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Figure 1: Alignments that indicate the presence of radar signals colored by frequency values

ABSTRACT

In this paper we present HeloVis: a 3D interactive visualization
that relies on immersive properties to improve the user performance
during SIGINT analysis. SIGINT, which stands for SIGnal INTelli-
gence, is a field facing many challenges like huge amounts of data,
complex data and novice users. HeloVis draws on perceptive biases,
highlighted by Gestalt laws, and on depth perception to enhance the
recurrence properties contained into the data and to abstract from
interferences such as noise or missing data. In this paper, we first
present SIGINT and the challenges that it brings to visual analytics.
Then, we present the existing work that is currently used in or that
fits the SIGINT context. Finally, we present HeloVis, an innovative
application on an immersive context that allows performing SIG-
INT analysis and we present its evaluation performed with military
operators who are the end-users of SIGINT analysis.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Visual analytics; Human-centered
computing—Visualization—Visualization design and evaluation
methods

1 INTRODUCTION

During a military operation, possessing knowledge about surround-
ing systems is primordial for the safety of the operators. Gathering
this knowledge based on radar signal analysis is the objective of
SIGnal INTelligence (SIGINT) operators. However, dealing with
complex data such as radar signals is not the only issue that SIG-
INT faces so that few are the systems that fulfill the SIGINT needs.
With the actual increasing amount of data these few solutions are
no longer allowing a high-quality analysis on a day-to-day basis.
To overcome this issue in terms of information visualization, we
explore the use of 3D immersive techniques to deal with the numer-
ous aspects of SIGINT, as suggested by Brath about the intake of
3D for visualization [2]. From this exploration we build HeloVis,
an interactive visualization that makes profit of these techniques to
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better support SIGINT analysis. In this paper we first present the
specificities of SIGINT identified thanks to interviews of military
operators (in section 2). In section 3 we present the existing tools
and why they do not entirely fulfill the SIGINT needs. In section 4
we present the HeloVis tool and finally, in section 5 we assess the
benefits of such an approach by presenting preliminary results of an
evaluation measuring user performance.

2 SIGINT
This section presents SIGINT through a description of its back-
ground, its data and its needs. All the following knowledge has been
collected through interviews and observations of SIGINT operators.

2.1 Background
Radar detection consists in sending an electromagnetic emission
that is reflected by objects and then intercepted back by the radar.
The way the signal is distorted when reflected gives information on
the objects such as distance or size. To increase the detection, the
radar signals have complex characteristics that make their signature
unique. Such emissions can be intercepted by other sensors named
electronic support measures. Electronic Warfare (EW) exploits the
interception of radar emissions to identify their origin, to character-
ize their threat level and to enable the appropriate reaction in case
of conflict, or conversely, to prevent an opponent from doing the
same. However, the identification of a radar signal requires having a
precise knowledge of the existing radar signal signatures. Gathering
this knowledge is an activity generally performed by dedicated mili-
tary forces called SIGINT. It consists in capturing and analyzing as
many emissions as possible in order to characterize their signatures
and therefore fill the reference database used in electronic warfare.

2.2 Data
Radar signals consist of series of pulses of a certain duration spaced
in time. These pulses are emitted on a specific frequency (such
as radio emissions) and with a specific power, named level. Thus,
pulse width (PW), pulse repetition period (PRP), frequency and level
are the four main attributes that characterize a pulse (see Fig. 2-a).
These attributes may vary from one pulse to another in a same signal
to increase detection or to hinder the identification. This variation
is what makes the signal specific enough that it can be used for
identification. Hence, the variation of the attributes is what the
SIGINT operators look for but not directly what the sensor gets.
Between the emission and the interception, pulses are subject to loss,



