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In this contribution, the study of the Bay of Brest ecosystem changes over the past

50 years is used to explore the construction of interdisciplinary knowledge and raise

key questions that now need to be tackled at the science-policy-communities interface.

The Bay of Brest is subject to a combination of several aspects of global change,

including excessive nutrient inputs from watersheds and the proliferation of invasive

species. These perturbations strongly interact, affecting positively or negatively the

ecosystem functioning, with important impacts on human activities. We first relate a

cascade of events over these five decades, linking farming activities, nitrogen, and

silicon biogeochemical cycles, hydrodynamics of the Bay, the proliferation of an exotic

benthic suspension feeder, the development of the Great scallop fisheries and the

high biodiversity in maerl beds. The cascade leads to today’s situation where toxic

phytoplankton blooms become recurrent in the Bay, preventing the fishery of the great

scallop and forcing the fishermen community to switch pray and alter the maerl habitat

and the benthic biodiversity it hosts, despite the many scientific alerts and the protection

of this habitat. In the second section, we relate the construction of the interdisciplinary

knowledge without which scientists would never have been able to describe these

changes in the Bay. Interdisciplinarity construction is described, first among natural

sciences (NS) and then, between natural sciences and human and social sciences (HSS).

We finally ask key questions at the science-policy interface regarding this unsustainable

trend of the Bay: How is this possible, despite decades of joint work between scientists

and fishermen? Is adaptive co-management a sufficient condition for a sustainable

management of an ecosystem? How do the different groups (i.e., farmers, fishermen,

scientists, environmentalists), with their diverse interests, take charge of this situation?

What is the role of power in this difficult transformation to sustainability? Combining
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natural sciences with political science, anthropology, and the political sociology of

science, we hope to improve the contribution of HSS to integrated studies of

social-ecological systems, creating the conditions to address these key questions at

the science-policy interface to facilitate the transformation of the Bay of Brest ecosystem

toward sustainability.

Keywords: sustainability, land-ocean continuum, Bay of Brest, interdisciplinarity, science-policy-community

interface

INTRODUCTION

From the first Earth Day in 1970 to the adoption of
“sustainable development goals” in September 2015 at the UN
Assembly, through the Brundtland Report (Brundtland, 1987)
defining it, sustainable development has become a dominant
paradigm of environmental public action, from the international
level to national and more local scales. Accompanying these
policy changes, new scientific fields and initiatives have emerged
like the Resilience Alliance (Holling, 2001) or sustainability
science (Kates et al., 2001; Kates, 2011), in which the concept
of a social-ecological system is central (Liu et al., 2007; Ostrom,
2009; Collins et al., 2010; Binder et al., 2013). Whatever the
conceptual diagrams used to reconnect the natural and social
templates that have been disconnected in our modern societies,
ecosystem services are most often the means to rationalize this
reconnection (Daily, 1997; Millennium Ecosystem Assessment,
2005). To complement these trends, major international scientific
programs addressing aspects of global change re-organized in
2012 as the Future Earth Initiative, with the aim to provide
a single platform about “research for global sustainability.”
This is supposed to incentivize a more solution-oriented,
interdisciplinary (especially between humanities and natural
sciences but also with engineering sciences, Matson et al.,
2016) and participatory community by involving policy-makers,
funders, academics, business and industry, and other sectors
of civil society in co-designing and co-producing research
agendas.

One mode of social-ecological governance, called adaptive
co-management (Armitage et al., 2009; Plummer et al.,
2013), illustrates some of the ways knowledge produced by
scientific research, experts and professional communities
(e.g., fishermen, farmers) and policy-makers are being
integrated. Co-management refers to the sharing of power
and responsibility among local resource user communities and
resource management agencies; the idea of adaptive management
refers to the science of learning by doing (see Kofinas, 2009 and
references therein). Such a move from science-based decision-
making toward adaptive co-management in social-ecological
governance is remarkable (see for example, Butler et al., 2015;
Schultz et al., 2015), as it engages cultural diversity, integrated
knowledge production, power sharing, social and adaptive
learning, which in turns involves the integration of monitoring,
research and policy making.

Different frameworks have been developed to overcome
the difficulties frequently encountered when trying to put
inter- or trans-disciplinary and participatory research into

practice. Indeed, despite some very interesting success stories,
it is important to acknowledge that in many places there are
numerous barriers against interdisciplinary and participatory
science. For example, Hart et al. (2015) discussed how the role
of universities could be strengthened to address sustainability
challenges, by requiring strong institutional changes regarding
both how research and training are organized in order to
overcome “disciplinary silos.” “Disciplinary silos” is a figurative
term referring to how the one-discipline/one-department
structure of most higher education institutions reinforces and
rewards single-discipline researchers and impedes inter- or trans-
disciplinary initiatives and careers. One could also mention the
difficulties in communication across disciplines or in combining
scientific and other forms of knowledge (Kueffer et al., 2012;
Lang et al., 2012); all these challenges require new frameworks
to facilitate sustainability research. It is therefore important to
examine how and where interdisciplinary collaborations and
participatory science have been constructed, highlighting how
barriers, and conflicts have been resolved during the process.
The example we will focus on in this contribution concerns
the origins of integrated research approaches within a coastal
social-ecological system located in the Bay of Brest (northwestern
France).

Ecosystems and habitats in coastal zones supply many
valuable ecosystem services (recreation, food production,
protection against the sea, nutrient cycling, carbon storage. . . ),
providing many benefits in terms of welfare and well-being to
society (Turner, 2015). At the same time, they are also very
vulnerable to anthropogenic environmental changes which
are intensified in coastal zones where human populations are
increasingly concentrated and where disturbances are driven
not only by activities in the immediate area (e.g., fishing,
aquaculture, introduction of alien species, waste disposal,
coastline modifications, tourism, development of marine
renewable energy), but also by activities upstream (inland)
such as, agriculture, urbanization, and industrial production.
The pace of change in the highly complex and dynamic coastal
zones is much faster than what was anticipated a decade ago
(Cloern et al., 2015), creating a daunting challenge to manage
these areas in a sustainable way. New forms of management are
replacing earlier policies driven solely by science, something
that has been characterized as “a generally failed experiment”
for coastal environments (Christie, 2011). According to Bremer
and Glavovic (2013), the “science-policy interface” in the coastal
zone should be framed as a “governance setting,” reflecting the
multiplication of stakeholders involved and the strong need for
inter- and trans- disciplinary research in this area.

Frontiers in Marine Science | www.frontiersin.org 2 April 2018 | Volume 5 | Article 124

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Ragueneau et al. Bay of Brest: Impossible Sustainability?

The Bay of Brest (France) is an example of coastal ecosystem
subject to different aspects of global change, i.e., eutrophication,
arrival and proliferation of alien species, and climatic trends
(Cloern et al., 2015). The bay is considered a relatively well-
studied ecosystem, but major environmental problems persist,
such as increasing harmful algal blooms (HABs) (Chapelle et al.,
2015) and biodiversity losses have become dramatic since the
harvesting of the Venus verrucosa clam from maerl beds has
begun within the bay (Dutertre et al., 2015).

