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Time-of-flight measurement is a critical step to per-2 form ultrasonic non-destructive testing of standing 3 trees, with direct influence on the precision of de-4 fect detection. Aiming to increase the accuracy on 5 the estimation, the characteristics of the ultrasonic 6 measurement chain should be adapted to the con-7 straints of wood testing in living condition. This 8 study focused on the excitation signal parameters, 9 such as shape, temporal duration, and frequency re-10 sponse, and then the selection of a suitable time-11 of-flight determination technique. A standing plane 12 tree was tested, placing ultrasonic receivers at four 13 different positions, with five different excitation sig-14 nals and three time-of-flight detection methods. The 15 proposed ultrasonic chain of measurement resulted in 16 high signal-to-noise ratios in received signals for all 17 configurations. A time-frequency analysis was used 18 to determine the power distribution in the frequency 19 domain, showing that only chirp signal could concen-20 trate the power around the resonant frequency of the 21 sensor. Threshold and Akaike information criterion 22 method performed similar for impulsive signals with 23 decreasing uncertainty as sensor position approached 24 to the radial direction. Those two methods failed to 25 accurate determine time-of-flight for Gaussian pulse 26 and chirp signals. Cross-correlation was only suitable 27 for the chirp signal, presenting the lower uncertainty 28 values among all configurations.

29

1 Introduction

30

Modern techniques can be used to minimize the risk 31 associated with tree failure. Significant advances in 32 this field include decay detection equipments, formu-33 las and guidelines for assessing hazardous trees [START_REF] Johnstone | The 472 measurement of wood decay in landscape trees[END_REF][START_REF] Leong | A purpose-475 ful classification of tree decay detection tools[END_REF].

Standing tree quality can be evaluated using different techniques [START_REF] Ross | Nondestructive evaluation of wood: sec-478 ond edition[END_REF]. First, a visual inspection is privileged, but can be insufficient to detect inner decay. The use of specialized tools include micro-drill resistance measurements [START_REF] Rinn | Basics of typical resistance-drilling profiles[END_REF], a widely used technique consisting on drilling through the tree trunk following a straight path while measuring the penetration resistance. Basically, defects such as decay and cracks present a reduced resistance to the drill, a pattern that can be detected. However, this technique is limited by the selected orientation, it is difficult to assure going through the defect.

Other group of techniques uses stress waves timing to evaluate wood quality and trees inner state. The basic consideration is that decay inside wood will have an influence in the propagation of elastic waves: at low velocity regions, such as decay, velocity decreases and signal attenuation increases [START_REF] Beall | Overview of the use of ultrasonic technologies in research on wood properties[END_REF]. For standing trees testing, commercial approaches include the IML Impulse Hammer, the Fakkop 2D Microsecond Timer and the Sylvatest [START_REF] Wang | Assessment of decay in standing timber using stress wave timing nondestructive evaluation tools -a guide for use and interpretation[END_REF]. Wood mechanical properties can be estimated using the measured velocities, for example, using the Christoffel equation [START_REF] Gonçalves | Elastic constants of wood determined by ultrasound using three geometries of specimens[END_REF][START_REF] Tallavo | Experimental verification of an orthotropic finite element model for numerical simulations of ultrasonic testing of wood poles[END_REF][START_REF] Bachtiar | Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques[END_REF]. Accuracy on the time-of-flight estimation is crucial to perform a correct wood evaluation. Additionally, resonance-based methods present an alternative for velocity detection based on the analysis of the stress waves natural frequencies, traveling through the wood [START_REF] Wang | Diameter effect on stress-wave evaluation of modulus of elasticity of small diameter logs[END_REF][START_REF] Unterwieser | Influence of moisture content of wood on sound velocity and dynamic MOE of natural frequency-and ultrasonic runtime measurement[END_REF].

