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A one-dimensional multistream formalism is extended for the study of temperature anisotropy

driven Weibel-type instabilities in collisionless and relativistic plasma. The formulation is based on

a Hamiltonian reduction technique using the invariance of generalized canonical momentum in

transverse direction. The Vlasov-Maxwell model is expressed in terms of an ensemble of one-

dimensional Vlasov-type equations, coupled together with the Maxwell equations in a self-

consistent way. Although the model is fundamentally nonlinear, this first of three companion papers

focuses on the linear aspect. Dispersion relations of the Weibel instability are derived in the linear

regime for different kinds of polarization of the electromagnetic potential vector. The model allows

new unexpected insights on the instability: enhanced growth rates for the Weibel instability are

predicted when a dissymmetric distribution is considered in p?. In the case of a circular polarization,

a simplification of the linear analysis can be obtained by the introduction of the “multiring”

approach allowing to extend the analytical model of Yoon and Davidson [Phys. Rev. A 35, 2718

(1987)]. Applications of this model are left to the other two papers of the series where specific

problems are addressed pertaining to the nonlinear and relativistic dynamics of magnetically trapped

particles met in the saturation regime of the Weibel instability. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4817750]

I. INTRODUCTION

The classic Weibel instability is a purely growing elec-

tromagnetic mode excited in an unmagnetized plasma by

perpendicular free energy, stored in the velocity anisotropy

of plasma particles. The free energy source for the instability

is provided by a temperature anisotropy of the electron distri-

bution function between the perpendicular and longitudinal

directions in the momentum space. A substantial fraction of

the kinetic energy of the plasma is thus converted into the

generation of strong quasi-static magnetic fields through the

redistribution of currents in space. This instability was first

predicted by Weibel in Ref. 1 for a non relativistic plasma. A

simple physical interpretation provided the same year by

Fried in Ref. 2 treated the particle distribution anisotropy

more generally as a two-stream configuration of a cold

plasma. This second kind of instability is usually referred as

the current filamentation instability (CFI). In CFI the insta-

bility is then driven by velocity (or momentum) anisotropy

instead of the standard temperature anisotropy.

The physical mechanisms underlying the development of

both CFI and WI are very similar and are found in the redis-

tribution of particle currents inside the system. Such an aspect

underlies the similarities between WI and CFI instabilities

and allowed us to build a theoretical model based on a multi-

stream description allowing to unify both types of instabil-

ities. We underline that, as a consequence of the strong

physical and mathematical analogies, CFI is often called

Weibel instability, in particular in the laser-plasma interaction

context. Here, CFI appears as a consequence of the accelera-

tion of a “hot” electron bunch that induces a colder, although

denser return current in order to maintain quasi-neutrality.

Moreover, this sort of situation occurs in the fast ignition

scenario, where the charge of the relativistic electron beam is

compensated by the return current. On the other hand, in the

astrophysical context, WI and CFI are involved in the birth of

cosmological magnetic field. Theoretically, such Weibel-type

instabilities are capable to create the seed magnetic field in

the large interpenetrating structures of intergalactic plasmas.

Some investigations have proposed the relevance of WI for

the generation of magnetic fields in gamma-ray bursters in

Refs. 3–6 or galaxy cluster shocks.7

While Weibel-type instabilities have been introduced

fifty years ago, there are many questions to be answered. For

instance, it is worth noting that the relativistic formulation of

the Weibel instability remains a complex problem since the

temperature anisotropy cannot be easily introduced starting

from the standard Maxwell-J€uttner distribution. When rela-

tivistic effects must be taken into account, the problem is

additionally complicated by the nonlinear dependence of the

energy of particles on their momentum and the strong cou-

pling between perpendicular and parallel momenta through

the relativistic Lorentz factor. The first discussion of the rela-

tivistic formulation of the Weibel instability is by Yoon and

Davidson in Ref. 8 where the stability of a “ring” in momen-

tum was studied. This model combines a Water-Bag9,10

description in the longitudinal direction and a cold Dirac-

type distribution in the perpendicular direction. Indeed, this

model can be considered as a simplified version of the multi-

stream model, first introduced in Ref. 11 and applied for the

study of CFI in Ref. 12 and for WI in the non relativistic re-

gime in Ref. 13.

Furthermore, the standard Weibel instability is usually

non resonant with plasma particles: assuming a complex fre-

quency x, WI grows exponentially in time with a growth
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rate given by ImðxÞ > 0, while the real part ReðxÞ ¼ 0.