In this article, we first recount the environmental changes
observed in the Bay of Brest over the past five decades, focussing
on links between eutrophication, the biogeochemical cycle of
silicon (Si), the proliferation of invasive species and their
combined effects on local fisheries. In the second section of
this article, we relate how interdisciplinary collaborations arose
amongst the community of researchers involved in studies of
the Bay, emphasizing the importance of geographical proximity
(Reckers andHansen, 2015) and also of the creation of “boundary
settings” between different research groups (Mollinga, 2010;
Mattor et al., 2014) intended to stimulate long-term interactions
among scientists from different disciplines, first within Natural
Sciences (NS), then together with Human and Social Sciences
(HSS). We close with a critical examination of the present-day
unsustainable situation and key periods of strong interactions
between scientists and communities of fishers and farmers
over the last decades, raising a number of questions about the
interactions between the scientific community and other policy
and user communities involved. It is suggested that answering
these questions now requires actively integrating the social
sciences of politics (SSP) with environmental studies to facilitate
transformations of coastal environments toward sustainability
(Mazé et al., 2015, 2017).

THE BAY OF BREST ECOSYSTEM SINCE
WWII

Agriculture and Phytoplankton Dynamics
The Bay of Brest has undergone two major anthropogenic
perturbations following World War II: one originating from
land, and one from the sea. The French government, faced
with an urgent need to augment food production in the
aftermath of WWII, promoted the widespread use of artificial
fertilizers to increase arable land productivity and modernize
(i.e., mechanize) farming. The agricultural system in Brittany
underwent significant changes during the 1960’s, moving toward
intensive monoculture farms centered on vegetables and pigs.
As a direct consequence, nitrate concentrations greatly increased
in rivers and green tides of mainly Ulvae sp. developed along
many coasts around Brittany. These episodes became a public
nuisance and health problem, leading to 30 years of conflicts
between environmental non-governmental organizations and
the agricultural sector. They have also been the object of
contentious exchanges between the French government and
the European Commission in Brussels. In the Bay of Brest,
nitrate concentrations in the Aulne and Elorn rivers doubled
between the 1970’s and the 1990’s (Le Pape et al., 1996)

reaching concentrations of up to 700µM, which is more than
five times the good water quality threshold defined by the
European Water Framework Directive. However, because of the
decoupling between nitrogen inputs (winter and spring) and the
temperature optimum for the development of the macroalgae
Ulvae sp. (summer), which leads to the export of 94% of dissolved
inorganic nitrogen to coastal waters before spring (Le Pape et al.,
1996), and because of the macrotidal character of the bay, these
nitrate concentrations did not generate important green tides in
the Bay of Brest, except for very localized areas near the mouth of
the Elorn River (Le Pape and Menesguen, 1997).

Instead, the indirect consequences of increasing land-derived
nitrogen (N) and phosphorus (P) inputs occur through the
silicon (Si) cycle. Silicon arrives in the aquatic environment
mostly in the form of dissolved silicic acid (dSi), following the
natural weathering of silicate rocks (Meybeck, 1982), and as
amorphous silica (Conley, 1997), which can also be perturbed
by anthropogenic processes (see review in Ragueneau et al.,
2010). Constant Si inputs, associated with increasing N and P
loads from human activities inland, have decreased Si:N and
Si:P ratios in rivers, affecting phytoplankton dynamics in the
receiving coastal waters (Officer and Ryther, 1980; Ragueneau
et al., 1994, 2010; Billen and Garnier, 2007). Since the review
of Smayda (1990), documenting several examples of similar
decreasing nutrient ratios, many regions around the world have
experienced switches from a diatom-based primary production
to a primary production dominated by other phytoplankton
groups, e.g., dinoflagellates, which include many toxic species
(Conley et al., 1993; Ragueneau et al., 2006a,b and references
therein). However, the Bay of Brest did not exhibit dramatic
phytoplankton community shifts, despite strong decreases in the
Si:N and Si:P ratios, well below the Redfield (1958) or Brzezinski
(1985) ratios for diatoms growing under nutrient-rich conditions
(Del Amo et al., 1997).

Explanations for the absence of such shifts were provided in
the mid 1990’s. The intensity of Si recycling both at the sediment-
water interface and in the water column (Ragueneau et al.,
1994; Beucher et al., 2004) modifies the properties of various
diatom species (Roberts et al., 2003). For instance, their degree of
silicification (Rousseau et al., 2002) ultimately favors the switch
from diatom to non-diatom species when the dSi stress becomes
too strong. The combination of Si recycling and macrotidal
regime provided a reasonable explanation (Ragueneau et al.,
1996) to account for the maintenance of the diatom succession
observed throughout spring and summer since the 1980’s
(Quéguiner, 1982; Del Amo et al., 1997). And this was despite
the apparent lack of dSi following the first spring diatom bloom
(direct and indirect evidence of dSi limitation is discussed in Del
Amo et al., 1997 and Ragueneau et al., 2002). It was proposed
at that time that the Bay of Brest sediments could represent
a coastal silicate pump (Del Amo et al., 1997), because they
retain dSi within the ecosystem, allowing the dSi replenishment
of coastal waters following the summer temperature increase and
subsequent intensification of Si recycling at the sediment-water
interface. As we shall see, the motor of that pumpwas biologically
driven and had to do with the proliferation of a benthic invader
in the bay environment.

Frontiers in Marine Science | www.frontiersin.org 3 April 2018 | Volume 5 | Article 124

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Ragueneau et al. Bay of Brest: Impossible Sustainability?

Proliferation of Invasive Species and
Environmental Impacts on the Ecosystem
In parallel with these increasing land-derived N and P
concentrations and fluxes, the Bay of Brest experienced several
introductions of non-indigenous species following WWII,
including macroalgae (Gracilaria vermiculophylla), halophytes
(Spartina alterniflora) and benthic mollusks such as the
Pacific oyster Crassostrea gigas and the American slipper
limpet Crepidula fornicata (see review in Stiger-Pouvreau
and Thouzeau, 2015). Aquaculture practices and expanding
international shipping both increase the opportunities for the
translocation of fauna and flora (Carlton and Geller, 1993).
Proliferation of introduced species has become a major issue
in many areas with unanticipated linkages between terrestrial
and marine components of coastal ecosystems being exposed
(Van der Wal et al., 2008). Here, we will focus on the effects of
one of these introduced species in the bay, the slipper limpet,
Crepidula fornicata (Figure 1), because of its role in the silicate
pump (Del Amo et al., 1997). C. fornicata is a filter-feeder that
proliferates in bay and estuarine environments, and can reach
several thousands of individuals per square meter because adults
attach to each other in “chains” creating dense accumulations
on the seafloor (Blanchard, 2009). C. fornicata arrived in the
Bay of Brest in 1949; the invasion then progressed from south
to north and there was a sharp increase in abundance between
1995 and 2000 when the estimated standing stocks increased by
a factor of four (Guérin, 2004; Stiger-Pouvreau and Thouzeau,
2015).

Through these accumulations, the engineer gastropod
modifies its local environment by adding new physical and
biological substrates and modifying local hydrodynamics along
with rates of particle erosion and sedimentation at the sediment-
water interface (Moulin et al., 2007). Although suspension
feeders have dominated benthic communities in the bay (Hily,
1984; Jean and Thouzeau, 1995; Grall and Glémarec, 1997), C.
fornicata became the main suspension feeder by 2,000 (97% of
total suspension feeder biomass; Thouzeau et al., 2000). Active
filter feeders like C. fornicata produce a fraction of non-ingested
material which is excreted and accumulates at the sediment
surface as pseudo-feces (Norkko et al., 2001). This leads to local
deposition rates that can exceed passive sedimentation rates
in high density filter feeder beds (Dame, 1993), and creates
carbon (C) and N enriched sediments (Kautsky and Evans,
1987).

