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At a distance of 1.295 parsecs,1 the red-dwarf Proxima Centauri (α Centauri C, GL 551,

HIP 70890, or simply Proxima) is the Sun’s closest stellar neighbour and one of the best studied

low-mass stars. It has an effective temperature of only∼ 3050 K, a luminosity of ∼0.1 per

cent solar, a measured radius of 0.14 R⊙2 and a mass of about 12 per cent the mass of the

Sun. Although Proxima is considered a moderately active star, its rotation period is ∼ 83

days,3 and its quiescent activity levels and X-ray luminosity4 are comparable to the Sun’s. New

observations reveal the presence of a small planet orbitingProxima with a minimum mass of

1.3 Earth masses and an orbital period of∼11.2 days. Its orbital semi-major axis is∼ 0.05 AU,

with an equilibrium temperature in the range where water could be liquid on its surface.5

The results presented here consist of the analysis of previously obtained Doppler measurements

(pre-2016 data), and the confirmation of a signal in a specifically designed follow-up campaign in

2016. The Doppler data comes from two precision radial velocity instruments, both at the European

Southern Observatory (ESO): the High Accuracy Radial velocity Planet Searcher (HARPS) and the

Ultraviolet and Visual Echelle Spectrograph (UVES). HARPSis a high-resolution stabilized echelle

spectrometer installed at the ESO 3.6m telescope (La Silla observatory, Chile), and is calibrated in

wavelength using hollow cathode lamps. HARPS has demonstrated radial velocity measurements

at∼1 ms−1precision over time-scales of years,6 including on low-mass stars.7 All HARPS spectra

were extracted and calibrated with the standard ESO Data Reduction Software, and radial velocities

were measured using a least-squares template matching technique.7 HARPS data is separated into

two datasets. The first set includes all data obtained before2016 by several programmes (HARPS

pre-2016). The second HARPS set comes from the more recentPale Red Dotcampaign (PRD

hereafter), which was designed to eliminate period ambiguities using new HARPS observations and

quasi-simultaneous photometry. The HARPS PRD observations consisted of obtaining one spectrum

almost every night between Jan 19th and March 31st 2016. The UVES observations used the Iodine

cell technique8 and were obtained in the framework of the UVES survey for terrestrial planets around

M-dwarfs between 2000 and 2008. The spectra were extracted using the standard procedures of the

UVES survey,9 and new radial velocities were re-obtained using up-to-date Iodine reduction codes.10

Since systematic calibration errors produce correlationsamong observations within each night,11

we consolidated Doppler measurements through nightly averages to present a simpler and more

conservative signal search. This led to 72 UVES, 90 HARPS pre-2016 and 54 HARPS PRD epochs.

The PRD photometric observations were obtained using the Astrograph for the South Hemisphere

II telescope (ASH2 hereafter,12 SII and Hα narrowband filters) and the Las Cumbres Observatory

Global Telescope network (LCOGT.net,13 Johnson B and V bands), over the same time interval

and similar sampling as the HARPS PRD observations. Furtherdetails about each campaign and
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Figure 1: Detection of a Doppler signal at 11.2 days. Detection periodograms of the 11.2 day
signal in the HARPS+UVES pre-2016 data (panel a), and using the HARPS Pale Red Dot cam-
paign only (panel b). Panel c contains the periodogram obtained after combining all datasets. Black
lines correspond to the∆ lnL statistic, while the gray thick represent the logarithm of the Bayesian
posterior density (see text, arbitrary vertical offset applied to for visual comparison of the two statis-
tics). The horizontal solid, dashed and dotted lines represent a 10, 1, and 0.1 per cent false alarm
probability thresholds of the frequentist analysis, respectively.

the photometry are detailed in the methods section. All time-series used in this work in the online

version of the paper as Source data.

The search and significance assessment of signals were performed using frequentist14 and Bayesian15

methods. Periodograms in Figure 1 represent the improvement of some reference statistic as a func-

tion of trial period, with the peaks representing the most probable new signals. The improvement in

the logarithm of the likelihood function∆ lnL is the reference statistic used in the frequentist frame-

work, and its value is then used to assess the false-alarm probability (or FAP) of the detection.14 A

FAP below 1% is considered suggestive of periodic variability, and anything below 0.1% is con-

sidered to be a significant detection. In the Bayesian framework, signals are first searched using a

specialized sampling method16 that enables exploration of multiple local maxima of the posterior

density (the result of this process are the gray lines in Figure 1), and significances are then assessed

by obtaining the ratios ofevidencesof models. If the evidence ratio exceeds some threshold (e.g.

B1/B0 > 103), then the model in the numerator (with one planet) is favoured against the model in

the denominator (no planet).

A well isolated peak at∼11.2 days was recovered when analyzing all the night averages in the

pre-2016 datasets (Figure 1, panel a). Despite the significance of the signal, the analysis of pre-

2016 subsets produced slightly different periods depending on the noise assumptions and which

subsets were considered. Confirmation or refutation of thissignal at 11.2 days was the main driver

for proposing the HARPS PRD campaign. The analysis of the HARPS PRD data revealed a single

significant signal at the same∼ 11.3 ± 0.1 day period (Figure 1, panel b), but period coincidence
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Figure 2:All datasets folded to the 11.2 days signal. Radial velocity measurements phase folded
at the 11.2 day period of the planet candidate for 16 years of observations. Although its nature is
unclear, a second signal at P∼ 200 days was fitted and subtracted from the data to produce this plot
and improve visualization. Circles correspond to HARPS PRD, squares are HARPS pre-2016 and
triangles are UVES observations. The black line representsthe best Keplerian fit to this phase folded
representation of the data. Error bars correspond to formal1-σ uncertainties.

alone did not prove consistency with the pre-2016 data. Final confirmation was achieved when all the

sets were combined (Figure 1, panel c). In this case statistical significance of the signal at 11.2 days

increases dramatically (false-alarm probability< 10−7, Bayesian evidence ratioB1,0 > 106). This

implies that not only the period, but also the amplitude and phase are consistent during the 16 years

of accumulated observations (see Figure 2). All analyses performed with and without correlated-

noise models produced consistent results. A second signal in the range of 60 to 500 days was also

detected, but its nature is still unclear due to stellar activity and inadequate sampling.