However, the features of WI can be modified and a resonant

regime occurs when the instability is coupled with a parallel

two-stream instability as shown by Lazar et al. in Ref. 14.

Thus for large wave numbers, the aperiodic feature of WI

changes and the instability becomes oscillatory in time

exhibiting now a finite real frequency ReðxÞ 6¼ 0. This so-

called resonant regime is typically encountered in a counter-

streaming plasma when the stream velocities are fast enough.

On the other hand when the two stream instability is intro-

duced in the perpendicular direction of k (and now referred

as CFI), i.e., when both filamentation and Weibel instabil-

ities are emitted in the same direction, a cumulative effect

was observed in Ref. 15, leading to an enhanced growth rate

larger than those observed for pure filamentation and pure

Weibel instabilities. However, in the former situation, the

CFI mode exhibits a hybrid electrostatic—electromagnetic

nature leading to the excitation of the plasma wave. Such a

coupling with the plasma wave is also met in the asymmetric

distributions which require the need of new analytical

tools making the calculations more tractable in relativistic

situations.

Our model is thus based on a full kinetic description of

the dynamics in the longitudinal direction (here denoted px),

while a Hamiltonian reduction is used to select a class of

exact solutions to describe the dynamics in the perpendicular

direction in terms of a sum of particle “bunches” or

“streams.” The material is presented in three companion

papers. Our model can be used to determine first in paper I

the linear dispersion relation in a more tractable way allow-

ing to take into account dissymmetric distributions. The sec-

ond paper II in Ref. 16 address the physics that ultimately

limits the growth of WI and deals with the stability of non-

linear Bernstein-Greene-Kruskal (BGK)17 in a magnetic ver-

sion at saturation of Weibel-type instabilities. The third

paper, part III in Ref. 18 is based on numerical comparisons

between a numerical version of the multistream model with

full kinetic Vlasov-Maxwell simulations in the relativistic re-

gime of WI. The paper is organised as follows. We briefly

present our Hamiltonian model in Sec. II. The linear analysis

is presented in Sec. III. To simplify the analysis, we have

chosen to keep the water-bag description for the longitudinal

direction (although there is no restriction in the kinetic treat-

ment in px) and to put the emphasis on the multistream

approach in the perpendicular directions, showing that both

methods, “water bag” and “stream” differ in a fundamental

way. In Sec. IV, we come back to the concept of temperature

and finally discuss the relevance of this approach to specific

relativistic distributions showing the correspondence in the

sense of the moments. Section V is devoted to the study of a

symmetric distribution function in momentum, while the

case of a dissymmetric distribution is considered in Sec. VI.

In Sec. VII, the multistream model is extended to the concept

of “rings” in the perpendicular momentum ðpy;pzÞ space

allowing to take into account circularly polarized waves

showing that the multistream model can be seen as a general-

isation of Yoon’s and Davidson’s model presented in Ref. 8.

Conclusions are given in Sec. VIII. Some auxiliary calcula-

tions are also presented in appendixes.

II. THE MULTISTREAM MODEL

Here, we sum up the basic equations used in the multi-

stream model. We restrict our analysis to plane waves propa-

gating along the x-direction assuming ions as a fixed

neutralising background. Let us consider the Hamiltonian of

one particle, of rest mass m and charge e, in the electromag-

netic field (E, B)

H ¼ mc2ðc� 1Þ þ e/ðx; tÞ; (1)

where the standard value of the Lorentz factor is given by

c ¼ 1þ p2

m2c2

� �1=2

: (2)

In Refs. 11–13, we have shown that, it is possible to reduce

the dimension of the global phase space by using the invari-

ance of the canonical momentum

Pc? ¼ pþ eA? ¼ const ¼ Cj; (3)

in the perpendicular direction. Such a property results from

the fact that the Hamilton’s equation is zero (dPc?=dt
¼ �@H=@q? ¼ 0) since the Hamiltonian is assumed to

depend only on the longitudinal spatial coordinate, here

denoted x. Thus without loss of generality, we can consider

a plasma where the particles are divided into 2Nþ 1

“bunches” or “streams” of particles, each “stream” j (for

jjj � N) having the same initial perpendicular momentum Cj.

