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Abstract 

An approach is presented and evaluated here to provide realistic internal and 
external dimensions of Human Body Models for a broad range of predictor values, 
such as, for example, to estimate the dimensions of a slightly overweight 11 year old 
of height 1m40. The difficulty due to lack of sufficient internal and external data is 
alleviated by combining widely available anthropometric measurements with more 
sparse databases of surface meshes of bones. Assuming that the external 
anthropometric measurements are estimated from the predictors through a 
regression, the link with the internal shape dimensions is made through the subset of 
target “skeletal” measurements that can be closely estimated from skeletal 
landmarks. The matching of internal dimensions then proceeds as follows. First the 
set of surface meshes of bones is aligned and a Principal Component Analysis (PCA) 
model of their variance compared to their mean shape is evaluated. This is done by 
aligning the bones, body part by body part, in such a way that the effect of posture is 
removed, and by evaluating the variance for the whole skeleton, so that the 
covariance of shapes between different bones is captured. Any subject sampled from 
this PCA model consists in a set of bones loosely positioned compared to each other, 
for particular values of the Principal Component (PC) modal magnitudes or scores. In 
a second step, values of these modal magnitudes are estimated in such a way that 
the corresponding sampled subject skeleton has dimensions that estimate closely the 
target skeletal anthropometric measurements. In this last step, a direct kinematic 
approach and a sequential quadratic programming method are used to reposition the 
sampled bones in an appropriate posture and to evaluate the most appropriate PC 
scores. The whole approach is successfully applied and evaluated on a three 
segment model of the lower limb.   

Key words:  

Internal-external, Anthropometric measurements. PCA model, skeleton mesh, lower 
limb
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1 Introduction  
 
Accurate geometric and mechanical models of human bodies for a wide range of 
types of occupants and other road users are required for vehicle crash simulation. 
However, while the shape of human body parts can be obtained from images of 
medical scans, the amount of such data available to represent any chosen human 
population is limited due to two main reasons. First, medical scans of a full body may 
not be publicly available for a wide range of the population - this is a particularly 
acute problem for children, and, second, the process of segmentation into body parts 
is currently so time consuming that a large database may only contain data 
concerning shapes for a few tens of partial bodies. 

Due to their complexity and cost, it is not realistic to generate a full finite element 
human body model (HBM) that include material properties for each subject. The 
strategy chosen in the EU funded PIPER project (PIPER, 2017) consists of 
deforming one of the very few existing HBMs to match some dimensional targets. As 
part of that project, the work presented here consists of generating personalised 
target skeletal shapes that are accurately representative of a wide range of predictors 
within the human population. 

Information from two resources is combined here in order to reach this goal. First, 
publicly available databases are used to estimate the anthropometric dimensions of a 
target subject or population. Since these measurements have been made in relatively 
large numbers and for a wide range of the population, estimated anthropometric 
dimensions can be trusted to be realistic. For example, a slightly overweight 13 year 
old female passenger can be sampled from a female population regression using 
predictors such as age and body mass index (BMI). However anthropometric 
measurements only represent limited information such as length and breadth of body 
parts. The internal skeleton remains difficult to be predicted from external 
measurements. One way to alleviate this issue is to use principal component (PC) 
analysis of the bone shape data which can be used as a second source of 
information. 

The objective of the paper is to present such an approach of fusion of anthropometric 
data and principal component analysis of the bones that consists in generating a 
realistic personalised skeleton to match sampled external body dimensions. Here this 
is illustrated for the lower limb. The methods used are presented in section 2, and the 
application to the lower limb in section 3. This is followed by discussion and 
conclusion in section 4. 
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2 Methods 
 