In the Bay of Brest, the impacts of C. fornicata on
hydrodynamics and transport properties of the benthic boundary
layer (Moulin et al., 2007), as well as on benthic biodiversity,
demonstrated a gradual shift toward smaller species with a higher
turnover rate (Grall and Glémarec, 1997). Locally, biodiversity
increased as new microhabitats for other benthic sessile and
mobile fauna were created (Chauvaud et al., 2000); but at
the scale of the entire bay, C. fornicata carpeted parts of the
seafloor, homogenizing benthic surfaces, endangering the total
biodiversity of the ecosystem (Chauvaud, 1998). It competed
for space with the Great Scallop (Figure 1) (Pecten maximus;
Thouzeau et al., 2000), threatening other economically important
bivalve fisheries in the region (Frésard and Boncoeur, 2006).

Proliferation of C. fornicata and the Silicate
Pump Hypothesis
The effects of this shift were studied on the benthic community
respiration (Martin et al., 2006, 2007), as well as on the benthic
cycling of carbon and several associated biogenic elements, such
as N (Martin, 2005; Martin et al., 2006), P (Martin, 2005) and
Si (Ragueneau et al., 2002). Combining the importance of Si
recycling at the sediment-water interface in the maintenance of
diatom blooms (silicate pump) with the major role being played
by C. fornicata in the recycling of nutrients in the bay, Chauvaud
et al. (2000) formulated a working hypothesis (Figure 2) about
the possible effects of this combination on the ecosystem: when
the silicate pump (mostly driven by C. fornicata) is active,
filtration and biodeposition by benthic suspension feeders would
lead to Si retention as Si-enriched sediment deposits. Then,
dissolution would continuously replenish overlying surface
waters with dSi, allowing diatom succession to take place even
in summer. In contrast, when hydroclimatic conditions limit the
filtration and biodeposition of benthic suspension feeders (e.g.,
because of excessive microalgal biomass, high sedimentation, gill
clogging and/or hypoxia), Si would be exported out of the Bay,
leading to dSi limitation and non-siliceous phytoplankton species
during summer (see Chauvaud et al., 2000).

In the decade following the latter article, this hypothesis was
tested extensively. Sediment core incubations (Ragueneau et al.,
2002) and the deployment of benthic chambers (Martin, 2005) at
sites exhibiting low and high densities of C. fornicata provided
direct evidence of the role played by this organism in nutrient
recycling - in particular for dSi. In addition, as this gastropod
has no Si requirement, the feces became enriched in Si relative to
C and other nutrients, reinforcing the silicate pump mechanism
(Ragueneau et al., 2005). Silicon biogeochemical budgets were
established at seasonal and annual scales (Ragueneau et al.,
2002, 2005), clearly demonstrating the importance played
by benthic recycling for diatom growth, particularly during
summer. The feedback of enhanced benthic nutrient fluxes
on phytoplankton dynamics was then studied with mesocosm
experiments (Fouillaron et al., 2007; Claquin et al., 2010) and
modeling (Laruelle et al., 2009). The dynamic 2-dimensional
physical and biological model included an explicit representation
of the benthic-pelagic coupling with C. fornicata. The model was
used to simulate the effects of removing this gastropod on the
ecosystem functioning because the local fishery committee had
suggested this to reduce the pressure on the scallop stock (see
section Construction of a Basis for Interdisciplinary Knowledge
About the Bay of Brest). The modeling suggested that removal of
C. fornicata would increase the probability for the development
of HABs due to a dSi limitation during summer.

What Is the Present State of the Bay of
Brest?
HABs have taken place in the Bay of Brest on some occasions
but, as mentioned before, this ecosystem has long resisted to
the development of dinoflagellate blooms. Since 2012 however,
their frequency and magnitude have been increasing: HABs
take place every summer in the Bay of Brest, mostly in its
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FIGURE 1 | Images of Crepidula fornicata (A), of Pecten maximus, the Great Scallop (B) and of competition for space between those two benthic suspension

feeders (C).

southern part with Alexandrium minutum (Chapelle et al.,
2015). Many processes may contribute to the development of
toxic phytoplankton blooms e.g., temperature, tides and the
hydrodynamic regime, inorganic nutrients ratios, ratio between
organic and inorganic nitrogen (Roberts et al., 2003; Chapelle
et al., 2015), and it is difficult to attribute their occurrence
to a single cause. Nonetheless, strong decreases in the total
biomass of C. fornicata have also been reported in the central
and southern basins of the bay based on extensive surveys
conducted in 2013/2014 (data of A. Carlier as cited in Stiger-
Pouvreau and Thouzeau, 2015). Whatever the precise reasons
for this decline (which remain to be determined, see section
Key questions at the science-policy-community interfaces), it
provides plausible evidence for the silicate pump/C. fornicata
hypothesis proposed in Chauvaud et al. (2000) and agrees
with the development of HABs predicted during the modeling
exercise, especially dinoflagellates which do not require Si
(Laruelle et al., 2009).

The increasing frequency and magnitude of HABs in the
Bay of Brest have many implications, especially for the lifecycle
of benthic suspension feeders and the benthic ecosystem as a
whole (Fabioux et al., 2015; Coquereau et al, 2017). Some benthic
organisms, including those of commercial interest, accumulate
toxins secreted by these microalgae preventing them from being
sold (Belin et al., 2013). In the Bay of Brest, the P. maximus
fishery has suffered greatly from this type of contamination.
Detoxification is longer for the Great Scallop than for other
bivalves, and the fishing community has had to find replacement
species to maintain the Bay’s fishery. One of those replacements
has been the clam V. verrucosa, which is collected with dredges
from the maerl beds of the southern basin (Pantalos, 2015).
Maerl beds (Figure 3), including those of the Bay of Brest, have
a high ecological importance and conservation value (Grall and
Hall-Spencer, 2003). They are unique areas because of their
high biodiversity, their role as a nursery for targeted species of
fish and the Great Scallop, and the role of the bivalves living
on/in maerl beds that serve as brood stock for the surrounding
areas. Maerl beds are also commercially valuable as their calcium
carbonate makes them an excellent soil amendment and waste-
water filter. As noted by Pantalos (2015), maerl extraction is
mostly a thing of the past in Europe and has been banned since

January 1st 2013 under the European Union Habitats Directive
(92/43/EEC; 1992 May 21). But both dredging and trawling
continue in some regions of the world, despite numerous calls
for protection in scientific publications (e.g., Hall-Spencer et al.,
2003), and despite the laws and directives already enacted that
apply specifically to maerl beds (Amice et al., 2007). This is the
case in the Bay of Brest (Figure 3), where recurrent dredging
activities have affected 50% of the maerl banks (Grall et al.,
2009).