Stellar variability can cause spurious Doppler signals that mimic planetary candidates, especially

when combined with uneven sampling.9, 17 To address this, the time-series of the photometry and

spectroscopic activity indices were also searched for signals. After removing occasional flares, all

four photometric time-series show the same clear modulation overP ∼ 80 nights (panels b, c, d

and e in Figure 3), which is consistent with the previously reported photometric period of∼83 d.3

Spectroscopic activity indices were measured on all HARPS spectra, and their time-series were in-

vestigated as well. The width of the spectral lines (measured as the variance of the mean line, or

m2) follows a time-dependence almost identical to the light curves, a behaviour that has already
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been reported for other M-dwarf stars.18 The time-series of indices based on chromospheric emis-

sion lines (e.g. Hα) do not show evidence of periodic variability, even after removing data points

likely affected by flares. We also investigated possible correlations of the Doppler measurements

with activity indices by including linear correlation terms in the Bayesian model of the Doppler

data. While some indices do show hints of correlation in somecampaigns, including them in the

model produces lower probabilities due to overparameterization. Flares have very little effect on

our Doppler velocities, as has already been suggested by previous observations of Proxima.19 More

details are provided in the methods section and as Extended Data Figures. Since the analysis of

the activity data failed to identify any stellar activity feature likely to generate a spurious Doppler

signal at 11.2 days, we conclude that the variability in the data is best explained by the presence of a

planet (Proxima b, hereafter) orbiting the star. All available photometric light curves were searched

for evidence of transits, but no obvious transit-like features were detectable in our light curves. We

used Optimal Box-Least-Squares codes20 to search for candidate signals in data from the All Sky

Automatic Survey.3 No significant transit signal was found down to a depth of about 5% either. The

preferred orbital solution and the putative properties of the planet and transits are given in Table 1.

The Doppler semi-amplitude of Proxima b (∼ 1.4 ms−1) is not particularly small compared

to other reported planet candidates.6 The uneven and sparse sampling combined with longer-term

variability of the star seem to be the reasons why the signal could not be unambiguously confirmed

with pre-2016 rather than the amount of data accumulated. The corresponding minimum planet

mass is∼ 1.3 M⊕. With a semi-major axis of∼0.05 AU, it lies squarely in the center of the

classical habitable zone for Proxima.5 As mentioned earlier, the presence of another super-Earth

mass planet cannot yet be ruled out at longer orbital periodsand Doppler semi-amplitudes<3 ms−1.

By numerical integration of some putative orbits, we verified that the presence of such an additional

planet would not compromise the orbital stability of Proxima b.

Habitability of planets like Proxima b -in the sense of sustaining an atmosphere and liquid water

on its surface- is a matter of intense debate. The most commonarguments against habitability are

tidal locking, strong stellar magnetic field, strong flares,and high UV & X-ray fluxes; but none of

these have been proven definitive. Tidal locking does not preclude a stable atmosphere via global

atmospheric circulation and heat redistribution.22 The average global magnetic flux density of Prox-

ima is 600±150 Gauss,23 which is quite large compared to the Sun’s value of 1 G. However, several

studies have shown that planetary magnetic fields in tidallylocked planets can be strong enough to

prevent atmospheric erosion by stellar magnetic fields24 and flares,.25 Because of its close-in orbit,

Proxima b suffers X-ray fluxes∼400 times that of Earth’s, but studies of similar systems indicate that

atmospheric losses can be relatively small.26 Further characterization of such planets can also inform

us about the origin and evolution of terrestrial planets. For example, forming Proxima b from in-situ

disk material is implausible because disk models for small stars would contain less than 1MEarth

of solids within the central AU. Instead, either 1) the planet migrated in via type I migration,27 2)

planetary embryos migrated in and coalesced at the current planet’s orbit, or 3) pebbles/small plan-

etesimals migrated via aerodynamic drag28 and later coagulated into a larger body. While migrated

planets and embryos originating beyond the ice-line would be volatile rich, pebble migration would
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Figure 3:Time-series obtained during the Pale Red Dot campaign. HARPS-PRD radial velocity
measurements (panel a), quasi-simultaneous photometry from ASH2 (panels b and c) and LCOGT
(panels d and e) and central moments of the mean line profiles (panels f and g). The solid lines
show the best fits. A dashed line indicates a signal that is notsufficiently significant. Excluded mea-
surements likely affected activity events (e.g. flares) aremarked with grey arrows. The photometric
time-series andm2 all show evidence of the same∼80 day modulation. Error bars correspond to
formal 1-σ uncertainties.

produce much drier worlds. In this sense, a warm terrestrialplanet around Proxima offers unique

follow-up opportunities to attempt further characterization via transits -on going searches-, via direct

imaging and high-resolution spectroscopy in the next decades,29 and –maybe– robotic exploration

in the coming centuries.30
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Table 1: Stellar properties, Keplerian parameters, and derived quantities. The estimates are the
maximuma posterioriestimates and the uncertainties are expressed as 68% credibility intervals.
We only provide an upper limit for the eccentricity (95% confidence level). Extended Data Table1
contains the list of all the model parameters.

Stellar properties Value Reference
Spectral type M5.5V 2

Mass∗/MassSun 0.120 [0.105,0.135] 21

Radius∗/RSun 0.141 [0.120,0.162] 2

Luminosity∗/ LSun 0.00155 [0.00149, 0.00161] 2

Effective temperature [K] 3050 [2950, 3150] 2

Rotation period [days] ∼ 83 3

Habitable zone range [AU] ∼ 0.0423 – 0.0816 22

Habitable zone periods [days] ∼ 9.1–24.5 22

Keplerian fit Proxima b
Period [days] 11.186 [11.184, 11.187]
Doppler amplitude [ms−1] 1.38 [1.17, 1.59]
Eccentricity [-] <0.35
Mean longitudeλ = ω +M0 [deg] 110 [102, 118]
Argument of periastronw0 [deg] 310 [0,360]

Statistics summary
Frequentist false alarm probability 7× 10−8

Bayesian odds in favour B1/B0 2.1× 107

UVES Jitter [ms−1] 1.69 [1.22, 2.33]
HARPS pre-2016 Jitter [ms−1] 1.76 [1.22, 2.36]
HARPS PRD Jitter [ms−1] 1.14 [0.57, 1.84]

Derived quantities
Orbital semi-major axisa [AU] 0.0485 [0.0434, 0.0526]
Minimum massmp sin i [M⊕] 1.27 [1.10, 1.46]
Eq. black body temperature [K] 234 [220, 240]
Irradiance compared to Earth’s 65%
Geometric probability of transit ∼1.5%
Transit depth (Earth-like density) ∼0.5%
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Methods

1 Statistical frameworks and tools

The analyses of time-series including radial velocities and activity indices were performed by fre-

quentist and Bayesian methods. In all cases, significances were assessed using model comparisons

by performing global multi-parametric fits to the data. Herewe provide a minimal overview of the

methods and assumptions used throughout the paper.