DRAFT

distortion and noise, whether it be from diffraction, emitter issues or
sensor issues. The sensors are able to record pulses according to their
frequency, PW, time of arrival (TOA) and level values. In order to
access the PRP, they also contain the computed delta of TOA (DTOA)
such as the SIGINT datasets contain these five attributes (see Fig. 2-
b). Concerning the data volume, as the capacities of current radars
are confidential, we cannot detail this matter but if we refer to studies
made a few years ago [21] and if we consider the increase of data
storage capacities, we can state that the current data volume is bigger
than the number of perceptible objects that is commonly defined by
the number of pixels provided by the visualization device [10].
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Figure 2: Attributes of the emitted (a) and intercepted (b) data

2.3 Needs
To be able to identify the characteristics of a radar signal, the opera-
tors need to distinguish pulses of a same signal from noise or other
signals. However, if the complexity of the variation is too high (and
that happens more and more often) it is difficult to associate pulses
of a same signal. A decade ago, most of the radars emitted their
pulses on the same frequency such that the association was made on
the frequency attribute and that the other attributes were used only
to distinguish two radars with close frequency values. However the
latest radars can emit on different frequency ranges creating signals
with a frequency varying pseudo-randomly. To overcome this new
issue the operators rely on the variation of the PW, the PRP and
the level. Constrained by the need of comparison between emitted
and reflected pulses, PWs and PRPs vary according to a recurrent
pattern which implies similar values but also recurrent time values
which make the association possible. However, the length of the
pattern tends to increase more and more (to hinder identifications).
Regarding the level, the emitter often rotates to cover every angle
such as the intercepted level takes the shape of a set of curves which
is singular enough to be detected and associated, however the emitter
can also make the level vary (for depth detection purposes), which
complicates the association. Consequently, to associate pulses from
a same radar signal relies on identifying and correlating similar val-
ues, singular variations or recurrent time values under constraints of
multidimensional data and huge amounts of data.

2.4 Synthesis
SIGINT deals with multi-attribute data in a huge amount that contain
strong temporal aspects. Military operators have to associate the dif-
ferent radar signals of these datasets and identify the characteristics
of the signals. In this paper we focus on the association part.

3 RELATED WORK

To perform the association of pulses that belong to a same signal is
possible thanks to processing. By combining clustering and modulo
detection, the latest algorithms allow the association of more than
80% of the SIGINT data [21]. The remaining 20%, which are still
in a huge amount, are unprocessed because of two issues. The first
one is to be put on the account of the quality of the datasets. Despite
the current algorithms being very effective, if there are too many
missing data or if the noise is too important, they fail associating
radar signals. The second one comes from the complexity of the
radar signal. People that create radars have in mind the fact that

they may be intercepted and, as such, complicate their signature to
avoid their identification. Despite all the efforts to create adaptive
processes, there is still a small amount of signal that is too complex
to be identified automatically.

The alternative to associate the 20% radar signals remaining from
processing is to rely on human perception by using representation
tools. Humans have the ability to correlate despite noise or miss-
ing values and have the mind plasticity to overcome novelty [19].
Accessing the attribute values to perform the association (identify-
ing similar values, singular variations and recurrent time values)
requires their encoding on visual variables (positions, color, size,
shape, etc.) [1]. According to the Gestalt law of proximity, the
position permits to associate data into clusters [13]. Among the
representation tools that use the position, we distinguish those that
use it once, twice or three times.

Position in two dimensions is currently used by SIGINT operators
aggregated with the use of multiple views to handle the multidimen-
sional aspect (see Fig. 3). 2D charts make possible to identify similar
values on the two attributes represented and can be correlated to
other views with the use of color (ex: [18]). Regarding the singu-
lar variation of the level, a chart representing level over time will
allow such detection. However, these charts are subject to noise
and occlusion, which is complicating the selection needed for the
characterization step. Recent selection tools make possible a very
flexible selection [9], but because of the amount of data, providing
the precision necessary to the characterization requires too much
time. In terms of identification of recurrent time values, the 2D
chart is of no specific support and the amount of data prevents any
one-by-one pulse detection. In addition, in case of noise or multiple
listening, the DTOA is irrelevant and requires to be recomputed after
a signal association to provide any insight.
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Figure 3: Illustration of the existing tools used in SIGINT analysis

The equivalent of the multiple views of 2D charts in terms of
position in one dimension would be the parallel coordinates. It
consists of parallel axes where each datum is represented by a line
evolving over the axes (ex: [12]). This representation for SIGINT
association permits to easily identify similar values on an attribute
and correlate it with others. However, this representation is also
subject to noise and does not allow the access to neither the level
variation nor the recurrent time values.