To summarize this first section dedicated to the study of
the Bay of Brest ecosystem changes over the last 50 years,
we have constructed a schematic diagram, or sequence, of
this chain of events (Figure 4), that will help guide us in
the last section Key questions at the science-policy-community
interfaces as we ask important questions related to the social-
ecological system. The ecosystem apparently initially absorbed
the excessive N and P inputs from land, and resisted decreasing
Si:N and Si:P ratios, maintaining diatoms in the system probably
due to a very active silicate pump. However, if the pelagic
ecosystem seemed to remain relatively unchanged, the less visible
benthic ecosystem was experiencing important modifications
due to high population abundances of C. fornicata. While
this species’ abundance was having negative impacts on the
Bay’s biodiversity and causing trouble to the Great Scallop
fishing community to the point that they wanted to eradicate
it by the mid 2000’s (see section Construction of a Basis for
Interdisciplinary Knowledge About the Bay of Brest), it was
also suggested that the presence of C. fornicata was helping
maintain diatoms in the ecosystem, through its impact on
the Si biogeochemical cycle (Figure 2) and possibly preventing
or slowing down the development of HABs. Following the
unexplained drastic diminution of C. fornicata abundances in
the Bay, HABs have started to develop. Even if this is consistent
with the silicate pump/C. fornicata hypothesis, it has had
important ecological and socio-economic consequences, such
as the on-going destruction of the Bay’s maerl banks as the
fishermen community switched prey and started dredging for
V. verrucosa.

Obviously, the Bay of Brest is not following a sustainable
path, despite decades of strong interdisciplinary studies of
the ecosystem and regular interactions between scientists and
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FIGURE 2 | The Crepidula/Si working hypothesis (redrawn from Chauvaud et al., 2000). Two contrasting situations are displayed. On top (A), under “normal” climatic

conditions, the diatom spring production is being grazed by benthic suspension feeders, dominated by Crepidula; the Si is being stored in the sediment and slowly

released as silicic acid during summer, allowing the maintenance of diatoms in the system. At the bottom (B), the spring diatom production cannot be grazed and

most of the diatom production is exported out of the Bay, depleting the system in silicic acid and favoring a summer production of dinoflagellates. In this figure,

reasons for the impossible grazing are linked to excessive nutrient inputs under heavy rains, and the formation of diatom aggregates, that sediment massively to the

bottom and cannot be as easily grazed. Other situations may lead to the prevention of such grazing and biodeposition activities. See text for more details.

communities of farmers and fishers. This raises important
questions at the science-community and science-policy
interfaces, as we discuss in the last section of this contribution
(III). Before that (II), we examine how the interdisciplinary
knowledge necessary to understand the ecosystem changes
and present the cascade of events (Figure 4) was built,

first in natural sciences studies of ecosystem complexity;
we then show how social scientists have entered into
collaborative research programs with NS during the last 10
years to start addressing questions raised concerning the
sustainability of the social-ecological system of the Bay of
Brest.
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FIGURE 3 | Photographs of 0.1 m2 quadrats taken on the fished maerl bed (Rozegat) and on the unfished maerl bed (Bendy) in March 2011. Note the differences in

habitat structure, live maerl distribution as well as in the presence or absence of associated benthic megafauna.

FIGURE 4 | Schematic description of a cascade of events over the last 50 years in the Bay of Brest, from changes in agricultural practices after world war II to

present-day threats on biodiversity, including interactions between changing nutrient ratios and the proliferation of Crepidula fornicata (see text) and their impacts on

the Great Scallop fishery.

CONSTRUCTION OF A BASIS FOR
INTERDISCIPLINARY KNOWLEDGE
ABOUT THE BAY OF BREST

All the studies described above were led by groups associated
with research infrastructures in the Brest region, in particular
with the IUEM (Institut Universitaire Européen de la Mer, a

component of the Université de Bretagne Occidentale or ‘UBO’)
and the IFREMER which conducts research on the exploitation
of marine resources. We review in the next paragraphs how
geographical proximity led to the emergence of interdisciplinary
approaches to the environmental issues faced by the larger
community discussed earlier. From a science studies viewpoint,
it is important to distinguish two main periods: before and after
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the creation of the IUEM in 1997. Relating the circumstances
of the origin of this structure contributes to an on-going debate
as to whether interdisciplinarity is orchestrated by funding
agencies (Kwa, 2006), is a bottom-up process and “unlikely to
be successfully planned” (Rosenberg, 2009), or a combination of
both.

When Pelagic and Benthic Scientists First
Meet
During the late 1970’s and the 1980’s, researchers in the pelagic
and benthic realms were working almost independently in three
different laboratories of UBO. Within the laboratory of chemical
oceanography, under the leadership of Paul Tréguer, Professor
of biogeochemistry, a group of physical, biogeochemical and
biological oceanographers worked on biogeochemical cycles.
This group developed a strong expertise on the Si biogeochemical
cycle (Tréguer et al., 1995; Ragueneau et al., 2000), due to
the importance of this element for the growth of diatoms and
the role of diatoms in the functioning of coastal ecosystems
(Ragueneau et al., 2006a,b) and in the austral biological pump
(Pondaven et al., 2000). Taken altogether, the work produced by
this group between 1980 and 2000 provided a description of the
pelagic nutrients (Si, N, P) cycles and their relationships with
phytoplankton dynamics in rivers, the bay and the adjacent Iroise
Sea; it also provided empirical evidence of the benthic-pelagic
coupling in the Bay of Brest (Ragueneau et al., 1994, 1996), that
led to the suggestion of a coastal silicate pump as a major player
in the resistance of the bay to the effects of decreasing Si:N and
Si:P ratios (Del Amo et al., 1997).

At UBO, benthic marine biologists were spread between
two laboratories: the laboratory of biological oceanography
(head, Professor Michel Glémarec) and the laboratory of marine
biology (head, Professor Albert Lucas). The most prominent
research topic of this group initially concerned marine bivalve
aquaculture, and in particular, they accomplished the first
successful reproduction and larval rearing of P. maximus. By the
early 1980’s, the group was working on population ecology, larval
recruitment, genetics and pathogens. For example, studies were
undertaken to characterize, both qualitatively and quantitatively,
the benthic macro- andmega-fauna of soft bottom sediments, the
importance of benthic biodiversity and the role of hydrological
conditions in determining spatial distributions. In addition, the
functional roles of benthic species began to be investigated;
this includes examining how benthic and pelagic systems were
coupled (Hily, 1989; Jean and Thouzeau, 1995) and led to a
renewed interest in the role of suspension feeders and their
potential influence on phytoplankton biomass by the end of the
1990’s (Grall and Glémarec, 1997).

By 1992, the three laboratories were already united under
a single name (“Flux de matière et réponses du vivant”) and
led by Prof. Tréguer, but biogeochemists and benthic biologists
remained in different buildings. New interactions between
pelagic and benthic researchers appeared, such as the official
opportunities during quarterly meetings of the “Laboratory
Council,” as well as additional chances for informal ones during
shared cruises on the small research vessel (RV “Sainte Anne,”

IFREMER). However, these interactions could probably not
be characterized as co-construction of scientific questions, but
they did contribute to pave the way for the creation of IUEM
by the mid-1990’s leaded by Prof. Tréguer. When the IUEM
building was completed in 1997, the laboratory was renamed
“Laboratoire des sciences de l’environnement marin” (LEMAR)
and installed on one corridor, greatly increasing the opportunities
for interdisciplinary exchange. These exchanges occurred both
formally (e.g., organization of joint seminars, creation of annual
laboratory meetings (“Les Journées du LEMAR,” 2001 - present)
as well as informally through more regular discussions and
debates. It is at this time that the Si/C. fornicata working
hypothesis emerged.

