the course of computation. Our one-sided model solves
Navier-Stokes, continuity and heat transfer equations in
the droplet bulk:

ρ

(
∂ u

∂ t

∣∣∣∣
m

+ [(u−w) · ∇]u

)
=∇ · σ, (25)

∇ · u = 0, (26)

ρcp

(
∂ T

∂ t

∣∣∣∣
m

+ (u−w) · ∇T
)

=∇ · (k∇T ), (27)

where u and T are respectively velocity and tempera-
ture fields, w is the mesh velocity, subscript m means
that time derivative is taken at a fixed mesh node (fixed
mesh coordinates), ρ, cp and k are respectively den-
sity, specific heat capacity at constant pressure and ther-
mal conductivity of the droplet phase, σ = −pI + π
is total stress tensor, p is hydrodynamic pressure and
π = µ

(
∇u + (∇u)T

)
is viscous stress tensor. Radiative,

conductive and convective heat transfer into gas phase is
neglected. Substrate is considered isothermal with con-
stant temperature Ts. Initial conditions: T |t=0 = Ts,
u|t=0 = 0, p|t=0 = pg +2γ sin θ0/L, where γ is liquid-gas
interfacial tension and θ0 is initial contact angle. Bound-
ary conditions: T |z=0 = Ts, u|z=0 = 0. Liquid-gas inter-
face Γ is considered as a boundary, moving in direction
of normal vector n with velocity uΓ. Provided that local
evaporation rate, j, is known (see Eq. (9)), we can define
the following boundary conditions at Γ:

−k∇T · n = jΛ∗/Mv, (28)

ρ (u · n− uΓ) = j, (29)

σ · n = −γ (∇ · n)Γ n +
dγ

dT
∇ΓT , (30)

where (∇ · n)Γ is the divergence of vector n at Γ, that
is curvature of Γ, which is equal to 2 sin θ/L. Expression
for uΓ is derived based on total evaporative mass flux
J =

∫
Γ
jdΓ and two assumptions: pinned contact line

(L = const) and spherical-cap shape of the droplet in
the course of evaporation:

uΓ = − J

πρL3

(1 + cos θ)
2

sin θ
z. (31)

In order to compare our numerical model with real exper-
imental data, we have selected one particular experiment
from the series of our parabolic-flight experiments [? ].
In this experiment a sessile drop of ethanol with pinned
contact line evaporated in microgravity conditions from

(a) (b)

(c)

FIG. 1. Snapshot of comparison between experimental and
numerical infrared images at t=15.36s: a) top left figure evi-
dence the numerical droplet surface temperature. b) top right
figure evidence the numerical droplet total radiative tempera-
ture. c) bottom central figure show the experimental infrared
image obtained for an ethanol droplet under evaporation for
the same conditions. Multimedia view

a thin heated substrate with actively imposed constant
temperature Ts. The IR camera ”VarioCam R© hr head”
recorded droplet’s top view in the Mid-Wavelength IR
range (MW: 7.5-14 µm) to capture thermo-convective in-
stabilities (Fig. 1c). Based on the selected experiment,
we have used the following input data for our numerical
model: pg = 792 mbar, Ts = 307.05 K, T∞ = 297.55
K, L = 2.95 mm, θ0 = 29.2◦, ρv,∞ = 0, ρ = 772.24
kg/m3, µ = 1.095 mPa·s, k = 0.14 W/(m·K), cp = 2602.3

J/(kg·K), γ = 20.62 mN/m, d γ
d T = −82 µN/(m·K). Pa-

rameters B = 0.33 K−1 and ∆h = 0.019 mm (see Eq.
(9)) were obtained by fitting local evaporation rate, j,
computed with our previously developed non-isothermal
two-sided axisymmetric numerical model [? ] which also
used the above mentioned input data.

In the present numerical study we use a commercial
software COMSOL Multiphysics R©. All equations are
discretized with the finite element method (FEM) using
second order shape functions. Generated computational
mesh contains 16547 tetrahedral elements, which results
in 187050 degrees of freedom. Computation ran about
9 days on a cluster with 48 cores. Below we present
computer simulation results for our unsteady one-sided
3D numerical model. Computation starts with the ini-
tial condition of uniform temperature field in the droplet
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(a)

(b) (d)(c)