1.1 Bayesian statistical analyses.

The analyses of the radial velocity data were performed by applying posterior sampling algorithms

called Markov chain Monte Carlo (MCMC) methods. We used the adaptive Metropolis algorithm31

that has previously been applied to such radial velocity data sets.15, 32 This algorithm is simply a

generalised version of the common Metropolis-Hastings algorithm33, 34 that adapts to the posterior

density based on the previous members of the chain.

Likelihood functions and posterior densities of models with periodic signals are highly multi-

modal (i.e. peaks in periodograms). For this reason, in our Bayesian signal searches we applied

the delayed rejection adaptive Metropolis (DRAM) method,16 that enables efficient jumping of the

chain between multiple modes by postponing the rejection ofa proposed parameter vector by first

attempting to find a better value in its vicinity. For every given model, we performed several pos-

terior samplings with different initial values to ensure convergence to a unique solution. When we

identified two or more significant maxima in the posterior, wetypically performed several additional

samplings with initial states close to those maxima. This enabled us to evaluate all of their relative

significances in a consistent manner. We estimated the marginal likelihoods and the corresponding

Bayesianevidence ratiosof different models by using a simple method.35 A more detailed descrip-

tion of these methods can be found in elsewhere.36

1.2 Statistical models : Doppler model and likelihood function.

Assuming radial velocity measurementsmi,INS at some instantti and instrument INS, the likelihood

function of the observations (probability of the data givena model) is given by

L =
∏

INS

∏

i

li,INS (1)

li,INS =
1

√

2π (σ2
i + σ2

INS
)
exp

{

−
1

2

ǫ2i,INS

σ2
i + σ2

INS

}

, (2)

ǫi,INS = mi,INS −

{

γINS + γ̇∆ti + κ(∆ti) +MAi,INS +Ai,INS

}

, (3)

∆ti = ti − t0 (4)

wheret0 is some reference epoch. This reference epoch can be arbitrarily chosen, often as the

beginning of the time-series or a mid-point of the observingcampaigns. The other terms are:
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• ǫi,lNS are the residuals to a fit. We assume that eachǫi,lNS is a Gaussian random variable

with a zero mean and a variance ofσ2
i + σ2

INS
, whereσ2

i is the reported uncertainty of the

i-th measurement andσ2

INS
is the jitter parameterand represents the excess white noise not

included inσ2
i .

• γINS is thezero-point velocityof each instrument. Each INS can have a different zero-point

depending on how the radial velocities are measured and how the wavelengths are calibrated.

• γ̇ is a linear trend parametercaused by a long term acceleration.

• The termκ(∆ti) is the superposition ofk Keplerian signals evaluated at∆ti. Each Keplerian

signal depends on five parameters: theorbital periodPp, semi-amplitudeof the signalKp,

mean anomalyM0,p, which represents the phase of the orbit with respect to the periastron of

the orbit att0, orbital eccentricityep that goes from0 (circular orbit) to1 (unbound parabolic

orbit), and theargument of periastronωp, which is the angle on the orbital plane with respect

to the plane of the sky at which the star goes through the periastron of its orbit (the planet’s

periastron is atωp+180 deg). Detailed definitions of the parameters can be found elsewhere.37

• The Moving Average term

MAi,INS = φINS exp

{

ti−1 − ti
τINS

}

ǫi−1,INS (5)

is a simple parameterization of possible correlated noise that depends on the residual of the

previous measurementǫi−1,INS. As for the other parameters related to noise in our model,

we assume that the parameters of the MA function depend on theinstrument; for example the

different wavelength ranges used will cause different properties of the instrumental systematic

noise. Keplerian and other physical processes also introduce correlations into the data, there-

fore some degree of degeneracy between the MA terms and the signals of interest is expected.

As a result, including a MA term always produces more conservative significance estimates

than a model with uncorrelated random noise only. The MA model is implemented through a

coefficientφINS and a time-scaleτINS. φINS quantifies the strength of the correlation between

the i and i − 1 measurements. It is bound between−1 and1 to guarantee that the process

is stationary (i.e. the contribution of the MA term does not arbitrarily grow over time). The

exponential smoothing is used to decrease the strength of the correlation exponentially as the

differenceti − ti−1 increases.38

• Linear correlations with activity indices can also be included in the model in the following

manner,

Ai,INS =
∑

ξ

Cξ,INS ξi,INS (6)

whereξ runs over all the activity indices used to model each INS dataset (e.g. m2, m3,

S-index, etc. whose description is provided below). To avoid any confusion with other dis-

cussions about correlations, we call theseCξ,INS activity coefficients. Note that each activity
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coefficientCξ,INS is associated to one activity index (ξi) obtained simultaneously with the i-th

radial velocity measurement (e.g. chromospheric emissionfrom the Hα line, second moment

of the mean-line profile, interpolated photometric flux, etc.). When fitting a model to the data,

an activity coefficient significantly different from0 indicates evidence of Doppler variability

correlated with the corresponding activity index. Formally speaking, theseCξ,INS correspond

to the coefficient of the first order Taylor expansion of a physical model for the apparent radial

velocities as a function of the activity indices and other physical properties of the star.

A simplified version of the same likelihood model is used whenanalyzing time-series of activity

indices. That is, when searching for periodicities in series other than Doppler measurements, the

model will consist of theγINS zero-points, a linear trend terṁγ∆ti, and a sum ofn sinusoids

κ̂(ti, ~θ) =
n
∑

k

(

Ak sin
2π∆ti
Pk

+Bk cos
2π∆ti
Pk

)

(7)

where eachk-th sinusoid has three parametersAk, Bk, andPk instead of the five Keplerian ones.

Except for the period parameters and the jitter terms, this model is linear with all the other parame-

ters, which allows a relatively quick computation of the likelihood-ratio periodograms.

1.3 Bayesian prior choices.

As in any Bayesian analysis, the prior densities of the modelparameters have to be selected in a

suitable manner (for example see39). We used uniform and uninformative distributions for most

of the parameters apart from a few, possibly significant, exceptions. First, as we used a parameter

l = lnP in the MCMC samplings instead of the periodP directly, the uniform prior densityπ(l) = c

for all l ∈ [lnT0, lnTmax], whereT0 andTmax are some minimum and maximum periods, does not

correspond to a uniform prior inP . Instead, this prior corresponds to a period prior such that

π(P ) ∝ P−1.40 We made this choice because the period can be considered a “scale parameter” for

which an uninformative prior is one that is uniform inlnP .41 We selected the parameter space of

the period such thatT0 = 1 day andTmax = Tobs, whereTobs is the baseline of the combined data.