Considering 2D imaging, ultrasonic tomography is one of the techniques used for non-destructive control of standing trees [START_REF] Socco | Feasibility of ultrasonic tomography for nondestructive testing of decay on living trees[END_REF][START_REF] Bucur | Ultrasonic techniques for nondestructive testing of standing trees[END_REF][START_REF] Brancheriau | Ultrasonic tomography of green wood using a nonparametric imaging algorithm with reflected waves[END_REF][START_REF] Lin | Application of an ultrasonic tomographic technique for detecting defects in standing trees[END_REF][START_REF] Arciniegas | Lasaygues: Travel-Time Ultrasonic Computed Tomography Applied to Quantitative 2-D Imaging of Standing Trees: A Comparative Numerical Modeling Study[END_REF][START_REF] Trinca | Monitoring of wood degradation caused by fungi using ultrasonic tomography[END_REF][START_REF] Yamashita | Detecting defects in standing trees by an acoustic wave tomography with pseudorandom binary sequence code: simulation of defects using artificial cavity[END_REF]. This method consists on cross-sectional imaging from the tree trunk using either reflection or transmission wave propagation data. Usually, the parameter used to build the image is the time-of-flight (TOF) taken by the ultrasonic wave from the transmitter to the multiple receivers. Thus, TOF determination is a critical step to perform image reconstruction [START_REF] Arciniegas | Lasaygues: Literature review of acoustic and ultrasonic tomography in standing trees[END_REF]; image quality is highly dependent on the precision of the TOF measurement.

Considering conventional ultrasonic testing, the object is excited with a pulse, and TOF measurement rely on the estimation of the signal instantaneous power by determining the first arrival above a noise threshold, defined by the user [START_REF] Bucur | Acoustics of Wood[END_REF][START_REF] Loosvelt | A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness[END_REF]. Also, a pulse train can be used to boost the transmitted energy for a specific frequency [START_REF] Brancheriau | Application of ultrasonic tomography to characterize the mechanical state of standing trees (Picea abies)[END_REF]. Automatic methods for detecting first arrivals have been proposed, including pickers based on the Akaike information criteria (AIC) [START_REF] Sleeman | Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings[END_REF][START_REF] Zhang | Automatic P-Wave Arrival Detection and Picking with Multiscale Wavelet Analysis for Single-Component Recordings[END_REF] and the Hinkley criteria [START_REF] Kurz | Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete[END_REF]. Alternatives include the transmission of encoded waveforms, such as the chirp-coded excitation method, where a recognizable signature is sent through the media and the TOF is estimated using a cross-correlation function [START_REF] Pedersen | Clinical evaluation of chirp-coded excitation in medical ultrasound[END_REF][START_REF] Rouyer | The benefits of compression methods in acoustic coherence tomography[END_REF][START_REF] Lasaygues | Use of a Chirp-coded Excitation Method in Order to Improve Geometrical and Acoustical Measurements in Wood Specimen[END_REF]. In consideration of the wide range of signals and TOF detection techniques, the choice of parameters for standing tree ultrasonic testing demands an evaluation of the accuracy of the aforementioned methods.

This study aimed to compare several signal shapes and TOF detection methods, for setting up an ultrasonic chain of measurement in order to perform non-destructive evaluation of standing trees. Impulsive and encoded signals were tested, combined with three different methods for TOF estimation: Threshold, AIC method and cross-correlation. First, experimental setting is presented, including electrical specification for the ultrasonic chain, the excitation signal parameters and a description of the TOF detection methods. Then, energy and signal-to-noise ratios are computed for all configurations. A timefrequency analysis using the Gabor transform is performed, aiming to inspect energy distribution. Lastly, wave transit times are reported, computing dispersion among experiments repetition, to establish which setting leads to highest accuracy.

Materials and methods

A standing plane tree (Platanus × acerifolia (Aiton) Willd) was tested (Figure 1). Probes distance above the ground was 120 cm. The trunk diameter was 23 cm, with a regular cross-section. Tests were conducted in dormancy period (winter). Two ultrasonic pair of sensors were used: Physical Acoustics Corporation R3α and R6α. Sensor R3α has a main resonant frequency at 36 kHz and two secondary resonant frequencies at 22 kHz and 95 kHz; operating frequency range indicated by the manufacturer is from 25 to 70 kHz. Sensor R6α has a main resonant frequency at 60 kHz and two secondary resonant frequencies at 37 1. Peak voltage for all signals was set to 2V (maximum for signal generator). Signals repetition period was fixed to T = 8ms.

For every sensor position and signal shape, ultrasonic measurement was repeated 10 times, removing and replacing the transducers. For the signal amplitude measurements, the root mean square voltage (RMS) and the signal-to-noise ratio (SNR) were computed. RMS voltage was obtained as:

V RM S (y) = 1 N N n=1 |y n | 2 , (2) 
with N as the signal length. SNR was computed as:

SN R(y) = 20 log V RM S (y) V RM S (η) , ( 3 
)
where η is the noise, estimated by selecting the first signal portion before the arrival time. 