Origin of the Silicate Pump/C. fornicata
Hypothesis
Pelagic scientists had looked at the sediment-water interface
as a means of replenishing surface waters with nutrients for
phytoplankton growth. They suggested the possibility of an
active silicate pump that could maintain the diatom populations
within the ecosystem (Del Amo et al., 1997). At the same time,
benthic scientists looked at pelagic waters and phytoplankton
as environmental conditions and food resource influencing the
physiology and life cycle of benthic mollusks and ecosystems.
They aimed to calibrate shell growth parameters (Guarini et al.,
2011) as proxies for environmental variables such as temperature
(Chauvaud et al., 2005) or phytoplankton blooms (Lorrain et al.,
2000).

Hence, several observations from benthic and pelagic studies
led to the formulation of the Si/C. fornicata hypothesis.
First, if the integrated chlorophyll a (Chl-a) concentrations
did not exhibit major changes during the 1980’s and 1990’s,
phytoplankton bloom compositions did evolve (Nézan et al.,
2010, see Chauvaud et al., 2000, Figure 9) and the seasonality
index dramatically decreased over the same period: the Chl-
a annual cycle moved from a typical pattern characterized by
a strong first spring bloom and small summer peaks to a
succession of higher-frequency but smaller-amplitude blooms
over the productive period (Chauvaud et al., 2000). Secondly,
the shell daily growth rates of year 1 (1994) and year 2
(1995) cohorts of P. maximus exhibited strikingly different
patterns between 1994 and 1995, with major growth “accidents”
(rate decreases) occurring not only following summer toxic
phytoplankton blooms, but also slightly earlier when the spring
diatom bloom material sedimented (Chauvaud et al., 1998). The
Si/C. fornicata hypothesis emerged from the observation of these
curves of P. maximus shell daily growth rates and the numerous
discussions of benthic biologists with phytoplankton experts and
biogeochemists, that were facilitated by the new daily interactions
among researchers (Chauvaud et al., 2000). The publication
of this paper stimulated many studies in the following years,
designed to test this hypothesis using experiments (Ragueneau
et al., 2002), biogeochemical budgets (Ragueneau et al., 2005),
or modeling (Laruelle et al., 2009) and all these studies involved
both pelagic and benthic scientists, biogeochemists and benthic
ecologists.
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We suggest that the construction of the institute “IUEM”
represents a good example of the importance of proximity to
overcoming barriers to interdisciplinarity. Surprisingly, as noted
by Reckers and Hansen (2015), few contributions in the literature
on interdisciplinarity have so far analyzed these processes
of knowledge construction through the lens of geographical
proximity (see Lee et al., 2010, for exception). As such, the
IUEM building itself constituted a boundary setting in the sense
of Mattor et al. (2014) for the LEMAR laboratory, favoring
the daily meeting of scientists from different disciplines and
stimulating the emergence of the working hypothesis and the
interdisciplinary studies that have been conducted in the 2000’s to
test it. Clearly, interactions did exist before IUEM, but uniting all
the research groups under one roof, increased the opportunities
for exchange. As we shall see, the same is presently happening
concerning the inclusion of humanities researchers at IUEM
today.

The Humanities Enter the Game
The interactions between natural sciences and the humanities
around the proliferation of non-indigenous species in the Bay
of Brest and eutrophication have become more apparent in the
last decade. In the early 2000’s, more interaction was stimulated
by requests for information from the scallop fishing community
facing the effects of the proliferation of C. fornicata (see
section Construction of a Basis for Interdisciplinary Knowledge
About the Bay of Brest). The extremely high abundances of
C. fornicata were threatening the sustainability of a scallop
restocking program started in the early 1980s, through direct
(scallop shell scrapping) and indirect (competition for space)
effects (Frésard and Boncoeur, 2006). The fishermen needed
an economic evaluation for a containment project intended to
make the restocking program consistent with the presence of the
exotic species, which led to funding a Ph.D. project (Frésard,
2008, under the supervision of an economist, J. Boncoeur,
AMURE laboratory “Centre de droit et d’économie de la mer”).
Interactions were also encouraged by the French Ministry
of the Environment which launched the national INVABIO
program (INVAsions BIOlogiques, first call for proposals in
February 2000) to fund more humanities-oriented research on
non-indigenous species (Dalla Bernardina, 2010). In Brest, two
INVABIO projects were funded (2001–2005) to explore the
impacts of C. fornicata proliferation and its possible containment
on the benthic ecosystem (INVABIO I, Coordinator: G.
Thouzeau, LEMAR) and on the pelagic ecosystem (INVABIO
II, Coordinator: A. Leynaert, LEMAR). Both projects included
socio-economic and ethnological components.

These projects yielded important information published
separately by the different scientific communities. In the Bay
of Brest, the objectives of INVABIO I were to quantify: (1)
the impact of small-scale C. fornicata removal by dredging
on ecosystem functioning (Martin, 2005); (2) the potential
changes in predator-prey interactions due to C. fornicata
and starfish proliferations; and (3) the economic cost and
socio-anthropological perception of the invasion (sustainable
management). The INVABIO I project was about the restocking
of the areas cleaned of slipper limpets with P. maximus

juveniles (3-cm shell height). The overall cost of the 5-year
project was estimated at 3.05M Euros in the early 2000’s. In
the end, only the third objective of the INVABIO I project,
which also benefited from INVABIO II funding, was fulfilled
(Frésard and Boncoeur, 2006), as the local fishermen committee
did not get the EU and French funding required for the
dredging and restocking operations, for reasons that remain
to be understood (cf section Construction of a Basis for
Interdisciplinary Knowledge About the Bay of Brest ). In the
INVABIO II project, the impacts of further proliferation or
containment of C. fornicata proliferation on phytoplankton
dynamics was studied in mesocosm experiments (Fouillaron
et al., 2007; Claquin et al., 2010). The costs and benefits analysis
published by Frésard and Boncoeur (2006) demonstrated the
major importance of indirect effects (competition for space)
of the non-indigenous species on the scallop fishery and the
importance of combining scallop restocking and local control
of the invasion, which could reduce by half the cost of
the latter. From an ethnological perspective, another study
clearly demonstrated that problems created by non-indigenous
species were poorly known by the public, which constitutes a
strong impediment to putting in place sustainable management
programs for the Bay (Chlous, 2014).