For the semi amplitude parameterK, we used aπ(K) = c for all K ∈ [0,Kmax], whereKmax

was selected asKmax = 10 ms−1 because the RMSs of the Doppler series did not exceed 3 ms−1

in any of the sets. Following previous works,40, 42 we chose the prior for the orbital eccentricities as

π(e) ∝ N (0,Σ2
e), wheree is bound between zero (circular orbit) and 1. We set thisΣ2

e = 0.3 to

penalize high eccentricities while keeping the option of highe if the data strongly favours it.

We also used an informative prior for the excess white noise parameter ofσINS for each instru-

ment. Based on analyses of a sample of M dwarfs,15 this “stellar jitter” is typically very close to

a value of 1 ms−1. Thus, we used a prior such thatπ(σl) ∝ N (µσ, σ
2
σ) such that the parameters

were selected asµσ = σσ = 1 ms−1. Uniform priors were used in all the activity coefficients

Cξ ∈ [−Cξ,max, Cξ,max]. For practical purposes, the time-series of all activity indices were mean

subtracted and normalized to their RMS. This choice allows us to select the bounds of the activity

coefficients for the renormalized time-series asĈξ,max = 3 ms−1, so that adding correlation terms
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does not dramatically increase the RMS of the Doppler time-series over the initially measured RMS

of < 3 ms−1 (same argument as for the prior onK). This renormalization is automatically applied

by our codes at initialization.

1.4 Search for periodicities and significances in a frequentist framework.

Periodograms are plots representing a figure-of-merit derived from a fit against the period of a newly

proposed signal. In the case of unevenly sampled data, a verypopular periodogram is the Lomb-

Scargle periodogram (or LS)43, 44and its variants like the Floating-mean periodogram45 or the F-ratio

periodogram.46 In this work we use likelihood ratio periodograms, which represent the improvement

of the likelihood statistic when adding a new sinusoidal signal to the model. Due to intrinsic non-

linearities in the Keplerian/RV modelling, optimizing thelikelihood statistic is more computationally

intensive than the classic LS-like periodograms45, 47). On the other hand the likelihood function is a

more general and well-behaved statistic which, for example, allows for the optimisation of the noise

parameters (e.g.jitter, and fit correlated noise models at the signal search level).Once the maximum

likelihood of a model with one additional planet is found (highest peak in the periodogram), its

false-alarm probability can then be easily computed.48, 49 In general, a false-alarm probability of 1%

is needed to claim hints of variability, and a value below 0.1% is considered necessary to claim a

significant detection.

2 Spectroscopic datasets

2.1 New reduction of the UVES M-dwarf programme data.

Between 2000 and 2008, Proxima was observed in the frameworkof a precision RV survey of M

dwarfs in search for extrasolar planets with the Ultraviolet and Visual Echelle Spectrograph (UVES)

installed in the Very Large Telescope (VLT) unit 2 (UT2). To attain high-precision RV measure-

ments, UVES was self-calibrated with its iodine gas absorption cell operated at a temperature of70◦

C. The image slicer#3 was chosen which redistributes the light from a1′′ × 1′′ aperture along the

chosen0.3′′ wide slit. In this way, a resolving power ofR = 100, 000 − 120, 000 was attained.

At the selected central wavelength of600 nm, the useful spectral range containing iodine (I2) ab-

sorption lines (≈ 500 − 600 nm) falls entirely on the better quality detector of the mosaicof two

4K × 2K CCDs. More details can be found in the several papers from the UVES survey.9, 45, 50

The extracted UVES spectra include 241 observations taken through the Iodine cell, three tem-

plate (no Iodine) shots of Proxima, and three spectra of the rapidly rotating B star HR 5987 taken

through the Iodine cell as well, and almost consecutive to the three template shots. The B star has a

smooth spectrum devoid of spectral features and it was used to calibrate the three template observa-

tions of the target. Ten of the Iodine observations of Proxima were eliminated due to low exposure

levels. The remaining 231 iodine shots of Proxima were takenon 77 nights, typically 3 consecutive

shots per night.

The first steps in the process ofI2 calibrated data consists of constructing the high signal tonoise
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template spectrum of the star without iodine: 1) a custom model of the UVES instrumental profile

is generated based on the observations of the B star by forward modeling the observations using a

higher-resolution (R = 700, 000− 1, 000, 000) template spectrum of theI2 cell obtained with the

McMath Fourier Transform Spectrometer (FTS) on Kitt Peak, 2) the three template observations of

Proxima are then co-added and filtered for outliers, and 3) based on the instrument profile model

and wavelength solution derived from the three B star observations, the template is deconvolved

with our standard software.10 After the creation of the stellar template, the 231 iodine observations

of Proxima were then run through our standard precision velocity code.8 The resulting standard

deviation of the 231 un-binned observations is 2.58 ms−1, and the standard deviation of the 77

nightly binned observations is 2.30 ms−1, which already suggests an improvement compared to the

3.11 ms−1 reported in the original UVES survey reports.50 All the UVES spectra (raw) are publicly

available in their reduced form via ESO’s archive athttp://archive.eso.org/cms.html.

Extracted spectra are not produced for this mode of UVES operation, but they are available upon

request.

2.2 HARPS GTO.

The initial HARPS-Guaranteed Time Observations programmewas led by Michel Mayor (ESO ID

: 072.C-0488). 19 spectra were obtained between May 2005 andJuly 2008. The typical integration

time ranges between 450 and 900 s.

2.3 HARPS M-dwarfs.

Led by X. Bonfils and collaborators, it consists of ESO programmes 082.C-0718 and 183.C-0437. It

produced 8 and 46 measurements respectively with integration times of 900 s in almost all cases.53

2.4 HARPS high-cadence.

This program consisted of two 10 night runs (May 2013, and Dec2013, ESO ID: 191.C-0505) and

was led and executed by several authors of this paper. Proxima was observed on two runs

• May 2013 - 143 spectra obtained in three consecutive nights between May 4th and May 7th

and 25 additional spectra between May 7th and May 16th with exposure times of 900 s.

• Dec 2013 -23 spectra obtained between Dec 30th and Jan 10th 2014 also with 900 s exposure

times.