We can now define, for a particle population j, a distribution

function noted fjðx; px; tÞ which satisfies the following rela-

tivistic Vlasov-type equation:

@fj

@t
þ px

mcj

@fj

@x
þ eEx �

1

2mcj

@

@x
ðCj � eA?Þ2

 !
@fj
@px
¼ 0; (4)

where the Lorentz factor c, initially given by Eq. (2),

becomes now

cj ¼ 1þ p2
x

m2c2
þ ðCj � eA?ðx; tÞÞ2

m2c2

� �1=2

: (5)

Thus for each population j, the source terms used in the

Maxwell equations are defined as

njðx; tÞ ¼
ðþ1
�1

fjðx; px; tÞdpx; (6)

J?j ¼
e

m
ðCj � eA?Þ

ðþ1
�1

fj

cj

dpx; (7)

respectively for the density and the perpendicular current

density. Finally, the reduced Vlasov equations given by Eq.

(4) are self-consistently coupled to the Poisson equation and

the potential vector A?

@Ex

@x
¼ e

e0

XþN

j¼�N

njðx; tÞ � n0

0
@

1
A; (8)

@2A?
@t2
� c2 @

2A?
@x2

¼ 1

e0

XN

j¼�N

J?jðx; tÞ; (9)
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allowing to reduce the phase space to 2D one x; px, plus

2Nþ 1 values for the corresponding Cj vector.

Notice that this model has been applied intensively for

the study of wave-particle resonances in laser-plasma inter-

action using only a single stream, i.e., a cold Dirac-type dis-

tribution function in the perpendicular momentum direction.

While restricted to a spatially periodic conditions in Ref. 19,

the code has been successfully extended to a non periodic

causal bounded system in Ref. 20, allowing the code to deal

with more realistic and longer plasma. The case of the exten-

sion to the relativistic regime of laser-plasma interaction is

studied in Ref. 21.

III. LINEAR ANALYSIS AND “MULTIFLUID”
APPROACH

Although our model takes into account a continuous dis-

tribution in px, we choose to follow Yoon and Davidson and

to introduce here a Water-Bag description in the longitudinal

direction (here denoted px), while keeping the concept of the

multistream for p?. While the (multiple) water-bag model is

based on the Liouville’s theorem (see Ref. 22 for more

details) and the resulting conservation of the particle distri-

bution function, the multistream model uses the invariance

of the perpendicular canonical momentum vector and the

model keeps its kinetic character even with one stream. The

evolution of the particle population can be described by the

distribution of type

Fðx; px; py; tÞ ¼
XþN

j¼�N

Fj½Hðpx þ pþj Þ

� Hðpx � p�j Þ�dðp? � ðCj � eA?ÞÞ; (10)

where H is the Heaviside function. We assume that p6
j

¼ 6 paj initially at time t¼ 0. In the water-bag approach, it

is sufficient to follow the dynamics of the contours, here

obtained by determining the different moments of the

reduced Vlasov equations (4). We obtain thus

@p6
j

@t
þ

p6
j

mc6
j

@p6
j

@x
¼ eEx �

1

2mc6
j

@

@x
ðCj � eA?ðx; tÞÞ2; (11)

where the longitudinal electric field Ex and the transverse

potential vector A? are, respectively, given by Eqs. (8) and

(9). Here, c6
j is the Lorentz factor, corresponding to the

stream j and the water-bag contours p6
j , given by

c6
j ¼ 1þ

p62
j

m2c2
þ ðCj � eA?ðx; tÞÞ2

m2c2

� �1=2

: (12)

A physically equivalent approach would consist in consider-

ing a multifluid model described by the set of Eqs. (11)

coupled with the field equations (8) and (9). Note that this

system is closed. For the analytical study, this hydrodynami-

cal formulation of the multistream model is particularly con-

venient. In the case of a linear normal mode analysis, we

assume for the stream j that p6
j ¼ 6paj þ dp6

j ; nj ¼ n0j

þdnj; A? ¼ dA?; Ex ¼ dEx and by using the definition of

the distribution F given in Eq. (10), the set of Eqs. (8), (9),

and (11) becomes now

@dp6
j

@t
6

paj

mCaj

@dp6
j

@x
¼ edEx þ

e

mCaj
Cj �

@

@x
dA?; (13)

@dEx

@x
¼ e

e0

XþN

j¼�N

Fjðdpþj � dp�j Þ; (14)

@2dA?
@t2

� c2 @
2dA?
@x2

¼ e

me0

XN

j¼�N

ðCj � edA?Þqj; (15)

with the relative density qj of stream j given by

qj ¼
ðþ1
�1

fj
cj

dpx ¼ mcFj

ðuþj

uj�

duxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

x þ a2
j?

q : (16)