2.1 PC model of the skeleton 

In the present work, the PC model of the skeleton is built from bone surface meshes 
segmented with the Anatoreg tools (MOREAU et al., 2016), following a semi-
automatic segmentation approach adopted within the PIPER project. With data 
having been generated this way, the meshes of the bones are already in 
correspondence, meaning that they have the same number and connectivity of 
nodes. Anthropometric features on the same bone from different subjects can be 
estimated using the same nodes for all the subjects. In order to evaluate the mean 
shape mean and the variance of a group of bones, the bones of interest are 
individually aligned between all the subjects via generalized Procrustes analysis, so 
that the sum of all squares of distance between equivalent nodes is minimized. 
Grouping some bones together, such as the tibia and the fibula, allows to bypass the 
modelling of their relative articulation. Alignments are reached by two steps, as 
follows: each group of bones is first centered so that the average spatial coordinates 
of its mesh nodes, for any particular subject, is at the origin. These groups of bones 
are then aligned by generalized Procrustes (iterating one to one Procrustes of one 
subject’s bones from the current group to the average of the corresponding bones of 
all other subjects). 

After alignment, principal component analysis is performed by considering the mean 
and covariance matrices for all the aligned bones considered together, and extracting 
the main modes of the covariance matrix. A single covariance matrix, 𝐂𝐂, is thus 
evaluated for all vertices coordinates of all bones, independent of whether they share 
the same group, or not. The modes or eigenvectors of this matrix with non-zero 
eigenvalues are the modes or principal components of shape variation. They are 
then normalized. Expressed in the basis of these modes, the modal magnitudes or 
PC scores, 𝐜𝐜 = [𝑐𝑐1   𝑐𝑐2  …   𝑐𝑐𝑚𝑚]𝐿𝐿, of the difference of the aligned meshes compared to 
the mean mesh differ for each subject. The variance of these modal magnitudes 
among the subjects is equal to the eigenvalues of the covariance matrix, 𝐂𝐂, while the 
standard deviation, 𝜎𝜎𝑗𝑗, of each modal magnitude, 𝑗𝑗 = 1,…, 𝑚𝑚, is defined as the 
square root of its variance divided by the number 𝑚𝑚 of non-zero PC scores. 

The mean, modes, and standard deviation define a statistical shape model, from 
which sampled skeleton can be drawn, for example by estimating that the modal 
magnitudes are normally distributed. Due to the translations and rotations that occur 
during alignment, the resulting mean bones and any sampled bones from the 
statistical model are generally in a loose posture, as illustrated in Fig 2.1, in the 
sense that the relative location and orientation of the bones is relatively random and 
is not corresponding to a particular realistic human posture. The mean or sampled 
bones must therefore be assembled or positioned in a particular posture, based on 
positioning landmarks. This is done by using the direct kinematic model discussed in 
the next section. 
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Fig 2.1 Illustration of sampled bones, before (grey) and after (yellow) articulation. 
 
 
2.2 Articulated skeleton and its repositioning 

The articulation of the sampled bones is necessary not only because the bones of 
the sampled skeletons are in a loose position, but also because most of the 
anthropometric dimensions are measured in a reference standing or sitting posture. 
For each value of the PC scores, the corresponding sampled skeletons are, 
therefore, assembled and articulated so that identical standing and sitting reference 
postures can be imposed, as illustrated in Fig 2.2. Here, this is done through a direct 
kinematic model whose joint and bone coordinate systems are mainly based on the 
ISB recommendations (WU et al., 2002, WU et al. 2005). Anthropometric dimensions 
can then be evaluated and compared to the target set of anthropometric dimensions, 
using landmarks on the bones similarly as for an actual human subject. The PC 
scores may then be searched as explained in section 2.4, so that the estimated 
skeletal anthropometric measurements approach or match the target anthropometric 
dimensions. 