For simplicity in the presentation of the data and analyses,all HARPS data obtained prior to 2016

(HARPS GTO, HARPS M-dwarfs, and HARPS high-cadence) are integrated in the so-called HARPS

pre-2016 set. The long-term Doppler variability and sparsesampling makes the detection of the

Doppler signal more challenging in such a consolidated set than, for example, separating it into

subsets of contiguous nights. The latter strategy, however, necessarily requires more parameters

(offsets, jitter terms, correlated noise parameters) and arbitrary choices on the sets to be used, pro-

ducing strong degeneracies and aliasing ambiguities in thedetermination of the favoured solution
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(11.2-d was typically favoured, but alternative periods caused by a non-trivial window function at

13.6-d, 18.3-d were also found to be possible). The data taken in 2016 exclusively corresponds to

the new campaign specifically designed to address the sampling issues.

2.5 HARPS : Pale Red Dot campaign.

PRD was executed between Jan 18th and March 30th, 2016. Few nights interruptions were an-

ticipated to allow for technical work and other time-critical observations with HARPS. Of the 60

scheduled epochs, we obtained 56 spectra in 54 nights (two spectra were obtained in two of those

nights). Integration times were set to 1200 s, and observations were always obtained at the very end

of each night. All the HARPS spectra (raw, extracted and calibrated frames) are publicly available

in their reduced form via ESO’s archive athttp://archive.eso.org/cms.html.

3 Spectroscopic indices

Stellar activity can be traced by features in the stellar spectrum. For example, changes in the line-

profile shapes (symmetry and width) have been associated to spurious Doppler shifts.18, 51 Chromo-

spheric emission lines are tracers of spurious Doppler variability in the Sun and they are expected to

behave similarly for other stars.52 We describe here the indices measured and used in our analyses.

3.1 Measurements of the mean spectral line profiles.

The HARPS Data Reduction Software provides two measurements of the mean-line profile shapes

derived from the cross-correlation function (CCF) of the stellar spectrum with a binary mask. These

are called the bisector span (or BIS) and full-width-at-half-maximum (or FWHM) of the CCF.53 For

very late type stars like Proxima, all spectral lines are blended producing a non-trivial shape of the

CCF, and thus the interpretation of the usual line-shape measurements is not nearly as reliable as in

earlier type stars. We applied the Least-Squares Deconvolution (LSD) technique54 to obtain a more

accurate estimate of the spectral mean line profile. This profile is generated from the convolution of

a kernel, which is a model spectrum of line positions and intensities, with the observed spectrum.

A description of our implementation of the procedure, applied specifically to crowded M-dwarf

spectra is described in.55 The LSD profile can be interpreted as a probability function distribution

that can then be characterized by its central moments.56 We computed the second (m2) and third

(m3) central moments of each LSD-profile of each observation. More details of these indices and

how they compare to other standard HARPS cross-correlationmeasurements can be found in.11 To

eliminate the correlation of the profile moments with the slope of the spectral energy distribution,11

we corrected the SED and blaze function to match the same spectral energy distribution of the highest

S/N observation obtained with HARPS. Uncertainties were obtained using an empirical procedure

as follows: we derived all them2 andm3 measurements of the high-cadence night of May 7th 2013

and fitted a polynomial to each time-series. The standard deviation of the residuals to that fit was

then assumed to be the expected uncertainty for a S/N∼20 (at reference echelle aperture number
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60), which was the typical value for that night’s observations. All other errors were then obtained by

scaling this standard deviation by a factor of20S/Nobs

for each observation.

3.2 Chromospheric indices.

Chromospheric emission lines are tracers of spurious Doppler variability in the Sun and they are

expected to behave similarly for other stars.52 We describe here the indices computed and used in

our analyses.

3.3 Chromospheric CaII H+K S-index.

We calculated the CaII H+K fluxes following standard procedures,57, 58 both the PRD data and the

pre-2016 data were treated the same. Uncertainties were calculated from the quadrature sum of the

variance in the data used within each bandpass.

3.4 Chromospheric H
α

emission.

This index was measured in a similar way to theS-indices, such that we summed the fluxes in the

center of the lines, calculated to be 6562.808Å, this time utilising square bandpasses of 0.678Å

not triangular shapes, and those were normalized to the summed fluxes of two square continuum

band regions surrounding each of the lines in the time series. The continuum square bandpasses

were centered at 6550.870Å and 6580.309̊A and had widths of 10.75̊A and 8.75Å, respectively.

Again the uncertainties were calculated from the quadrature sum of the variance of the data within

the bandpasses.

4 Photometric datasets

4.1 Astrograph Southern Hemisphere II.

The ASH2 (Astrograph for the South Hemisphere II) telescopeis a 40 cm robotic telescope with

a CCD camera STL11000 2.7K x 4K, and a field-of-view (FOV) of 54x 82 arcmin. Observations

were obtained in two narrow-band filters centered on Hα and SII lines, respectively (Hα is centred

on 656 nm, SII is centered on 672 nm, and both filters have a Gaussian-like transmission with a

FWHM of 12 nm). The telescope is at SPACEOBS (San Pedro de Atacama Celestial Explorations

Observatory), at 2450 m above sea level, located in the northern Atacama Desert, in Chile. This

telescope is managed and supported by the Instituto de Astrofı́sica de Andalucı́a (Spain). During

the present work, only subframes with 40% of the total field ofview were used, resulting in a useful

FOV of 21.6× 32.8 arcmin. Approximately 20 images in each band of 100 s of exposure time were

obtained per night. In total, 66 epochs of about 100 min each were obtained during this campaign.

The number of images collected per night was increased during the second part of the campaign

(until about 40 images in each filter per night).
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All CCD measurements were obtained by the method of synthetic aperture photometry using a 2

× 2 binning. Each CCD frame was corrected in a standard way for dark and flat-fielding. Different

aperture sizes were also tested in order to choose the best one for our observations. A number of

nearby and relatively bright stars within the frames were selected as check stars in order to choose

the best ones to be used as comparison stars. After checking their stability, C2=HD 126625 and

C8=TYC 9010-3029-1, were selected as main comparison stars.

The basic photometric data were computed as magnitude differences in SII and Hα filters for

Var-X and C2-X, with Var=Prox Cen and X=(C2+C8)/2. Typical uncertainties of each individual

data point are about 6.0 mmag, for both SII and Hα filters. This usually leads to error-bars of about

1.3 mmag in the determination of the mean levels of each epoch, assuming 20 points per night once

occasional strong activity episodes (such as flares) are removed for the analysis of periodicities. For

the analyses, these magnitudes were transformed to relative flux measurements normalized to the

mean flux over the campaign.