If the inclusion of economists in such programs was
expected, the inclusion of an ethnologist was more original.
As noted by Menozzi and Pellegrini (2012), the expectation
of such sociological studies is related to the perception and
representations of biological invasions by different categories
of stakeholders as well as to the acceptability of different
management options. The aim was then to produce knowledge
on human-nature relationships and stimulate thinking about
the different ways to manage such invasions (Dalla Bernardina,
2010). Unfortunately, several factors contributed to a clear
lack of interactions between the ethnologist and the biologists,
according to Chlous (2014), related to the fact that the ethnologist
was associated only during the last stages of the proposal
writing and that her scientific concerns were poorly taken into
account. Indeed, there is a persistent criticism that humanities
are being used as window dressing by natural scientists. At
the same time, humanities scholars are sometimes reluctant
to dive into projects driven by natural sciences. This is a
common discussion topic in interdisciplinary projects, including
how trust is built between two or more academic communities
(Mooney et al., 2013). It is a problem of comprehension that
often goes both ways and requires efforts from scholars to
take the time to understand the other’s objectives, disciplines,
language, and way of conducting research (Mattor et al.,
2014). There may be historical disparities between disciplines
to contend with, such as differences in relative size (in terms
of numbers of persons, instrumentation, and funding) and
investigative style (especially in the treatment of qualitative
information). Staying within disciplinary silos during training
does not help with bridging these gaps (Hart et al., 2015).
Finally, project durations of only 2–3 years long are too
short for trust-building within groups and several boundary
settings have been created recently at IUEM to stimulate such
interactions.
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More Recent Moves Toward
Interdisciplinarity at IUEM
If proximity is crucial to overcoming barriers against
interdisciplinarity (Reckers and Hansen, 2015), it is not
enough, as other barriers extend well beyond a need for frequent
interactions. If we are to tackle the complexity of social and
ecological systems this requires interactions between very
distinct epistemic communities, each of which use different
ontologies and epistemologies (Hart et al., 2015, and references
therein). They require that scholars take the time and the risk to
understand the concepts and tools of other disciplines’ cultures,
and vocabularies; one also has to admit that developing a shared,
if not common, language, or a joint conceptual framework,
is not for everyone and strongly depends upon individual
commitments or propensities (Mattor et al., 2014). It takes time
and it is not rapidly rewarding in terms of scientific articles,
which are at the core of a scientist’s career progression.

This leads to a second series of difficulties associated with
the way universities are organized into academic departments
and training programs. Disciplinary divisions within universities
are a strong impediment for their having a role in sustainability
challenges (Hart et al., 2015). Based on their experience within
the Inter-American Institute for global change research (IAI),
Pittman et al. (2016) have highlighted the importance of
stimulating interdisciplinarity through, not only new incentives
using calls for joint proposals but also by: (i) providing space for
experiential learning by researchers, (ii) facilitating networking
and teamwork across disciplines, (iii) exposing researchers to
new concepts and tools, (iv) maintaining persistent mentorship
and support for cultivating cross-disciplinary thinking, (v)
connecting research to tangible problems, and (vi) monitoring
program calls, project selection and implementation. In relation
to point (v), it is worth noting that 90% of the researchers
involved in IAI’s programs indicated the importance of having
practical outcomes as a motivating factor for their participation
in interdisciplinary research.

Within the IUEM, several interactions between disciplines
were already occurring. For example geographers of the LETG-
Brest (Littoral, Environnement, Télédétection, Géomatique)
laboratory had worked with biologists from the LEMAR
laboratory to study biodiversity and human activities, particularly
dredging on maerl beds, and lawyers and economists of the
AMURE laboratory worked with sedimentologists of the DO
(Domaines Océaniques) laboratory to study risks associated with
coastal erosion and submersion. For nearly 20 years, a citizen
science program to monitor the quality of the water of 13 rivers
in region Brittany on a weekly basis has been in existence (Abott
et al., 2018) and a forum on citizen science was organized in
2014 to explore scientific, learning and ethical dimensions of such
programs.

Nonetheless, if proximity was of major importance for the
encounters of scientists working in the parts of the same
ecological system, it appeared insufficient for facilitating deeper
collaborations on broader topics, and particularly to working
on topics in sustainability. Hence, the boundary settings within
IUEM itself were moved. Members of the institute undertook
several initiatives to identify shared research goals among

humanities and natural marine sciences and new paths for
conducting joint research and training. First, the Zone Atelier
Brest-Iroise (ZABrI, part of the French LTER network) was
created (in 2012) with the aim of developing conditions
for the construction of interdisciplinary projects around the
larger objective of understanding the functioning and trends
of the Bay of Brest social-ecological system by encouraging
stronger interactions between scientists and stakeholders within a
sustainability perspective. Entirely new activities arose mixing art
and science in the early 2010’s, such as for example, the Belmont
Forum funded ARTISTICC project which produced unique,
hybrid public outreach projects from the mutual investments of
artists and scientists. In addition, a trans-disciplinary training
module “Science and Society” was introduced in 2012 in the
marine sciences Master program (Hubert et al., 2015). A new
summer school “Université d’étémer-éducation” was also created
that same year, that trains fifty high school teachers in marine
sciences and helps them create interdisciplinary courses for their
classes.

Three years later, a new core research funding theme on
social-ecological systems was added to the LabexMer program
(a financial instrument dedicated exclusively to French marine
sciences initiatives created in 2011). While, geographers had
played a pivotal role in one of its thematic axes since the
beginning, as has been seen elsewhere in other interdisciplinary
programs (see review in Mooney et al., 2013), the new axis
encourages the co-construction of projects involving natural and
social and human sciences. For instance, researchers wishing to
explore the societal implications of their research using socio-
ecological frameworks, such as Ostrom (2009) or Collins et al.
(2010).

Finally, a new research group was launched during 2014
within IUEM, “ApoliMer” (Political Anthropology of the Sea).
This group associates the SSP with natural sciences studies of
marine environments and seeks to integrate both perspectives
(Mazé et al., 2015, 2017), primarily through studies concerning
the decision-making processes and the sustainable governance
of coastal social-ecological systems. These new interactions and
perspectives suggested by ApoliMer have raised key questions
at the science-policy interface presented in this article that are
discussed in the following section.

KEY QUESTIONS AT THE
SCIENCE-POLICY-COMMUNITY
INTERFACES

In this last section, we put forward key questions about the
situation 15 years ago (Figure 5) and the present-day situation
(Figure 6) in the Bay of Brest which arose and arise at the
interface between science and decision-making at both the
community and political levels.

What Prevented a Containment Project 15
Years Ago?
By the mid-2000s, the fishing community imagined a
containment project to protect the restocking program
started by the spat hatchery from the excessive abundance of
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FIGURE 5 | Scientific questions that were raised between 1995 and 2005, concerning the long resistance of the ecosystem to the effects of increasing N delivery

from land and changing nutrient ratios (1), the emergence and the testing of the Si/Crepidula hyporthesis (2) and the key questions raised at the

science-policy-community interface concerning a possible control of the Crepidula proliferation (3).

C. fornicata. The scientific community was concerned that an
eradication project would cause the collapse of the ecosystem
due to the potential role of this species in the prevention
of toxic phytoplankton blooms. Many questions were raised
(3, in Figure 5), by both fishermen and scientists who met
to discuss these issues, such as: what to do with the slipper
limpets once removed from the seabed and at what cost? Which
species would come back following dredging and eradication?
What would be the impact on benthic nutrient fluxes and the
functioning of the whole ecosystem? How much C. fornicata
biomass could be removed from the ecosystem without affecting
the benthic nutrient fluxes? Controls versus “laissez-faire” is
always a major management question regarding non-indigenous
species (Menozzi and Pellegrini, 2012) and at that time, the latter
was chosen. As mentioned earlier, slipper limpet abundances
declined monotonically in recent years, with few hypotheses
to explain this decrease. But 10 years ago, when C. fornicata
was thought to endanger the Great Scallop fishery, was this
option of “laissez-faire” a real choice? Is it because scientists
met with fishermen, explained the silicate pump/C. fornicata
hypothesis? Is it because of the large uncertainties associated
with the recolonization of the seabed, or with the impacts on
nutrient fluxes and possible toxic phytoplankton blooms? Or
is it only because of a lack of funding for removing the slipper
limpets and replacing them by scallop juveniles? Answering
these questions will require detailed examination by human and
social scientists. It implies a reconstruction of the socio-history
of the processes at that time and of the interactions between

scientists and fishermen, ecosystem managers and decision
makers. This socio-history would best be elaborated by crossing
political sociology and the sociology of science, bringing another
perspective to the new political sociology of science (Frickel and
Moore, 2006).