Time-of-flight detection methods

Threshold

Threshold level for the received signal had to be defined above the noise level [START_REF] Arciniegas | Lasaygues: Travel-Time Ultrasonic Computed Tomography Applied to Quantitative 2-D Imaging of Standing Trees: A Comparative Numerical Modeling Study[END_REF]. The threshold level is defined to be m times the standard deviation of the noise, with m as a user-defined parameter. For the experiments, this value was constant and fixed by trial and error to 8. TOF is then selected to be the first time point where signal is above the threshold level.

AIC method

This method assumes that signal can be divided into two local stationary segments, before and after the onset time, each one modeled as an autoregressive process. The time instant where the Akaike information criterion (AIC) is minimized, corresponds to the optimal separation between noise and signal, this is, the onset time [START_REF] Brancheriau | Application of ultrasonic tomography to characterize the mechanical state of standing trees (Picea abies)[END_REF]. For a signal divided at point k into two segments y 1 (before k) and y 2 (after k), the AIC criterion is computed as:

AIC[k] = k log(σ 2 (y 1 )) + (N -k) log(σ 2 (y 2 )). ( 4 
)
TOF value is obtained by founding the time point where the AIC criterion reach the global minimum.

Cross-correlation

When a recognizable signature is sent through the media, such as chirp signal, input and output signals delay time can be obtained using cross-correlation [START_REF] Pedersen | Clinical evaluation of chirp-coded excitation in medical ultrasound[END_REF][START_REF] Rouyer | The benefits of compression methods in acoustic coherence tomography[END_REF][START_REF] Lasaygues | Use of a Chirp-coded Excitation Method in Order to Improve Geometrical and Acoustical Measurements in Wood Specimen[END_REF]. The maximum value for the crosscorrelation function between two signals indicates their delay time. Normalized cross-correlation function is:

r sy [l] = 1 E s E y N k=0 s[k]y[k -l], (5) 
where E s and E y correspond to the signals energy and N is the signal length.

3 Results For this study, resolution in time was set to 0.1 ms and resolution in frequency was set to 5 kHz. The receiver angle selected for the analysis was 135 • , considering it presents the most energetic signals, with higher SNR ratios. Chirp is the only signal able to concentrate the energy around the central frequency for both sensors on the output signal. Gaussian pulse presented power concentration at frequencies near to the excitation central frequencies only for sensor R3α; mean power frequencies did not correspond for sensor R6α where energy dissipated at different frequencies from 60 kHz (mainly 37 kHz and 97 kHz). The other signals presented energy concentration mainly on the other sensor resonant peaks: for R3α at the third resonant peak (95 kHz), and for R6α in first and third resonant peaks (37 kHz and 97 kHz).

Signal amplitude measurement

TOF determination

Time-of-flight was obtained for all the experiment configurations, using the Threshold and AIC method. Cross-correlation was used exclusively for the chirp signal, given that is the only excitation signal with a similar shape on the output for both sensors, and therefore, chirp signal results are studied separately.

For the sensor R3α, Figure 8 shows the mean and to 180 • . Coefficients of variation obtained for half-327 Gaussian, impulse and pulse train signals were simi-328 lar, always inferior to 3% for both AIC and threshold 329 approaches. Gaussian signal presented the larger vari-330 ability again, reaching a 7% when sensor was located 331 at 180 • .

332

TOF values for chirp signal were obtained using the 333 three detection methods, including cross-correlation. 334 Figure 12 presents the mean and standard deviation 335 values for both sensors. Mean TOF values for R3α 336 ranged between 85 µs to 152 µs using cross-correlation 337 and 120 µs to 160 µs for the other two methods; 338 for R6α ranged between 94 µs to 150 µs with cross-339 correlation and 90 µs to 150 µs with the other two 340 methods. Standard deviation for R3α ranged be-341 tween 0.48 µs to 0.79 µs using cross-correlation and 342 5.7 µs to 33 µs for AIC and threshold methods; for 343 R6α ranged between 0.31 µs to 3.69 µs using cross-344 correlation and 3.34 µs to 19 µs for AIC and threshold 345 methods. Chirp signal presents small amplitude vari-346 ations at the beginning, an ill-favored condition when 347 using AIC and Threshold methods, where a first en-348 ergetic arrival is expected; therefore the method pre-349 senting less variation is the cross-correlation method. 350 Figure 13 presents the relative standard deviation val-351 ues, where the large difference for cross-correlation 352 compared to the other two methods is clearly ob-353 served: for R3α sensor the coefficient of variation us-354 ing cross-correlation was smaller than 1% while for 355 the other two methods ranked between 3.8% to 27%; 356 similarly for R6α, using cross-correlation resulted in a 357 coefficient of variation ranking between 0.2% to 3.9% 358 compared to a range going from 3% to 12.7% for AIC 359 and threshold methods.