4.2 Las Cumbres Observatory Global Telescope network.

The Las Cumbres Observatory (LCOGT) is an organization dedicated to time-domain astronomy.13

To facilitate this, LCOGT operates a homogeneous network of1 m and 2 m telescopes on mul-

tiple sites around the world. The telescopes are controlledby a single robotic scheduler, capable

of orchestrating complex responsive observing programs, using the entire network to provide unin-

terrupted observations of any astronomical target of interest. Each site hosts between one to three

telescopes, which are configured for imaging and spectroscopy. The telescopes are equipped with

identical instruments and filters, which allows for ’network redundancy’. This means that observa-

tions can be seamlessly shifted to alternate sites at any time if the scientific program requires it, or

in the event of poor weather.

Observations for the PRD campaign were obtained on the 1 m network every 24 hours in the B

and V bands with the Sinistro (4K x 4K Fairchild CCD486) cameras, which have a pixel scale of

0.38 arcsec and a FOV of 27 x 27 arcminutes. In addition, B and Vobservations were taken every 12

hours with the SBIG (4K x 4K Kodak KAF-6303E CCD) cameras, with a pixel scale of 0.46 arcsec

and a FOV of 16 x 16 arcminutes. Exposure times ranged between15 and 40 s and a total of 488

photometrically useful images were obtained during the campaign.

The photometric measurements were performed using aperture photometry with AstroImageJ59

and DEFOT.60 The aperture sizes were optimized during the analysis with the aim of minimizing

measurement noise. Proxima Centauri and two non-variable comparison stars were identified in a

reference image and used to construct the detrended light curves. As with the ASH2 curves, the

LCOGT differential magnitudes were transformed to normalized flux to facilitate interpretation and

later analyses (see Figure 3 in main article).
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Extended Data Figure1: Window function. Window function of the UVES (panel a), HARPS
pre-2016(panel b) and HARPS PRD (panel c) datasets. The samewindow function applies to the
time-series of Doppler and activity data. Peaks in the window function are periods at which aliases
of infinite period signals would be expected.

5 Signals in time-series

In this section we present a homogeneous analysis of all the time-series (Doppler, activity and pho-

tometric ones) presented in this article. In all periodograms, the black curve represents the search

for a first signal. If one first signal is identified, then a red curve represents the search for a second

signal. In the few cases where a second signal is detected, a blue curve represents the search for a

third signal. The period of Proxima b is marked with a green vertical line.

5.1 Module of the Window function.

We first present the so-called window function of the three sets under discussion. The window func-

tion is the Fourier transform of the sampling.61 Its module shows the frequencies (or periods) where

a signal with0 frequency (or infinite period) would have its aliases. As shown in Extended Data Fig-

ure 1, both the UVES and HARPS PRD campaigns have a relativelyclear window function between

1 and 360 days, meaning that peaks in periodograms can be interpreted in a very straightforward

way (no aliasing ambiguities). For the UVES case, this happens because the measurements were

uniformly spread over several years without severe clustering, producing only strong aliases at fre-

quencies beating caused by the usual daily and yearly sampling (peaks at 360, 1, 0.5 and 0.33 days).

The window of the PRD campaign is simpler, which is the resultof a shorter timespan and the uni-

form sampling of the campaign. On the other hand, the HARPS pre-2016 window function (panel

b in Extended Data Figure 1) contains numerous peaks between1 and 360 days. This means that
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signals (e.g. activity) in the range of a few hundred days will inject severe interference in the period

domain of interest, and explains why this set is where the Doppler signal at 11.2 days is detected

with less confidence (see Extended Data Figure 2).
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Extended Data Figure2: Signal searches on independent radial velocity datasets.Likelihood-
ratio periodograms searches on the RV measurements of the UVES (panel a), HARPS pre-2016
(panel b) and HARPS PRD (panel c) subsets. The periodogram with all three sets combined is
shown in Figure 1 of the main manuscript. Black and red lines represent the searches for A first and
a second signal respectively.

5.2 Radial velocities.

Here we present likelihood-ratio periodogram searches forsignals in the three Doppler time-series

separately (PRD, HARPS pre-2016, and UVES). They are analyzed in the same way as the activ-

ity indices to enable direct visual comparison. They differfrom the ones presented in the main

manuscript in the sense that they do not include MA terms and the signals are modelled as pure

sinusoids to mirror the analysis of the other time-series asclose as possible. The resulting peri-

odograms are shown in Extended data Figure 2. A signal at 11.2days was close to detection using

UVES data-only. However, let us note that the signal was not clearly detectable using the Doppler

measurements as provided by the UVES survey,45 and it only became obvious when new Doppler

measurements were re-derived using up-to-date Iodine codes (Section 2.1). The signal is weaker

in the HARPS pre-2016 dataset, but it still appears as a possible second signal after modeling the

longer term variability with a Keplerian at 200 days. Sub-sets of the HARPS pre-2106 data taken

in consecutive nights (eg. HARPS high-cadence runs) also show strong evidence of the same sig-

nal. However splitting the data in subsets adds substantialcomplexity to the analysis and the results

become quite sensitive to subjective choices (how to split the data and how to weight each subset).

The combination UVES with all the HARPS pre-2016 (Figure 1, panel a) already produced a FAP

of ∼1%, but a dedicated campaign was deemed necessary given the caveats with the sampling and

activity related variability. The HARPS PRD campaign unambiguously identifies a signal with the
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same∼ 11.2 days period. As discussed earlier, the combination of all the data results in a very high

significance, which implies that the period, but also the amplitude and phase are consistent in all

three sets.
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Extended Data Figure3: Signal searches on the photometry. Likelihood-ratio periodograms
searches for signals in each photometric ASH2 photometric band (panels a and b) and LCOGT
bands (panels c and d). The two sinusoid fit to the ASH2 SII series (P1 = 84 days,P2 = 39.1 days),
is used later to construct the FF′ model to test for correlations of the photometry with the RV data.
Black, red and blue lines represent the search for a first, second and third signals respectively.

5.3 Photometry. Signals and calculation of the FF′ index.

The nightly average of the four photometric series was computed after removing the measurements

clearly contaminated by flares (see Figure 3 in main manuscript). This produces 43 LCOGT epochs

in the B and V bands (80 nights), and 66 ASH2 epochs in both SII and Hα bands (100 nights cov-

ered). The precision of each epoch was estimated using the internal dispersion within a given night.