In practice, the landmarks used to measure the dimensions, as well as those used to 
define the coordinate systems are identified beforehand and integrated in the PC 
model. The details about the chosen skeletal anthropometric dimensions and 
landmarks for the right lower limb are described in the next section. 
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Fig 2.2 Illustration of the lower limb bone segments articulated in standing (in grey) 
and seated (in blue) positions 

 
 
2.3 Skeletal anthropometric dimensions 

As mentioned, the “skeletal measurements” are those among the external 
anthropometric measurements that can, in principle, be evaluated accurately on the 

skeleton. For example, the stature of a standing subject could be estimated from the 
head vertex as far as a correct standing posture is defined, or the bispinous breadth 
is the width separating the right and left anterior spinous landmarks on the pelvis 
bone. 

For the ANSUR anthropometric database (GORDON et al., 1989), selected 
candidate skeletal measurements for the right lower limb are presented in Table 2.1, 
together with the formulae to evaluate them. The skeletal landmark used in these 
formulae are themselves described in Table 2.2. 

The postures are also reported in Table 2.1 for each measurement. Those are 
related to the general orientation of the subject body for which the lateral, vertical, 
and frontal directions are denoted respectively  𝐝𝐝𝑙𝑙𝑙𝑙𝑡𝑡𝑒𝑒𝑟𝑟𝑙𝑙𝑙𝑙, 𝐝𝐝𝑣𝑣𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑣𝑣𝑙𝑙𝑙𝑙, and 𝐝𝐝𝑓𝑓𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡𝑙𝑙𝑙𝑙. Since 
the foot bone meshes are not used, the lateral malleolar height is subtracted from 
measurements including the foot. For example “Crotch Height minus Lateral 
Malleolar Height” refers to the difference between the crotch and lateral malleolar 
heights. 
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Table 2.1Skeletal anthropometric measurements selected from the ANSUR 
database and their estimation for the right lower limb. The numbers in 
parentheses are the measurement numbers in the ANSUR report 
(GORDON et al., 1989). The formulae, and posture of reference used to 
evaluate the measurements on a sampled subject’s skeleton are also 
reported. The operations abs(.), norm(.), dot(.,.) indicate absolute value, 
two-norm, and inner product. 

Skeletal Measurements  (No)  Posture  Formula  

Bimalleolar Breadth  (13)  Standing  𝑎𝑎𝑏𝑏𝐷𝐷(𝑑𝑑𝑜𝑜𝐷𝐷(𝐝𝐝𝑙𝑙𝑙𝑙𝑡𝑡𝑒𝑒𝑟𝑟𝑙𝑙𝑙𝑙 ,𝑇𝑇𝑀𝑀𝑀𝑀_𝑅𝑅− 
                                𝐹𝐹𝐼𝐼𝑀𝑀𝐿𝐿_𝑅𝑅))  

Bispinous Breadth  (14)  Standing  𝑛𝑛𝑜𝑜𝑟𝑟𝑚𝑚(𝐴𝐴𝑆𝑆𝐼𝐼𝑆𝑆_𝑅𝑅−𝐴𝐴𝑆𝑆𝐼𝐼𝑆𝑆_𝐿𝐿)  
Crotch Height minus Lateral 
Malleolar Height  

(38) & 
(75)  

Standing  𝑎𝑎𝑏𝑏𝐷𝐷(𝑑𝑑𝑜𝑜𝐷𝐷(𝐝𝐝𝑣𝑣𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑣𝑣𝑙𝑙𝑙𝑙,(𝐼𝐼𝑆𝑆𝑇𝑇𝐿𝐿_𝑅𝑅 
                           −𝐹𝐹𝐼𝐼𝑀𝑀𝐿𝐿_𝑅𝑅)))  

Iliocristale Height minus Lateral 
Malleolar Height  

(67)  Standing  𝑎𝑎𝑏𝑏𝐷𝐷(𝑑𝑑𝑜𝑜𝐷𝐷(𝐝𝐝𝑣𝑣𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑣𝑣𝑙𝑙𝑙𝑙, 𝐼𝐼𝐸𝐸_𝑅𝑅 
                           −𝐹𝐹𝐼𝐼𝑀𝑀𝐿𝐿_𝑅𝑅)))  