Signal energy received in angle 45 • was significantly lower than those obtained for the other angles, even if this position implies the shorter distance between transmitter and receiver tested. The transmitter placed at 135 • resulted generally in the larger signal energy received. Ultrasonic beams for these sensors are affected by the transducer directivity pattern, resulting in a higher radiation intensity in the frontal direction of the sensor, that is orientated in radial direction in the experiments. Other effect is related to the propagation of waves in wood: wood anisotropy affects wave propagation, including a curvature of ray paths from transmitter to receivers, with respect to straight line paths for an isotropic case. [START_REF] Schubert | Acoustic wood tomography on trees and the challenge of wood heterogeneity[END_REF][START_REF] Gao | Application of an 597 ultrasonic wave propagation field in the quantitative 598 identification of cavity defect of log disc[END_REF].

Signals with an initial impulsive response (impulse, pulse train and half-Gaussian pulse), resulted in larger energy received, but this energy was spread over several frequency bands, as seen on the time-frequency analysis, where the only signal able to concentrate the energy around the sensor central frequency was the chirp, the same one that presented a lower received energy. So, the compromise implies higher received energy but widely spread frequency spectrum or lower received energy but well concentrated frequency spectrum.

Threshold and Akaike methods for TOF detection presented highly similar results, as observed in a previous study [START_REF] Arciniegas | Tomog-601 raphy in standing trees: revisiting the determination 602 of acoustic wave velocity[END_REF], where it was shown that those two methods performed in agreement when the received signals presented SNR ratios above 20 dB. However, Akaike method presents as advantage that it does not need user-defined parameters, like the α value in threshold case, which variation will result in a different TOF estimation. Inaccuracy increases using AIC method when the SNR is very low, i.e. below 10 dB.

For the chirp signal, the method that presented the lower variations was the cross-correlation. Among the other signals, the combination AIC-Impulse presented best results. Figure 14 presents the comparison between the relative standard deviation values, for the Impulse-AIC setting and the chirp-crosscorrelation.For most cases, the chirp-cross-correlation setting resulted in lower variation for TOF estimation.

The only case where chirp-cross-correlation combination was inferior than Impulse-AIC corresponded to the sensor R6α located at 45 • . In that case, signal-tonoise ratio was the lower for all configurations, near to 10 dB, while impulse presented a SNR with a mean value of 25 dB.

When comparing the difference between the TOF mean values obtained with the R3α and R6α sensors, the AIC-Impulse combination resulted in a lower difference, as presented in Table 5. A dispersion effect became noticeable when using the chirp signal, that could affect the TOF measurements. When the medium is dispersive, wave propagation velocity de- For standing tree non-destructive evaluation using ul-428 trasonic waves, setting up the chain of measurement 429 for in situ testing is a crucial step. Accuracy on the 430 time-of-flight determination leads to a correct defect 431 identification. However, several factors influence this 432 measurement: the excitation signal characteristics in 433 energy and frequency, the transducer frequency re-434 sponse, the wood inner variability, the coupling be-435 tween the sensor and the tree including the bark in-436 fluence, the effect of the SNR on the TOF estima-437 tion, among others. In this article, in situ testing 438 was performed comparing five different excitation sig-439 nals, two different transducers with resonant frequen-440 cies at 36 kHz and 60 kHz, 4 different receiver posi-441 tions around the tree and three TOF detection meth-442 ods. Among all configurations, the one presenting less 443 variation on the TOF measurements was the combi-444 nation of an encoded excitation signal, such as chirp 445 signal, with cross-correlation to measure the time de-446 lay. Chirp signals deserve attention considering that 447 this signal was adjusted to the transducer response 448 

Figure 1 :

 1 Figure 1: Platanus standing tree tested.

Figure 2 :

 2 Figure 2: Ultrasonic chain for measurements.

Figure 3 :

 3 Figure 3: Signal shapes tested: (a) impulse, (b) pulse train, (c) Gaussian pulse, (d) half-Gaussian pulse and (e) chirp signal.