Concerning the use of position in three dimensions, it is imple-
mented by 3D charts. 3D charts extend the correlation on a row
to three attributes or more if we consider other visual variables [6].
Concerning its use, some recent studies have proven cluster detec-
tion to be more effective on stereoscopic displays [8], implying the
use of stereoscopic screens or immersive devices. But 3D represen-
tations still face occlusion and distortion issues that call their use
into question [16].

Finally, the SIGINT data can also be represented according to
other visual attributes. Using the color may correspond to the use of
a pixel view which consists in representing data by pixel size squares,
coloring them according to their values and displaying them side by
side (ex: [15]). This representation, that is exempt from occlusion,
can allow displaying multidimensional data by representing each
datum by a stack, each square representing an attribute. Concerning
the selection, as the attributes are encoded by color but not by
position, data with similar values are not necessarily displayed next
to another, disabling the possibility to spatially select data with
similar values. However, there exist some selection tools according
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to other visual variables such as color filters (ex: [4]), but as for
the spatial selection, these tools face noise, issues to select level
variation and difficulties to identify temporal recurrences.

As such, there is no solution that completely fulfills the need of
the SIGINT field by handling in a same time singular variations and
recurrent time values under the constraints of huge amounts of data,
complex data and complex tasks.

4 PROPOSITION

We have identified that the main issue is brought by biases among the
data such that we decide to base our analysis only on the time value
that is less subject to error and that contains, through its recurrence,
the information of belonging to the signal.

4.1 HeloVis principle
HeloVis consists in an interactive 3D visualization within
which each pulse is represented by an object positioned
on an helical scale depending on its time value. As such,
each object is positioned according to the following formula:

(y,r,θ) =

 t
R
2π(t mod p)

y 

r θ 

where (y,r,θ ) is the position of the object in a cylindric referential, t
the time value, R a constant defining the size of the representation,
and p (for period) a variable influencing the helical twist. The user
can smoothly modify the value of p impacting the helical scale by
twisting or untwisting it. Potentially the user will reach a value of p
that corresponds to the PRP of a radar signal that s/he will be able to
detect because the pulses of this radar will be aligned (see Fig. 4).

PRP2 

PRP1 

TOA 

(a) linear time (b) helical time, with pe-
riod = PRP1

(c) helical time, with pe-
riod = PRP2

Figure 4: Different representations of two different radar signals

In case of several PRP on a same signal, several alignments
will appear over the cylinder (see Fig. 5). Concerning missing
values, they will correspond to a hole in the detected alignment,
which will not impact the detection according to the Gestalt law of
continuity [13]. Finally, a radar signal does not necessarily have a
constant PRP value such that the detection will not necessarily be
an alignment but at least a geometric shape, as PRP variations are
always defined by functions.

PRP2 PRP1 

missing value 

(a) linear time

PRP2 

PRP1 

(b) helical time with period = PRP1 + PRP2

Figure 5: Different representations of a radar signal with several
repeated pulses and missing values

4.2 Other features
To be able to conduct the SIGINT analysis on such an interactive
visualization, we add other features. The first one is the possibility to
use the color to encode another attribute. That may be the frequency,
the level or the pulse width. Such encoding allows us to consolidate

the detection and quickly acquire knowledge over the distinguished
signals. We also propose to encode an attribute on another dimension,
the radius (see Fig. 6). This makes possible, as for the color, to
consolidate the detection but also to enhance the selection thanks to
the spatial distribution. We also add some interaction tools allowing
a direct access to the pulses, one displaying the values of each pulse
and one calculating the DTOA among two selected pulses. We
also add a selection tool to isolate the detection on another view,
which permits to record an association and analyze it without other
surrounding pulses. Finally, to facilitate the interaction and increase
the user experience, we add some features specific to the immersive
environment such as a teleportation tool.