The present situation in the Bay of Brest raises several
questions to be explored within natural sciences and human
and social sciences, as well as at the interface between these
two cultures (Snow, 1959). Within the natural sciences, it will
be important to verify that the earlier model (Laruelle et al.,
2009) of a link between toxic phytoplankton blooms and a
decline in C. fornicata abundances is true (4 in Figure 6), and to
understand the causes of theCrepidula recession (4b in Figure 6).
Answering the first question relates to the validation of the silicate
pump/C. fornicata hypothesis, now that the Crepidula numbers
are declining; this would imply completing a new inventory
of its spatial distribution and biomass, as well as repeating
experiments similar to those conducted 15 years ago to test the
validity of this hypothesis, in particular those on benthic fluxes
and the re-evaluation of biogeochemical budgets. Addressing the
second question (related to the recession of the invader) would
imply exploring different hypotheses, such as the presence of a
pathogen and its possible effects on the C. fornicata life cycle,
the appearance of a predator for C. fornicata (namely starfish),
and/or changes in oxygen concentrations at the sediment-
water interface. But establishing these links should not overlook
additional questions related to the social-ecological system (Liu
et al., 2007), more specifically at the interface between science
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FIGURE 6 | Scientific questions raised today, for natural sciences concerning the causes of the recession of Crepidula (4 and 4b) and raised and addressed through

an interdisciplinary approach involving the social sciences of politics, regarding the causes of the non-intervention 15 years ago concerning the possible control of

Crepidula proliferation (3b), the fishing activities on maerl habitat and its impacts on biodiversity (5) and the relations between these fishing activities and agricultural

activities on land, that question the governance of the land-ocean continuum (6).

and policy and between scientists and the fishing and farming
communities. It is important to recall that the current situation
with fishermen dredging on maerl beds arose because toxic
phytoplankton blooms prevent harvesting the Great Scallop.
These bloomsmay be linked to changing nutrient ratios modified
by C. fornicata recession. In addition, the importance of Si in
this particular system resulted from the earlier disruption of Si:N
and Si:P ratios that originated with the excessive N inputs from
intensive agriculture practices in the surrounding watersheds.
This cascade of events (Figure 4) now yields a fascinating set of
interdisciplinary questions at the science-policy interface.

Is Co-adaptive Management a Sufficient
Condition for Sustainability?
Why does dredging on maerl beds continue today (question 5
in Figure 6), despite the location of these beds within a Natura
2000 area and the clear evidence of their destruction by this
technique? How come the tight relationships between fishermen
and scientists who have been working together for decades in
this ecosystem, have not led to a more sustainable management
of these maerl beds? Indeed, interactions between the scientific

community and the fishing community have not been restricted
to specific interventions in the past. The Great Scallop fishery in
the Bay of Brest is relatively small (between 300 and 400 tons
per year over the last 15 years) but is very important to the local
heritage and economic markets. In the last 50 years, fishermen
have had to adapt to several external constraints (Danto et al.,
in prep.): changes in water quality due to land-derived pollution,
invasion of non-indigenous species, epidemics or abrupt climate
variations, such as the winter 1962–63 which led to a sharp
decline of the scallop standing stock (and a strong decline in
landings: from 1,500 tons annually down to <100 tons before the
Tinduff hatchery opened).

Since the early 1970’s and in collaboration with the local
scientific community, fishermen have diversified their activities
and experimented developing the stocks or aquaculture of
oyster, clam and salmon species. They co-constructed these
programs with the scientific community, first with IFREMER
(Institut Français de l’Exploitation de la Mer) then with benthic
marine biologists at theUniversité de Bretagne Occidentale. These
programs were funded by local and national authorities who
strongly supported this community which was demonstrating
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a strong capacity to adapt under difficult conditions. By the
early 1980’s, the “Ecloserie du Tinduff,” a spat hatchery, launched
a restocking program for the Great scallop. At the time, this
hatchery was quite unusual, as there was only one other hatchery
in Okaido (Japan). It is beyond the scope of this paper to
document the origins and changes in the practice of this activity.
Our purpose here is to simply indicate that these experiments
and the creation of this innovative structure which have saved
the local Great scallop fishery up to now, have been possible only
through the tight connection between the fishing and scientific
communities. If these exchanges are a good example of what we
would call today “adaptive co-management” (Kofinas, 2009), the
present-day situation in the Bay of Brest clearly demonstrates
that this is by no means a permanent guarantee of the successful
management of biological resources.

It will be crucial to investigate the reasons for this
dysfunctioning to move toward sustainability in this ecosystem.
Again, key questions need to be investigated at the interface
between science, policy and communities. How do the different
social groups (professionals/corporations, scientists), with their
diverse interests, take charge of this case (fisheries entrepreneurs
versus biodiversity conservationists)? How have institutions
seized the question? What are the different forms of collective
mobilization, conflict and conflict resolution? Is there a
consensus and who ultimately decides? The question of decision
is so crucial that the most recent program devoted to the study
of the interaction between dredging and habitat modification
in Natura 2000 areas, which was launched in 2016 by the local
fishing authorities with participation by natural scientists, is
called DECIDER (to decide, in French). This program aims to
reconcile the activities of dredging and preservation of the maerl
beds, through the evaluation of the interactions between gear and
habitat on the Natura 2000 sites.

What Form of Governance Between Land
and Ocean?
Moving landward, more questions arise related to the importance
of Si in the system and to excessive N inputs encouraged
by intensive agricultural practices. For instance, it would be
important to investigate the perception of the Si biogeochemical
cycle by decision-makers and whether or not it is being taken
into account at the same level (e.g., through systematical
measurement) as the N and P cycles. Most long-term
observations of water quality in the Brittany region do not
include this parameter, despite its demonstrated importance
in coastal environments. Is it because of poor knowledge
transmission between science andmanagement/decision makers,
the so-called “knowledge gap” (Jasanoff, 1990)? Is it because
managers know that they can control N and P inputs but not
Si inputs? More generally, are the regulation services linked to
nutrient recycling really taken into account by decision makers,
as easily as provisioning services for example? These questions
relate to the way complexity of ecosystems is accounted for at the
science-policy interface and to the complexity of this interface
itself. Indeed, the chain of events as described in Figure 4 involves
the Si biogeochemical cycle and an “invisible” invader. It is more

subtle than the direct effect of excessive N inputs leading to
visible and odorous green tides. This calls into question the
treatment of complexity and the quality of the indicators that
are used to evaluate the ecological and biogeochemical status
of a given ecosystem. Have we developed the most appropriate
set of indicators that can account for this complexity? This is
where it is crucial that social scientists have the possibility to
work in close interaction with natural scientists, to explore the
way scientific knowledge is being produced and used - or not - in
the decision-making process (Mazé et al., 2017).