Knee Height, midpatella minus 
Lateral Malleolar Height  

(72) & 
(75)  

Standing  𝑎𝑎𝑏𝑏𝐷𝐷(𝑑𝑑𝑜𝑜𝐷𝐷(𝐝𝐝𝑣𝑣𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑣𝑣𝑙𝑙𝑙𝑙,(𝑃𝑃𝐸𝐸𝐸𝐸_𝑅𝑅 
                           −𝐹𝐹𝐼𝐼𝑀𝑀𝐿𝐿_𝑅𝑅)))  

Lateral Femoral Epicondyle Height 
minus Lateral Malleolar Height  

(74) & 
(75)  

Standing  𝑎𝑎𝑏𝑏𝐷𝐷(𝑑𝑑𝑜𝑜𝐷𝐷(𝐝𝐝𝑣𝑣𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑣𝑣𝑙𝑙𝑙𝑙,,(𝐹𝐹𝐿𝐿𝐸𝐸_𝑅𝑅 
                           −𝐹𝐹𝐼𝐼𝑀𝑀𝐿𝐿_𝑅𝑅)))  

Trochanterion Height minus 
Lateral Malleolar Height  

(107) & 
(75)  

Standing  𝑎𝑎𝑏𝑏𝐷𝐷(𝑑𝑑𝑜𝑜𝐷𝐷(𝐝𝐝𝑣𝑣𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑣𝑣𝑙𝑙𝑙𝑙,(𝐹𝐹𝑇𝑇𝑅𝑅ION 
                       _𝑅𝑅−𝐹𝐹𝐼𝐼𝑀𝑀𝐿𝐿_𝑅𝑅)))  

Buttock-Knee Length  (26)  Seated  𝑎𝑎𝑏𝑏𝐷𝐷(d𝑜𝑜𝐷𝐷(𝐝𝐝𝑓𝑓𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡𝑙𝑙𝑙𝑙,(𝑃𝑃𝑆𝑆𝑃𝑃_𝑅𝑅 
                           −𝑃𝑃𝐴𝐴𝑆𝑆𝐴𝐴_𝑅𝑅)))  

Buttock-Popliteal Length  (27)  Seated  𝑎𝑎𝑏𝑏𝐷𝐷(𝑑𝑑𝑜𝑜𝐷𝐷(𝐝𝐝𝑓𝑓𝑟𝑟𝑓𝑓𝑛𝑛𝑡𝑡𝑙𝑙𝑙𝑙,(𝑃𝑃𝑆𝑆𝑃𝑃_𝑅𝑅 
                        −𝑇𝑇𝑃𝑃𝑂𝑂𝑃𝑃𝑆𝑆_𝑅𝑅)))  

Knee Height, Sitting minus Lateral 
Malleolar Height  

(73) & 
(75)  

Seated  𝑎𝑎𝑏𝑏𝐷𝐷(𝑑𝑑𝑜𝑜𝐷𝐷(𝐝𝐝𝑣𝑣𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑣𝑣𝑙𝑙𝑙𝑙,(𝑃𝑃𝑆𝑆𝑈𝑈𝑃𝑃_𝑅𝑅 
                           −𝐹𝐹𝐼𝐼𝑀𝑀𝐿𝐿_𝑅𝑅)))  

Popliteal Height minus Lateral 
Malleolar Height  

(86) & 
(75)  

Seated  𝑎𝑎𝑏𝑏𝐷𝐷(𝑑𝑑𝑜𝑜𝐷𝐷(𝐝𝐝𝑣𝑣𝑒𝑒𝑟𝑟𝑡𝑡𝑖𝑖𝑣𝑣𝑙𝑙𝑙𝑙,𝑇𝑇𝑃𝑃𝑂𝑂𝑃𝑃𝑆𝑆_𝑅𝑅 
                           −𝐹𝐹𝐼𝐼𝑀𝑀𝐿𝐿_𝑅𝑅)))  
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Table 2.2  List of skeletal landmarks used to estimate the ANSUR anthropometric 
measurements described in Table 1. 