All four photometric series show evidence of a long period signal compatible with a photometric

cycle at 83-d (likely rotation) reported before.3 See periodograms in Extended data Figure 3.

In the presence of spots, it has been proposed that spurious variability should be linearly corre-

lated with the value of the normalized flux of the starF , the derivative of the flux F′, and the product

of FF′62 in what is sometimes called the FF′ model. To include the photometry in the analysis of the

Doppler data, we used the best model fit of the highest qualitylight curve (AHS2 SII, has the lowest

post-fit scatter) to estimateF , F ′ andFF ′ at the instant of each PRD observation. The relation

of F , F ′, andFF ′ to the Doppler variability is investigated later in the Bayesian analysis of the
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Extended Data Figure4: Signal searches on the width of the spectral lines.Likelihood peri-
odogram searches on the width of the mean spectral line as measured bym2 for the HARPS pre-2016
(panel a) and HARPS PRD data (panel b). The signals in the HARPS pre-2016 data are comparable
to the photometric period reported in the literature and thevariability in the HARPS PRD run com-
pares quite well to the photometric variability. Black, redand blue lines represent the search for a
first, second and third signal respectively.

correlations.

5.4 Width of the mean spectral line as measured bym2.

Them2 measurement contains a strong variability that closely mirrors the measurements from the

photometric time-series (see Figure 3 in the main manuscript). As in the photometry, the rotation

period and its first harmonic (∼ 40 days) are clearly detected in the PRD campaign (see Extended

data Figure 4). This apparently good match needs to be verified on other stars as it might become

a strong diagnostic for stellar activity in M-stars. The analysis of the HARPS pre-2016 also shows

very strong evidence thatm2 is tracing the photometric rotation period of 83 days. The modelling

of this HARPS pre-2016 requires a second sinusoid withP2 ∼ 85 days, which is peculiar given how

close it is toP1. We suspect this is caused by photospheric features on the surface changing over

time.

5.5 Asymmetry of the mean spectral lines as monitored bym3

The periodogram analysis ofm3 of the PRD run suggests a signal at 24 days which is close to twice

the Doppler signal of the planet candidate (see Extended Data Figure 5). However, line asymmetries

are expected to be directly correlated with Doppler signals, not at twice nor integer multiples of the

Doppler period. In addition, the peak has a FAP∼ 5% which makes it non-significantly different

from white noise. When looking at the HARPS pre-2016 data, some strong beating is observed

at 179 and 360 days, which is likely caused by a poorly sampledsignal at that period or longer

(magnetic cycle?), or some residual systematic effect (contamination by tellurics?). In summary,m3

does not show evidence of any stable signal in the range of interest.

24



2 5 10 20 50 100 300 1000

Period [days]

0

10

20

30

40

50

60

∆ 
ln

 L

1% FAP

P1 =179 or 360 days

16.9 days

m3 - HARPS pre-2016a

2 5 10 20 50 100 300 1000

Period [days]

0

5

10

15

20

25
∆ 

ln
 L

1% FAP
24.2 days

m3 - HARPS PRDb

Extended Data Figure5: Signal searches on the assymetry of the spectral lines.Likelihood
periodogram searches on the line asymmetry as measured bym3 from the HARPS pre-2016 (panel
a) and HARPS PRD (panel b) datasets. A signal beating at∼ 1 year and 1/2 year is detected in the
HARPS pre-2016 data, possibly related to instrumental systematic effects or telluric contamination.
No signals are detected above 1% threshold in the HARPS PRD campaign. Black and red lines
represent the search for first and second signals respectively.

5.6 Signal searches in S-index.

While Hα
52 and other lines like the sodium doublet (NaD1 and NaD2)63 have been shown to be the

best tracers for activity on M-dwarfs, analyzing the time-series of the S-index is also useful because

of its historical use in long term monitoring of main-sequence stars.64 In Extended Data Figure 6

we show the likelihood ratio periodograms for theS-indices of the HARPS pre-2016 and PRD

time-series. As can be seen, no signals were found around the11 day period of the radial velocity

signal, however two peaks were found close the 1% false alarmprobability threshold with periods

of ∼170 and 340 days. In order to further test the reality of thesepossible signals, we performed a

Lomb-Scargle (LS) periodogram analysis44 of the combined PRD and pre-2016 HARPS data. This

test resulted in the marginal recovery of both the 170 and 340day peaks seen in the likelihood

periodograms, with no emerging peaks around the proposed 11day Doppler signal. The LS tests

revealed some weak evidence for a signal at much lower periods,∼7 days and∼30 days.

Given that there is evidence for significant peaks close to periods of 1 yr, its first harmonic,

and the lunar period, we also analysed the window function ofthe time-series to check if there

was evidence that these peaks are artefacts from the combination of the window function pattern

interfering with a real long-period activity signal in the data. The dominant power in the window

function is found to increase at periods greater than 100 days, with a forest of strong peaks found in

that domain, in comparison to sub-100 day periods which is very flat, representing the noise floor of

the time-series. This indicates that there is likely to be strong interference patterns from the sampling

in this region, and that the signal in the radial velocity data is also not due to the sampling of the

data. A similar study in the context of the HARPS M-dwarf program was also done on Proxima.63

They compared several indices and finally decided to use the intensity of the chromospheric sodium
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Extended Data Figure6: Signal searches on the chromospheric S-index.Likelihood-ratio pe-
riodogram of S-index from the HARPS pre-2016 (panel a) and HARPS PRD (panel b) campaigns.
No signals detected above 1% threshold.

doublet lines. They did not report any significant period at the time, but we suspect this was due to

using fewer measurements, and not removing the frequent flaring events from the series, which also

requires compilation of a number of observations to reliably identify outliers caused by flares.

5.7 Signal searches in H
α

emission

Our likelihood-ratio periodograms forHα (Extended Data Figure 7) only show low significance

peaks in the 30-40 days period range. It is important to note that the analyses described above have

been performed on multiple versions of the dataset, in the sense that we analysed the full dataset

without removing measurements affected by flaring, then proceeded to reanalyse the activities by

dropping data clearly following the flaring periods that Proxima went through when we observed

the star. This allowed us to better understand the impact that flares and outliers have on signal

interference in the activity indices. Although the distribution of peaks in periodograms changes

somewhat depending on how stringent the cuts are, no emerging peaks were seen close to an 11 day

period. Concerning UVES Hα measurements, our likelihood-ratio periodogram did not detect any

significant signal.