Figure 4 Figure 4 :

 44 Figure 4 presents the root mean square voltage (RMS) mean and standard deviation values, for the received signals, for all the experiment configurations. Correspondingly, Table 2 summarizes the RMS values for the five signals, sorting by the RMS mean value in descending order. Except for pulse train signal, almost all configurations that used sensor R6α resulted in larger RMS values than the R3α counterpart. Receiver angles with larger RMS values were those located at 90 • and 135 • . For the R3α sensor, the signals

254 3 . 2 Figure 5 :

 325 Figure 5: Mean values for SNR for all configurations. Error bars present ±σ.
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 6 Figure 6 and Figure 7 present first the input and output signals on time domain, then their frequency spectrum and finally the input and output spectrograms, for sensors R3α and R6α respectively.

Figure 6 :

 6 Figure 6: Time-frequency analysis for sensor R3α: input and output signals in time domain (left), frequency spectrum (center) and spectogram (right).

Figure 7 :

 7 Figure 7: Time-frequency analysis for sensor R6α: input and output signals in time domain (left), their frequency spectrum (center) and spectogram (right).

Figure 9 :

 9 Figure 9: Relative standard deviation for TOF values using the Threshold method (up) and AIC method (down) for R3α.

Figure 14 :

 14 Figure 14: AIC-Impulse and Chirp-Cross-correlation comparison for TOF relative standard deviation values.

Figure 15 :

 15 Figure 15: Chirp dispersion effect for the case of sensor R6α and the receiver located at 135 • : instantaneous frequency from Gabor transform for input and output signals.

  • , 135 • and 180 • . The electro-acoustic 152 pulse response h * t (t) is the auto-convolution of the 153 transducers impulse response h t (t), including the re-154 sponse of the amplifier, and considering the transmit-155 ter and receiver transducers responses with coupling 156 to be identical.

	h t (t)		h t (t)
	Transmitter	h m (t)	Receiver
	133 134 Ultrasonic chain of measurement is presented in Fig-135 2.1 Ultrasonic measurements ure 2. Electrical signal generator and oscilloscope cor-136 responded to a Picoscope 2000 (emission sample rate 1 137 MHz, reception sample rate 4 MHz), with an interface 138 to a personal computer for data acquisition. Input 139 amplifier reference was FLC Electronics Single Chan-140 nel High Voltage Linear Amplifier A800 (bandwidth 141 DC to 250 kHz, 40 dB amplification). Output ampli-142 fier was Physical Acoustics Corporation AE2A/AE5A 143 wide bandwidth AE amplifier (bandwidth up to 2 144 MHz, internal 40 dB preamplifier). 145 This chain of measurement acts as a continuous lin-146 ear stationary causal filter, then the input signal s(t) 147 and the output signal y(t) are related by a convolution 148 function: 149 y(t) = ((h * t * s) * h m )(t), (1) where h m is the response of the tree, s(t) is the 150 electrical generated signal, and h * t (t) is the equivalent 151 electro-acoustic pulse response. Tree Oscilloscope 40dB 45 90 Signal generator 40dB 0 135 180 o o o o o y(t) s(t)

Table 1 :

 1 

	Parameters R3α	Parameters R6α
	Impulse
	T s: 5 µs	T s: 5 µs
	F co: [0 90.159] kHz	F co: [0 90.159] kHz
	Pulse train
	F c: 36 kHz	F c: 60 kHz
	T s: 83 µs (3 Periods)	T s: 50 µs (3 Periods)
	F co: [29.39 40.20] kHz F co: [49.75 68.01] kHz
	Gaussian pulse
	F c: 36 kHz	F c: 60 kHz
	T s: 139 µs (5 periods) T s: 83 µs (5 periods)
	F co: [26.46 45.54] kHz F co: [44.09 75.90] kHz
	Half Gaussian pulse
	F c: 36 kHz	F c: 60 kHz
	T s: 69 µs (2.5 periods) T s: 42 µs (2.5 periods)
	F co: [24.20 55.28] kHz F co: [24.50 81.38]
	Chirp signal
	F c: 36 kHz	F c: 60 kHz
	∆F : 28kHz	∆F : 48kHz