Landmark  Body part  Description  
TMM_R  (Tibia_R)  Most medial point of the right tibial malleolus  
TPOPS_R  (Tibia_R)  Tibia point at the dorsal juncture of the right calf 

and thigh when sitting erect  
ASIS_R  (Hip_R)  See(van Sint Jan,2007) p.106  
ASIS_L  (Hip_L)  See(van Sint Jan,2007) p.106  
ISTL_R  (Hip_R)  Lowest point of the right ilium in standing posture  
ISTL_L  (Hip_L)  Lowest point of the left ilium in standing posture  
ISTL_M  (Pelvis)  Average of ISTL_R & ISTL_L  
ICR_R  (Hip_R)  Right iliocristale, the highest palpable point of the 

right iliac crest  
FIML_R  (Fibula_R)  Most lateral point on the right fibular malleolus  
FLE_R  (Femur_R)  Lateral-femoral-epicondyle landmark, Lateral point 

of the right femoral epicondyle (knee pivot point).  
FTRION_R  (Femur_R)  Trochanterion, the superior point, of the greater 

trochanter of the right femur of a standing subject.  
PSP_R  (Pelvis, Hip_R)  Most posterior point of right pelvis ilium in sitting 

posture  
PASA_R  (Patella_R)  Most anterior point of right patella in sitting posture  
PSUP_R  (Patella_R)  The superior point of the right patella. (kneecap).  
PCE_R  (Patella_R)  Right midpatella, The anterior point halfway 

between the top and bottom of the right patella 
(the kneecap).  

PME_R  (Patella_R)  Center of medial edge of right patella  
PLE_R  (Patella_R)  Center of lateral edge of right patella  
PAX_R  (Patella_R)  Apex of right patella  
 

2.4 Matching PC scores to target anthropometric dimensions 

The main step of the fusion presented here consists in matching those available 
target skeletal anthropometric measurements,𝐚𝐚(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙), to their estimation obtained from 
the PCA models.  

The objective is thus to choose the PC scores or modal magnitudes, 𝐜𝐜 =
[𝑐𝑐1   𝑐𝑐2  …   𝑐𝑐𝑚𝑚]𝐿𝐿, so that, the corresponding skeletal model when repositioned in 
adequate posture, has estimated skeletal dimensions,  𝐚𝐚𝐚(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙) = [ã1   ã2  …   ã𝑠𝑠]𝐿𝐿that 
match closely their target values. 

In loose posture, and for a specific value set of PC scores 𝐜𝐜, the coordinates of the 
bones are the coefficients of the vector 𝐬𝐬�(𝑙𝑙𝑓𝑓𝑓𝑓𝑠𝑠𝑒𝑒), or simply 𝐬𝐬𝐚=𝐭𝐭𝐭+𝐌𝐌𝐜𝐜, where 𝐭𝐭𝐭 is the 
vector of mean coordinates and where each column of 𝐌𝐌 contains the coefficients of 
a PC of shape variation. The direct kinematic operations (translations and rotations of 
the bones or groups of bones) allow to reposition the skeleton in standing or sitting 
postures, with coordinates  𝐬𝐬�(𝑠𝑠𝑡𝑡𝑙𝑙𝑛𝑛𝑑𝑑𝑖𝑖𝑛𝑛𝑠𝑠) and 𝐬𝐬�(𝑠𝑠𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠). The skeletal measurements  
 𝐚𝐚�(𝑠𝑠𝑡𝑡𝑙𝑙𝑛𝑛𝑑𝑑𝑖𝑖𝑛𝑛𝑠𝑠)