FIG. 2. Snapshot of flow motion inside the droplet under
evaporation from the numerical simulation at t=15.40s: a)
top figure showing the thermal plume formation inside the
droplet. b) bottom left figure showing the top surface tem-
perature. c) central figure showing in a cut plane the liquid
temperature and d) on the right view the vertical velocity
component. Multimedia view

bulk. Due to consumption of latent heat by the the-
oretically imposed evaporation at the liquid-gas inter-
face, droplet surface cools down. At the same time tem-
perature near the contact line is maintained high due
to heat conduction from the substrate through a thin
layer of ethanol. This creates a vertical temperature gra-
dient in the droplet bulk and a horizontal one on the
droplet surface near the contact line. These tempera-
ture gradients promote the development of thermocap-
illary Benard-Marangoni instability. After a period of
about 15.4 seconds, when intensive transitional phenom-
ena finished, one can observe a dynamic multicellular
thermo-convective pattern: Fig. 2 shows the tempera-
ture (color) and velocity (arrows) fields at the droplet sur-
face (b) and in the vertical cut plane (a) after 15.40 sec-
onds of the evaporation process which represents about
85% of the total time of evaporation. The dynamics
of this instability well resembles the experimentally ob-
served one (a video link is available in the caption of Fig.
1). In order to get a better visual comparison of this
numerical result with the experiment, we did a simpli-
fied computation of the IR image based on the computed
3D temperature field. We took into account the semi-
transparency of liquid ethanol in the Mid-Wavelength
(MW) bandwidth: according to the spectrophotometer
measurements by Brutin et al. [? ] ethanol’s absorption
coefficient in the MW range is a = 1.85 mm−1. Using
this value, one can compute the intensity of IR radia-
tion arriving to the camera installed above the droplet,
which then can be converted into an equivalent black-
body temperature, TIR,num(x, y) (subscript num stands
for “numerical”). This computation is done by summing
the IR radiation coming from the substrate surface (as-
sumed to be a gray body) with the integral of IR radi-
ation sources distributed across the thickness of a semi-

transparent droplet:

T 4
IR,num(x, y) = εT 4

s e
−af(x,y) +∫ f(x,y)

0

T 4(x, y, z)a e−a(f(x,y)−z) dz, (32)

where f(x, y) represents the local droplet thick-
ness. Emissivity of a bare substrate surface, ε =
T 4
IR,exp/T

4
s,exp, is estimated by correlating the experi-

mental equivalent blackbody temperature (TIR,exp(x, y)
from IR camera) with corresponding real temperature,
Ts,exp, obtained through thermocouple measurements.

Numerical model does not confirm the existence of any
base shear flow in the droplet phase, which indicates
that this is not HTWs. Instead, it possesses the features
of Benard-Marangoni instability: vertical upward liquid
flow under the local temperature maxima, and down-
ward flow under the local temperature minima. Thus,
we conclude that the experimentally observed thermo-
convective pattern is nothing else than unsteady Benard-
Marangoni instability.

Finally, let us discuss the dynamics of the observed
pattern. The 3D instabilities develop in several stages.
In the first one, an unsteady axisymetric base flow sets
up in a torus roll adjacent to the triple line. It rotates
upwards along the interface as it is driven by thermo-
capillary forces and superimposes to Stefan flow in the
droplet. In a second stage this torus roll is destabilised
and brakes into BM cells resulting in a fully 3D unsteady
pattern that populates the whole droplet. Then in a third
stage the BM cells concentrate in the neighbouring of the
triple line where thermocapillary forces remain intense
whereas they continuously weaken in the upper central
region. The unsteady pattern that arises from this point
results from the fact that BM cells have an intrinsic wave-
length that is roughly twice the liquid thickness [? ] (λ
∼ 2 f(r)). So the number of BM cells that matches the

circumference is N(t) ∼ 2π(L−f(r))
2f(r) . But, as evapora-

tion proceeds in the pinned mode, the droplet thickness
decreases and N(t) increases leading to a continuous az-
imuthal movement in order to dynamically equidistribute
cells along the droplet perimeter. This last dynamics has
somehow been erroneously attributed to HTWs, but our
comparison of experiments and simulation confirms the
nature of these instabilities as BM.

In this letter we have reported our 3D one-sided nu-
merical model of an evaporating sessile droplet of ethanol
on a heated substrate. The model does not use any
fitting parameters and demonstrates a good qualitative
and quantitative comparison with the experimental data.
Based on the computed temperature and flow fields
we conclude that the experimentally observed thermo-
convective pattern in the droplet is an unsteady Benard-
Marangoni instability and is different from hydrothermal
waves.
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