Signal parameters. T s presents the duration of signal portion. F c indicates the central frequency of every signal. F co indicates the cut-off frequency range (-3 dB points around central frequency). For chirp signal, ∆F presents the bandwidth, around the central frequency. T s: 45 µs (10 periods) T s: 27 µs (10 periods) F co: [32.57 40.04] kHz F co: [54.55 67.22] kHz

Table 3

 3 presents the output/input ratio for the 231 RMS voltage applied and received at the transduc-232 ers on the tree. Input RMS voltage corresponds to 233 the excitation signal s(t) after the 40 dB amplifier 234 applied to the US transmitter; output RMS voltage 235 corresponds to the signal y(t) before the 40 dB ampli-236 fier and obtained in the US receiver. It is important 237 to consider that the transducer impulse response will 238 modify the signal applied to the tree. Using the chirp 239 signal resulted in a lower RMS ratio for both sensors, 240

Table 2 :

 2 Mean and standard deviation of RMS values for received signals, sorted from higher to lower.

	Sensor Signal	µ(RM S) [mV]	σ(RM S) [mV]
		Train	90.6	74.4
		Half Gaussian	56.7	37
	R3α	Impulse	54.8	37.8
		Chirp	30.5	17.1
		Gaussian pulse 29.4	11.1
		Half Gaussian	161.3	106.8
		Gaussian pulse 116.6	97.4
	R6α	Impulse	86.3	73.1
		Train	47.9	41.6
		Chirp	40.1	22.4

Table 3 :

 3 Ratio between output (y(t) before 40dB amplification) and input (s(t) after 40dB amplification) RMS values for all signals, sorted from higher to lower.

			s(t)	y(t)	Out/In
	Sensor Signal	V RM S	V RM S	Ratio
			[mV]	[mV]	[dB]
		Impulse	50.0	54.8	-79.2
		Half-Gaussian	54.9	56.7	-79.7
	R3α	Train	139.6	90.6	-83.7
		Gaussian pulse 78.5	29.4	-88.6
		Chirp	141.9	30.5	-93.6
		Half-Gaussian	45	161.3	-68.9
		Gaussian pulse 60.8	116.6	-74.3
	R6α	Impulse	50.0	86.3	-75.2
		Train	109.5	47.9	-87.1
		Chirp	109.4	40.1	-88.6

Table 4 :

 4 Mean and standard deviation of SNR values for received signals, sorted from higher to lower.

		Sensor Signal	µ(SN R) [dB]	σ(SN R) [dB]
			Train	33.11	6.48
			Impulse	32.67	5.31
		R3α	Gaussian pulse 29.77	5.08
			Half-Gaussian	29	7.09
			Chirp	27.58	7.21
			Train	41.71	10.85
			Impulse	40.52	12.35
		R6α	Gaussian pulse 35.02	11.75
			Half-Gaussian	30.51	6.9
			Chirp	21.81	6.53
		and signals such as the half Gaussian pulse and the
	246		
	247	ceiver angles ranged between 20 and 40 dB, indicating
	248	low presence of noise. Only exception correspond to
	249	chirp signal when using the R6α located at 45 • , where
	250	mean SNR was around 10 dB. As obtained for the
	251	RMS measurements, SNR values for the sensor R6α
		were higher than those obtained for R3α. Impulsive-

241

impulse resulted in the larger ratios. 242

Figure 5 presents the signal-to-noise ratio (SNR) 243 mean and standard deviation values.

Table 4 sum-244 marizes the SNR values, sorting by SNR mean value 245 in descending order. Average SNR values over all re-252 like signals, as the pulse train and impulse, presented 253 the highest SNR ratios.

Table 5 :

 5 Absolute mean differences between TOF obtained with R3α and R6α sensors. frequency, resulting in an output signal 418 that spreads out in time. To visualize this effect, the 419 peaks of the Gabor transform were obtained for both 420 input and output chirp signals, giving an idea of in-421 stantaneous frequency for different time instants, as 422 shown in Figure15for the case of the sensor R6α lo-423 cated at 135 • . Input frequencies present a linear dis-424 tribution on time, however, the instantaneous output 425 frequencies delayed more for higher frequencies.

	Angle [ • ] ∆ Impulse [µs] ∆ Chirp [µs]
	45	1.45	9.08
	90	0.47	25.9
	135	0.54	10.4
	180	0.29	2.50
	pends on the 426
	5 Conclusions	427