(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙)  and  𝐚𝐚�(𝑠𝑠𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠)
(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙)  can then be evaluated through the location of landmarks on 
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the skeleton placed respectively in standing and sitting postures (see section 2.2 and 
Table 3.1). The estimated full set of skeletal measurements, for particular values of 𝐜𝐜, 

is therefore  𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙) = �𝐚𝐚�(𝑠𝑠𝑡𝑡𝑙𝑙𝑛𝑛𝑑𝑑𝑖𝑖𝑛𝑛𝑠𝑠)
(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙)

  

𝐿𝐿 
   𝐚𝐚�(𝑠𝑠𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑠𝑠)

(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙) 𝐿𝐿
 �

𝐿𝐿 
. 

An optimisation approach is proposed that consists in iterating on the PC scores, so 
that the corresponding Euclidian distance of the estimated and target is minimised, 
so the optimization problem reads as: 

Find 𝐜𝐜 that minimizes (𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙) − 𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙)𝐿𝐿
)(𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙) −  𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙)) or equivalently, find 𝐜𝐜 that 

minimises 𝑑𝑑(𝒄𝒄) =  �(𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙) − 𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙)𝐿𝐿)(𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙) −  𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙))/𝐷𝐷 . 

Several points are worth noting. First, the solution of this optimisation problem may 
not be unique if there are more PC scores to determine than the number of skeletal 
anthropometric measurements that one desires to match, i.e. if 𝑚𝑚 > 𝐷𝐷. In order to 
remediate that, only the first 𝑚𝑚𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖 ≤ 𝐷𝐷 PC scores with highest standard deviation, 𝜎𝜎𝑗𝑗, 
for =1, …, 𝑚𝑚𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖, are allowed to change, while the other values are forced to be zero, 
𝐸𝐸𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖+1 = ⋯ =  𝐸𝐸𝑚𝑚 =  0 . This is equivalent to working with the modes that are 
responsible for the most variance in the available shapes of bones, i.e. segmented 
surface meshes used to generate the PCA. Second, with this approach, information 
about the statistical distribution of the PC scores found in this available shape data is 
not really used, in the sense that a value of a PC score 𝑐𝑐𝑗𝑗 that is large relative to its 
standard deviation 𝜎𝜎𝑗𝑗 would be as likely as a smaller one. One knows however that 
larger relative values were less likely in the available data. To preserve plausibility of 
the PC scores, their relative values, 𝑐𝑐𝑗𝑗/𝜎𝜎𝑗𝑗 are limited between −3 and 3. 

With these choices, a constraint Sequential Quadratic Programming (SQP) algorithm 
(NOCEDAL, 2006), as implemented in Matlab, is used to solve the constrained 
nonlinear minimisation problem:  

Mimimise  

𝑑𝑑(𝒄𝒄) =  �(𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙) − 𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙)𝐿𝐿)(𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙) −  𝐚𝐚�(𝑠𝑠𝑠𝑠𝑒𝑒𝑙𝑙))/𝐷𝐷              (2.1) 

for [𝑐𝑐1   𝑐𝑐2  …  𝑐𝑐𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖]
𝐿𝐿 In  ℝ𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖,                  (2.2) 

and 𝑐𝑐𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖+1 = ⋯ =  𝑐𝑐𝑚𝑚 =  0,                    (2.3) 

subject to – 3 ≤ 𝑐𝑐𝑗𝑗 ≤ 3, for 𝑗𝑗 = 1, …, 𝑚𝑚𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖 .                (2.3) 
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3 Application to the lower limb 
 
The proposed fusion approach is now applied to the lower limb composed of three 
segments: pelvis, thigh, and lower leg (tibia, fibula, patella, and talus). 
 