These questions about complexity and the knowledge gap
should not prevent action to be taken, as we also often know
enough to do so. But other factors, beyond scientific evidence,
are to be taken into account. Green tides have been a major
public issue in Brittany for the last 50 years, leading to major
conflicts at the land-ocean interface which are still unresolved.
Here again, national, regional, and local authorities are working
apparently side by side with professionals of agriculture and
scientists, to promote changing agricultural practices on the
watersheds and reduce the impact of this sector on water quality
and ecosystem services. Under the aegis of the GIS CRESEB
(“Groupement d’Intérêt Scientifique, Centre de Recherche et
d’Expertise sur l’Eau en Bretagne”) funded by the Brittany Region
in the early 2010’s, a permanent group of scientists, covering
many disciplines from agronomy to marine biogeochemistry,
from sociology to law and economics, is meeting regularly to
discuss how to best accompany the projects of local territories
in the region subject to litigation, to favor the transformation
toward sustainability. Scientists involved in this group discuss
their role in this transformation, being aware of the difficulty
of such an exercise, thanks to earlier experiences with French
national plans against green algae proliferation. In parallel to
these efforts, important decisions are taken by public authorities
that allow the persistence of the agro-industrial agriculture
model, already denounced in several reports from NGO’s and
from the “Cour des comptes.” Power issues here play a key role in
this blockage between the state, the agro-industrial lobby and the
impact on farmers, their practices, human health and ecosystems.
What is the role of power relations in the conditions of possibility
and impossibility of transformation to sustainability? What is
the role of scientists in the process of reflection, accompanying
this transformation? The argument about the lack of knowledge
continues to be mobilized, thus promoting inaction, and what
does it means in terms of instrumentalization? This is where
political science could provide major insight into the so-called
implementation gap, related to inertia of the institutional and
political systems. Many factors have been put forward to explain
it. They have been identified through the “path dependency”
concept, ratchet effects and other self-reinforcing mechanisms.
Within the framework of the new political sociology of science
(Frickel andMoore, 2006), we need to address the use of scientific
knowledge by decision makers, taking into account the diversity
of interests and exploring the decision-making context and
process, combining knowledge, and power, something which is
too rarely done in environmental studies (Fabinyi et al., 2014)
which is especially the case when dealing with transformation
more than with adaptation (Olsson et al., 2014).
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As tentatively shown in Figure 6 (6), addressing these
questions of power and governance of the land-ocean continuum
may be one way to “close the loop” and re-link the
communities of agriculture and fishing/aquaculture. For a
long time, agriculture and fishing have been closely related
in Brittany, often with a single person sharing his time
between both activities. Today practices have changed, and
nitrate leaks have become an element of division between
the two communities. The cascade of events described earlier
(section The Bay of Brest ecosystem since WWII and Figure 4)
demonstrates the complexity of the ecosystem functioning.
However, the way we ask the questions at the science-
policy interface in this section (5 and 6 in Figure 6),
from maerl beds to agricultural practices, suggests that we
now address the complexity of the social-ecological system,
taking into account these retro-actions from sea to land.
This implies that scientists, the different stakeholders and
decision-makers work together and that interdisciplinaritymakes
progress, especially between natural and human and social
sciences.

PERSPECTIVES

Following the description of the environmental trends observed
in the Bay of Brest over the past five decades, a series of questions
has been raised at the science-policy-communities interfaces. The
social sciences of politics, in close collaboration with marine
environmental sciences, will now analyze the decision-making
process concerning the management of the Bay of Brest and the
adjacent Iroise Sea, benefiting from the new boundary settings
described in section Construction of a Basis for Interdisciplinary
Knowledge About the Bay of Brest. From the perspective
of historical and political sociology, it will be necessary to
reconstruct the socio-history of the management of the bay,
paying particular attention to the interactions between scientists,
naturalists, fishermen, farmers and managers. The interaction
between fishermen and farmers seems indeed necessary for
negotiations to progress toward the sustainable management
of the Bay of Brest because of the inextricable link between
eutrophication and the ecological status of the bay which impacts
severely fishing communities. This is what is meant in Figure 6,
by the circular aspect of the figure and the triangle aiming at
closing the circle, representing these questions to be addressed
at the science-policy interface, which imply that we explore the
governance of the land-sea continuum. These questions will
have to evolve based on a reflection on the history of science
and technology, but even more so in the context of the new
political sociology of science so that we can grasp the power
games around the question of expertise (Bérard and Crespin,
2010).

Exploring sustainability challenges requires strong
interdisciplinary approaches and we have used our study case
to derive important insights, particularly on the importance of
geographical proximity and the establishment of boundary
settings to stimulate a better integration of social and
human sciences in the study of LTER sites, turning them

into LTSER sites. Here again, the importance of creating
boundary settings in immersion within an environment of
natural sciences, reflects the role of geographical proximity
but, this time at the interface between humanities and
natural sciences. The creation of ApoliMer at IUEM and
the recent arrival of economists and jurists from the AMURE
laboratory within a just-completed extension (opened in
2016) of the IUEM building, achieves now, nearly two
decades after the opening of the first buildings, the original
intentions of the University to construct facilities suitable
for interdisciplinary approaches by bringing together in
a single location, researchers concerned with the marine
environment.

This observation raises key questions that, we believe,
should be taken extremely seriously by those in charge of
the politics of science, concerning both research and training.
Trust is an essential component of these interactions among
scientists from different disciplines, and between science and
society, and it takes time to build. We have seen in section
Construction of a Basis for Interdisciplinary Knowledge About
the Bay of Brest that the interdisciplinary knowledge built,
first between pelagic and benthic scientists, and now between
biogeochemists, ecologists, and political scientists (all authors
on this manuscript), was and is possible mostly thanks to
the existence of permanent research staff remaining in place
over many years, and to the construction of infrastructures
and boundary settings that facilitate long-term interactions
among different epistemic communities. It appears that these
crucial needs for sustainability science and action diverge
strongly from the on-going growth of the scientific field,
still favoring positions on soft money, extreme mobility,
the precarious place of young researchers, and enhanced
competition. Even the scientific careers of permanent staff
continue to be evaluated mostly on the impact factor criteria,
neglecting the time it takes for these scientists involved
in inter- and trans-disciplinary approaches to build trust
and fundamental knowledge that needs to be co-constructed,
amongst various disciplines, and at the interface between
scientific and other forms of knowledge. Last but not least,
this evolution toward sustainability raises many other key
questions, especially about the training of the next generation
of students. Depth versus breadth is an important debate in
Master and Ph.D. programs. Do we encourage training of
“hybrid” students, better able to address complex problems
but probably less specialized in one particular field, or do
we train very specialized students and find new ways to help
them being able to interact with other researchers from very
distant fields? When should interdisciplinarity be introduced
in a student cursus? Does a student trained interdisciplinary
have equal chances to find a position related to his experience,
within or outside academia, as one trained in a specific field?
Most probably, the emergence of the field of sustainability
science offers a wonderful field for the sociology of science, be
it concerning training, or the many questions that this field
raises concerning our role of scientists on this path toward
sustainability.
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