Figure 6: View encoding frequency by color and by radius position
on HeloVis

4.3 3D visualization
Although the choice of a 3D visualization seems implicit to the
helical visualization metaphor, the use of 3D is questionable as its
contribution does not necessarily compensate for its many drawbacks
such as occlusion or the loss of information brought by perspective
distortion [16]. Representation of 3D spatial data is one of the few
fields where the benefits of using 3D visualization outweigh the
disadvantages and only for shape perception tasks [16]. Thus, re-
garding the representation of abstract data, 3D visualization is often
considered as unnecessary [16] or even ineffective [20]. Whether
these criticisms concern the use of flattened 3D or the use of 3D
with depth perception (stereoscopic and motion parallax), these two
methods are to be distinguished. Indeed, numerous studies com-
paring flattened 3D and 3D with depth have established significant
performance differences [2]. This does not mean that the 3D with
depth overcomes all the disadvantages of 3D but it can potentially
improve the balance in some cases such as the one that concerns us.

In the case of the HeloVis representation, which main percep-
tual need is to identify shapes, 3D makes it possible to respect the
metaphor of representation, which is a helical coordinate system,
but also to encode an additional attribute. Adding this attribute re-
quires identifying three-dimensional shapes that is done best using
3D with depth [8]. In parallel, here we propose to use immersive
3D, which increases the display area and therefore the management
of large amounts of data. Regarding the disadvantages, the problems
of occlusion and loss of information related to the distortion are still
present. However, according to the Gestalt law of the good form,
a standard geometric shape, even covered by another, will always
be distinguished as a unique form, which is the case of the clusters
highlighted by HeloVis. With regard to the loss of information, Helo-
Vis is meant to identify forms so the distortion of the information
is not a disadvantage. Some studies state that if 3D visualization
does not provide a better precision judgment, it facilitates shape
understanding [5, 11]. Thus, because of its needs, its contributions
and also its disadvantages, HeloVis is a tool where the use of a 3D
with depth visualization is relevant.

4.4 Existing helical representations
The use of a helical baseline to highlight time recursions already
exists in other contexts. The most relevant work is a helical repre-
sentation to handle geographic dataset [7]. If this technique is also
interactive, allowing us to identify recursions based on any period, it
differs from our proposition in a manner that makes it unusable for
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SIGINT. First of all, it does not permit to access the same amount of
data because it is meant to be part of a graphic panel and as such is
constrained by the size of the display. HeloVis being an immersive
tool permits an infinite extension of the display size. Moreover, this
existing work permits to access the data from outside the cylinder
which raises occlusion issues and the width of the cylinder is not
large enough to render the complexity of SIGINT data.

Another way to handle time recursions is by using spiral represen-
tations which can be considered as helicoids distorted by perspective.
Tominski and Schumann present an interactive spiral for spotting
patterns in time series data [17]. The use of a spiral permits to place
the user inside the data and as such avoid occlusion issues but this
flatten helicoid raises distortion issues that, if they do not hinder
the pattern detection, can lead to misperceive the correct alignment
period. In addition, as for many spiral representations, the work of
Tominski and Schumann is meant for continuous time values, which
is not the case of SIGINT data and which compromises the use of
the perceptive continuity law to detect patterns.

5 EVALUATION

We believe that HeloVis allows the users to perform a better asso-
ciation. To challenge this assumption we conducted an exploratory
evaluation comparing the user performances between the tool cur-
rently used by SIGINT operators and HeloVis. A better association
implies a better association rate and a better quality of the associa-
tions such that we make the following hypothesis:

H1 - The quantity of the radar signals associated is improved by
the use of HeloVis compared to the reference tool.

H2 - The quality of the radar signals associated is improved by
the use of HeloVis compared to the reference tool.