5.8 Further tests on the signal.

It has been shown65 that at least some of the ultraprecise photometric time-series measured by CoRot

and Kepler space missions do not have a necessary property tobe represented by a Fourier expansion:

the underlying function, from which the observations are a sample, must be analytic. An algorithm

introduced in the same paper can test this property and was applied to the PRD data. The result is

that, contrary to the light curves aforementioned, claims that the underlying function is non-analytic

does not hold with the information available. Though the null hypothesis cannot be definitively

rejected, at least until more data is gathered, our results are consistent with the hypothesis that a
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Extended Data Figure7: Signal searches on the spectroscopic Hα index Likelihood-ratio pe-
riodogram searches ofHα intensity from the UVES (panel a), HARPS pre-2016 (panel b) and
HARPS PRD (panel c) campaigns. No signals detected above 1% threshold.

harmonic component is present in the Doppler time-series.
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Extended Data Figure8: Radial velocities and chromospheric emission during a flare. Radial
velocities (panel a) and equivalent width measurements of the Hα (panel b), Na Doublet lines (panel
c), and the S-index (panel d) as a function of time during a flare that occurred the night of May 5th,
2013. Time axis is days since JD=245417.0 days. No trace of the flare is observed on the RVs.

5.9 Flares and radial velocities.

Among the high-cadence data from May 2013 with HARPS, two strong flares are fully recorded.

During these events, all chromospheric lines become prominent in emission, Hα being the one that

best traces the characteristic time-dependence of flares observed on other stars and the Sun. The

spectrum and impact of flares on the RVs will be described elsewhere in detail. Relevant to this

study, we show th at the typical flares on Proxima do not produce correlated Doppler shifts (Extended

Data Figure 8). This justifies the removal of obvious flaring events when investigating signals and

correlations in the activity indices.
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Extended Data Figure9: Probability distributions for the activity coefficients versus signal
amplitude. Marginalized posterior densities of the activity coefficients versus the semi-amplitude of
the signal for UVES (panel a), HARPS pre-2016 (panels b,c,d,e,f), HARPS PRD campaign (panels
g,h,i,j,k) and the photometric FF′ indices for the PRD campaign only (panels l, m, n). Each panel
shows equiprobability contours containing 50%, 95%, and 99% of the probability density around
the mean estimate, and the corresponding standard deviation of the marginalized distribution (1-σ)
in red. The blue bar shows the zero value of each activity coefficient. Only CF ′ is found to be
significantly different from zero.

6 Complete model and Bayesian analysis of the activity coeffi-
cients.

A global analysis including all the RVs and indices was performed to verify that the inclusion of

correlations would reduce the model probability below the detection thresholds. Equivalently, the

Doppler semi-amplitude would become consistent with zero if the Doppler signal was to be de-

scribed by a linear correlation term. Panels in Extendent Data Figure 9 show marginalized distribu-

tions of linear correlation coefficients with the Doppler semi-amplitudeK. Each subset is treated

as a separate instrument and has its own zero-point, jitter and Moving Average term (coefficient)

and its activity coefficients. In the final model, the time-scales of the Moving Average terms are

fixed to∼ 10 days because they were not contrained within the prior bounds, thus compromising the

convergence of the chains. The sets under consideration are

• UVES : 70 radial velocity measurements and corresponding Hα emission measurements.

• HARPS pre-2016: 90 radial velocity measurements obtained between 2002 and2014 by

several programmes and corresponding spectroscopic indices : m2, m3, S-index, and the

intensities of the Hα and HeI lines as measured on each spectrum.
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• HARPS PRD : 54 Doppler measurements obtained between Jan 18th-Mar 31st, 2016, and

the same spectroscopic indices as for the HARPS pre-2016. The values of the F, F′ and FF′

indices were obtained by evaluating the best fit model to the ASH2 SII photometric series at

the HARPS epochs (see Section 5.3).

An activity index is correlated with the RV measurements in agiven set if the zero value of its

activity coefficient is excluded from the 99% credibility interval. Extended Data Figure 9 shows the

equiprobability contours containing 50%, 95%, and 99% of the probability density around the mean

estimate, and the corresponding 1-σ uncertainties in red. Only theF ′ index (time derivative of the

photometric variability) is significantly different from 0at high confidence (Extended Data Figure 9,

bottom row, panel m). Linking this correlation to a physicalprocess requires further investigation. To

ensure that such correlations are causally related, one needs a model of the process causing the signal

in both the RV and the index, and in the case of the photometry one would need to simultaneously

cover more stellar photometric periods to verify that the relation holds over time. Extended Data

Table 1 contains a summary of all the free parameters in the model including activity coefficients for

each dataset.
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Extended Data Table1: Complete set of model parameters. The definition of all the parameters
is given in Section 1 of the methods. The values are the maximum a posterioriestimates and the
uncertainties are expressed as 68% credibility intervals.The reference epoch for this solution is
Julian Datet0 = 2451634.73146 days, which corresponds to the first UVES epoch.∗Units of the
activity coefficients are ms−1divided by the units of each activity index.

Parameter Mean [68% c.i.] Units
Period 11.186 [11.184, 11.187] days
Doppler Amplitude 1.38 [1.17, 1.59] ms−1

Eccentricity <0.35 –
Mean Longitude 110 [102, 118] deg
Argument of periastron 310 [-] deg
Secular acceleration 0.086 [-0.223, 0.395] ms−1yr−1

Noise parameters
σHARPS 1.76 [1.22, 2.36] ms−1

σPRD 1.14 [0.57, 1.84] ms−1

σUVES 1.69 [1.22, 2.33] ms−1

φHARPS 0.93 [0.46, 1] ms−1

φPRD 0.51 [-0.63, 1] ms−1

φUVES 0.87 [-0.02, 1] ms−1

Activity coefficientsa

UVES
CHα -0.24 [-1.02, 0.54]

HARPS pre-2016
CHα -0.63 [-4.13, 3.25]
CHe 1.0 [-9.3, 11.4]
CS -0.027 [-0.551, 0.558]
Cm2

-1.93 [-6.74, 2.87]
Cm3

0.82 [-0.60, 2.58]

HARPS PRD
CHα 9.6 [-12.9, 33.3]
CHe -77 [-210, 69]
CS -0.117 [-0.785, 0.620]
Cm2

-2.21 [-8.86, 7.96]
Cm3

-0.02 [-3.67, 3.44]

PRD photometry
CF 0.0050 [-0.0183, 0.0284]
CF′ -0.633 [-0.962, -0.304]
CFF′ 4.3 [-6.8, 14.8]

aUnits of the activity coefficients are ms−1divided by the units of each activity index.
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