 
3.1 Data 

The PC model of the six right lower limb bones was generated from the surface 
meshes of 22 subjects whose lower limb and thorax bones were segmented using 
Anatoreg (MOREAU et al., 2016). Altogether, the six meshes contain 88079 nodes 
(52109 for the Pelvis, and other 16899, 920, 11888, 3937 and 2326 respectively for 
the right femur, Patella, Tibia, Fibula and Talus). This resulted in the mean of the 
aligned three segments and in the 𝑚𝑚=21 modes of variance further described in 
section 3.2. 

The meshes of a 23rd “LTE678” subject, segmented by the same approach and in 
correspondence with - but not included within - the set of 22 other subjects were also 
available. The bones of this subject “left-out” of the PCA model were used in the 
assessment of the behaviour of the fusion optimization approach, as described in 
section 3.3. This represents actual situations in which one would like to fit 
anthropometric measurements that cannot necessarily be exactly matched by 
samples from the PCA model. Nine skeletal anthropometric dimensions from the 
ANSUR database are considered. They are those described in Table 2.1, except the 
two popliteal measurements. 
 
 
3.2 PCA of the lower limb bones 

The modes, and mean, of the shape models are constructed from the 22 sets of six 
surface meshes. In the alignment, as well as in the articulation, the four bones below 
the knee are kept together in a single segment. Each of the pelvis and femur bones 
describes a single articulated segments. The values of the corresponding standard 
deviation, 𝜎𝜎𝑗𝑗, 𝑗𝑗 = 1,…, = 21 are presented in Fig 3.1. This corresponds to 80% of the 
aligned meshes variance being covered by 7 modes, 90% by 11 modes, and 95% by 
14 modes. 
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Fig 3.1  Standard deviation of the PC modes of the six bones/three segments of the 
Lower Limb model. 

 
 
3.3 Assessment 

The proposed fusion approach is now assessed. The nine LTE678 skeletal 
anthropometric dimensions are first evaluated. Their “exact” values are presented in 
Table 3.1 and compared to the corresponding values evaluated on the PCA mean 
subject. One can see that the lower limb (iliocristale) height of the LTE678 differs 
from that of the mean subject by about 7 cm. 

This difference cannot be exactly reconciled by seeking an approximation of the 
LTE678 in the PCA model, since its shapes were not one of the 22 subjects used in 
the PCA model. The misfit of the LTE678 compared to the PCA models can be 
measured by first projecting the actual LTE678 meshes into the PCA space and by 
then evaluating the distance between the original and projected meshes. 

Table 3.1 Anthopometric dimensions in [mm] of the LTE678 model, of its 
approximations though fusion, using 5 and 7 PCs ("F(5)" and "F(7)"), and 
those of the mean PCA model (“Mean”) 

Anthro. dimension  LTE678  F(5)  F(7)  Mean  
Bimalleolar Breadth  57.54  60.8  58.8  60.8  
Bispinous Breadth  241.58  243.1  241.0  245.7  
Crotch Ht – MH.  692.07  691.2  687.8  748.3  
Iliocr. Ht – MH.  887.12  895.0  889.2  954.8  
Knee Ht - MH  380.26  372.7  376.4  402.5  
F. Epic. Ht - MH  377.53  382.1  381.2  410.5  
Troch. Ht – MH  754.65  758.0  760.3  821.7  
Buttock-Knee Lth  548.88  541.0  546.3  579.4  
Knee Ht – MH  403.56  397.0  399.1  426.4  
 
The projection can be seen as the best match of the LTE678 subject in the PCA 
model. It can be evaluated by the algorithmic steps described in section 2.4. Most 
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noticeable is that one takes into consideration alignment and averaging that were 
used to generate the PCA models. For each mesh or group of meshes, the first step 
consists in the alignment of the shape with its current approximation within the PCA 
model, starting with the mean meshes. The mean PCA shape is then subtracted 
before projection in the space spanned by the modes (the LTE678 pelvis mesh is first 
aligned with the PCA mean pelvis mesh, etc.). The approach appears to converge 
quickly and to provide good approximation with a single iteration. The mean nodal 
distances between the aligned meshes of the projected meshes and those of LTE678 
equals 3.8 [mm], and the minimal and maximal nodal distances are 0.1 and 13.6 
[mm]. 