5.1 Experimental framework
As this evaluation falls into the category of user performance evalua-
tion of Lam et al., we have designed it to access objective metrics
related to our hypothesis [14]. As an exploratory evaluation we did
not want it to be biased by the usability such that we did not collect
time metrics or error rate but only metrics about the quantity and
quality of the associations made by the participants. In addition, to
master the experimental conditions of the evaluation we recorded
demographic data and data related metrics. And finally, to be able
to get an insight about the acceptability of HeloVis, we recorded
subjectives metrics about user experience.

5.1.1 Apparatus
The evaluation was done on two different devices: a standard com-
puter on which the reference system was used, and a more powerful
laptop, coupled with an immersive helmet to use HeloVis. The stan-
dard computer was composed of a central unit, a mouse, a keyboard
and a 24-inch screen with a resolution of 1920x1080 pixels. The
main unit had 8 GB of RAM, an Intel Core i7 processor and used the
operating system Windows 7 (64-bit). The laptop has been equipped
with an immersive helmet HTC Vive, with two controllers and two
position sensors. It had 32 GB of RAM, an Intel Core i7 processor,
a Nvidia 980M graphics card, and the operating system Windows
8 (64-bit). The immersive headset had a resolution of 2160x1200
pixels that provided a horizontal field of view of 110 degrees.

5.1.2 Participants
We recruited eleven participants aged between 34 and 52 to perform
our evaluation. Among the participants the females were under-
represented (1/11) but this reflects the reality of SIGINT. Half of
the participants were military people (5/11) and half of them were
civilian engineers building military solutions (6/11). Most of them
worked in the field of SIGINT (8/11) and the remaining ones worked
in the field of electronic warfare which is related to SIGINT. Con-
cerning their level of expertise, half of them were full experts, able

to associate even the most complex radar signals (6/11) and half of
them had complete knowledge and understanding of the field but not
the experience to associate all radar signals (5/11), irrespective of
their profession. Finally, only few of them had previous experience
with immersive devices (3/11). These participants have the knowl-
edge and the experience to perform a SIGINT analysis and as such,
are representative of the targeted users of HeloVis.

5.1.3 Procedure
After following a generic experimentation procedure (to ask to sign
consent and to get demographic metrics), we asked them to perform
a simple task on two different systems: HeloVis and a reference
system that is currently used by SIGINT operators. The first system
that they had to use was different from one consecutive participant
to another in order to remove biases. The reference tool, whom we
cannot talk too much about because of confidential restriction, was
a set of 2D charts displaying impulsions over different attributes
(see Fig. 3). The task was to associate as much radar signal as they
could with the best quality. Finally we asked them to fulfill a SUS
questionnaire [3] to record their insight. From this procedure we
obtained demographic data and subjective metrics and extracted
objective metrics from the logs of the associations. The number of
associations gave us information about H1 and the pulses contained
in each association gave us information about H2.

5.1.4 Synthesis
During the evaluation, we asked SIGINT experts to perform a same
association task on two different systems, the system currently used
by SIGINT operators on a desktop and HeloVis on an immersive
device. This evaluation provided us with objectives metrics to con-
front our hypothesis and subjectives metrics to give us insight on
user experience.

5.2 Results
Thanks to the extracted metrics we got insight on the quantity and
the quality of the association. We extracted this from the recorded
metrics considering the participants and the radar signals as indepen-
dent variables and considering the number of selections, the noise
percentage and the selection percentage as dependent variables.

5.2.1 Quantity of the association
To validate H1 we compared the quantity of associations performed
on each system. Among 88 possible selections (11 participants x 8
radar signals) the participants associated 53 signals with HeloVis
and 43 with the reference tool. This result highlights the fact that
HeloVis makes possible a better performance in terms of quantity,
validating H1. In addition, this highlights the fact that the number
of measurements is not identical for both systems. To include this
variable in the rest of the analysis, in particular in the analysis of the
quality, requires to identify the nature of the relation between the
quantity and quality that we are not able to provide. We therefore
establish a postulate of independence between quantity and quality in
order to be able to continue the analysis. From this point, we consider
that HeloVis and the reference tool are two different samples and do
not take anymore into account the number of associations.