 

Fig 3.2 Evolution, for a varying number of PCs, of the distance between the LTE678 
anthropometric dimensions and their approximation through fusion. 

For the lower limb problem considered here, the optimization phase of the fusion 
approach takes the order of a couple minutes on a laptop. The distances between 
the exact LTE678 anthropometric dimensions and their approximation through fusion, 
using from 𝑚𝑚𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖 = 1 to 9 PC scores, are presented in Figure 3.2. One can see that, 
by using a single PC, all differences are about 1 [𝑐𝑐𝑚𝑚] and that these differences 
decrease by about one order of magnitude, when more PCs are considered. 
However, since there is necessarily a misfit between the LTE678 subject and the 
PCA model, increasing the quality of the match of the anthropometric dimensions 
may be at the cost of creating shapes that are unlikely and for which there exists 
excessive nodal distance between the original LTE678 meshes and their 
approximation. A moderate number, 𝑚𝑚𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖, of PCs compared to the number, 𝑚𝑚, of 
target skeletal anthropometric dimensions is therefore recommended. 

The comparison of the original and approximated versions of the three lower limb 
segments are presented in Fig 3.5 for  𝑚𝑚𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖 = 7 non-zero PC scores. The 
approximated shapes appear to be of reasonable quality for the purpose of crash 
simulation. One may nevertheless notice that some distances exist, for example, at 
the level of the patella. The mean and maximal differences between nodal distance 
of the approximations of the LTE678 meshes through fusion and either their through 
projection or the exact meshes are presented in Fig 3.3. Based on these metrics 
only, it appears that using the five first PCs provide the best approximations. Further 
study would be worth as the quality of the approximations might be improved by 
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using a larger dataset to generate the PCA model, more or better selected skeletal 
anthropometric dimensions. The jump in distances at 𝑚𝑚𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖 = 6 might be due to the 
fact that an unlikely shape is being considered. This might be controlled by a better 
criteria in the selection of the PC scores. As a reminder, any of their values in the 
relative range 𝜎𝜎𝑗𝑗 = [−3,3] is equally allowed, while larger absolute values should be 
less likely based on the shape data statistics. This assumption seems to be 
confirmed by the values of the PC score values presented in for 𝑚𝑚𝑓𝑓𝑝𝑝𝑡𝑡𝑖𝑖 = 1 to 9. 
Looking at such plots (see Fig 3.4) also give an indication of the optimum value of 
𝑚𝑚𝑜𝑜𝑝𝑝𝐷𝐷𝐷𝐷 that may be recommended. It appears nevertheless, as seen in Fig 3.5, that 
even results with 𝜎𝜎𝑗𝑗 = 3 may provide reasonable models. 

 

Fig 3.3 Mean and maximum nodal distances between the fusion and the exact and 
projected LTE678 meshes. 

 

Additional bias may need to be considered, when dealing with anthropometric 
measurements coming from the ANSUR data, for example the fact that skeletal 
measurements are not exactly measured on the bones, and the difference between 
the actual human postures and their simulated versions. 
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Fig 3.4 Relative PC scores for varying number of non-zero scores allowed. 

 

 

Fig 3.5 Comparison of the LTE678 Pelvis, Femur, and Leg meshes and their 
approximation through fusion, using 7 non-zero PC scores (in grey and blue). 

 
 
4 Discussion and conclusions 
 
The proposed fusion approach to combine external anthropometric dimensions of 
human body models with their internal skeletal dimensions has been successfully 
applied on the lower limb. The number of PC scores should be appropriately chosen, 
to make sure that their values stay likely. Other aspects may be worth studying, such 
as the effect of the quality of skeletal anthropometric measurements, and of the 
kinematic model used to reposition the skeleton standing and seated postures. 
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