5.2.2 Quality of the association
To validate H2 we compare the reference tool and HeloVis based
on the percentage of noise of each association and the percentage
of selection (see Table 1). From this analysis we observe that the
percentage of noise is lower for HeloVis and that the percentage of
selection is higher for HeloVis. The percentage of noise selected
points out the usability of the selection. A selection with too much
noise can prohibit any use of processing starting with the use of
the DTOA and can lead to misunderstand many characteristics of
the radar. The percentage of signal selected indicates the quality
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of knowledge about the selected signal. The more important the
value is, the more the signal characteristics are known and less noise
stays in the dataset. Regarding the meaning behind the metrics of
noise and selection, HeloVis seems to permit a better quality of the
selection. We extract this value thanks to a Wilcoxon test as the
amount of data does not allow us to assume that it follows a normal
distribution and as the data fail the normality test, invalidating the
use of the Student test. From this result we can conclude that using
HeloVis improves the quality of the selection in terms of noise
percentage and selection percentage, validating H2.

selection noise
reference tool 83.4% ± 8.5% 27.8% ± 9.2%
HeloVis 98.5% ± 0.9% 0.4% ± 0.3%
p value 2.064e-6 0.0114

Table 1: Result of the Wilcoxon test on the selection and noise
percentage by associations on HeloVis and on the reference tool.

5.2.3 Impact of system order
To identify the impact of using the same set of data when evaluating
the two systems, we compare the quality of the detections according
to the order in which the tools were used (see Table 2). According to
the selection percentage and the noise percentage, there are no major
differences between the results with HeloVis and the reference tool
depending on the order of use. Regarding the differences within
the same tool we find that the selection is better for the first tool
used which is counterintuitive. Regarding the noise percentage it
decreases for the second use as we could expect. These internal
variations, however, have no impact as long as they are equivalent on
each tool, given that the order has been changed in a homogeneous
manner.

order selection noise
reference tool 1 83.9% ± 8.5% 28.9% ± 8.9%
reference tool 2 82,7% ± 8.5% 26.3% ± 9.4%
HeloVis 1 98.6% ± 0.8% 0.5% ± 0.4%
HeloVis 2 98.2% ± 1% 0.2% ± 0.2%

Table 2: Selection percentage and noise percentage on HeloVis and
the reference tool according to the order of use.

5.2.4 Subjective results
During the evaluation, we have recorded subjectives metrics by
noting users’ comments and asking them to fulfill a SUS question-
naire [3]. The reference tool was considered as badly designed in
a way that complicates the interaction. This comforts us in our
decision not to base performance metrics on usability, but only on
perception as we did by measuring metrics on the signal detections.
In contrary, HeloVis was described as very easy to use. The syn-
thesis of all these comments toward usability was transcribed in the
SUS questionnaires results: 50 for the reference tool and 74 for
HeloVis. As we do not want to evaluate the interaction we will not
take into account this result, however, it indicates that HeloVis was
positively accepted by SIGINT experts who represent an important
part of the SIGINT community.

5.2.5 Summary
To conclude, we have identified that HeloVis seems to allow a better
quantity of association however we were not able to validate its
significance. Concerning the quality of the association we have
validated the fact that HeloVis permits to perform a better quality
association. Finally, we noted from the subjective comments that
the users are afraid to miss information on both systems.

6 CONCLUSION

The proposed tool HeloVis is designed to meet the requirements of
SIGINT, which are: managing complex data, complex tasks, huge
amounts of data and potentially novice users. These specificities
are such that there are no existing techniques that meet them all.
HeloVis relies on the Gestalt perceptive law and 3D immersive as-
pects to provide a new way to perform SIGINT analysis. According
to an exploratory evaluation achieved with SIGINT experts, we es-
tablished that HeloVis permits to perform more efficiently the first
part of SIGINT analysis: the signals association. In addition, it was
positively accepted by the participants in term of usability. In further
studies, we aim to continue our research and perform complementary
evaluations of HeloVis such as taking into account the complexity
of the radar signal and the participants’ expertise.
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