Here, we have used the simplified (normalized) notation:

u6
j ¼ p6

j =mc; aj? ¼ ðCj � eA?Þ=mc and ux ¼ px=mc. After

calculating the integral in Eq. (16), we obtain for the relative

density the following expression:

qj ¼ mcFjln
uþj þ cþj
u�j þ c�j

 !
: (17)

In Eq. (13), the Lorentz factor Caj is given by

Caj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

p2
aj

m2c2
þ

C2
j

m2c2

s
: (18)

The expression of the Lorentz factor in Eq. (12) allows us to

rewrite the analytical form of qj in a more tractable form. By

denoting c6
j ¼ Caj þ dc6

j in a perturbative form, a little alge-

bra leads to the following expression for the relative density:

qj ¼ n0ajhc�1
aj i þ

n0aj

2uaj

dpþj � dp�j
mcCaj

þ en0ajCj:dA?

m2c2Caj 1þ
C2

j

m2c2

� � ;
(19)

where we have used

dc6
j ¼ 6

pajdp6
j

m2c2Caj
� eCj:dA?

m2c2Caj
: (20)

In Eq. (19), the term hc�1
aj i is defined in the standard way

hc�1
aj i ¼

1

2uaj
ln

1þ baj

1� baj

 !
¼ 1

Caj
GðbajÞ; (21)

using the notation of a normalized velocity baj ¼ vaj=c
¼ uaj=Caj. The function G, of argument b, is defined as

follows:

GðbÞ ¼ 1

2b
ln

1þ b
1� b

� �
: (22)
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By linearizing the previous set of equations given by Eqs.

(13)–(15), using the standard notation d ¼ exp iðkx� xtÞ,
we get the following system:

1� x2
p

XN

j¼�N

aj

Cajðx2 � k2v2
ajÞ

0
@

1
AdEx

� ikx2
p

XN

j¼�N

aj

mC2
aj

Cj:dA?
x2 � k2v2

aj

¼ 0 (23)

�ikxp

XN

j¼�N

ajCj

mC2
ajðx2 � k2v2

ajÞ
dEx

� x2
pk2
XN

j¼�N

ajCjðCj:dA?Þ
m2C3

ajðx2 � k2v2
ajÞ
þ ðx2

k � x2ÞdA?

� e

me0

XN

j¼�N

ajhc�1
aj iCj þ x2

p

XN

j¼�N

ajCjðCj:dA?Þ

m2c2Caj 1þ
C2

j

m2c2

� � ¼ 0:

(24)

Here, the quantity aj ¼ 2pajFj=n0 represents the normalized

density of the stream j (such quantities verify indeed the nor-

malization condition
PþN

j¼�N aj ¼ 1). We have also intro-

duced the frequency of the electromagnetic wave xk, which

is given in the usual form

x2
k ¼ x2

p

XþN

j¼�N

ajhc�1
aj i þ k2c2: (25)

Now, by considering that the determinant of the system

formed by Eqs. (23) and (24) is zero, it is possible to obtain a

simple expression of the dispersion relation for WI in the rel-

ativistic regime. However, we adopt to simplify here the pre-

sentation just by choosing the simplified version of a linearly

polarized wave, i.e., by assuming that the potential vector

perturbation writes now dA? ¼ dAyey. The case of a circu-

larly polarized wave will be studied later in Sec. VII. Here,

we assume that the net current is zero or equivalentlyXN

j¼�N

ajCjhc�1
aj i ¼ 0: (26)

A little algebra leads to the general expression of the disper-

sion relation in a more compact formulation

x2 � x2
k þ x2

pðx2 � k2c2Þ
XþN

j¼�N

2
4

�
XþN

j¼�N

ajC
2
j

m2c2Caj 1þ
C2

j

m2c2

� �
ðx2 � k2v2

ajÞ

3
775

� 1� x2
p

XþN

j¼�N

aj

Cajðx2 � k2v2
ajÞ

2
4

3
5

¼ k2x4
p

XN

j¼�N

ajCj

mC2
ajðx2 � k2v2

ajÞ

2
4

3
5

2

: (27)

When the stream repartition in the py -space is symmetric

(the right-hand term of Eq. (27) is therefore zero), both elec-

trostatic (ES) and electromagnetic (EM) modes are then

uncoupled. While the electrostatic mode (with dEx 6¼ 0 and

dAy ¼ 0) obeys the dispersion relation

1� x2
p

XþN

j¼�N

aj

Cajðx2 � k2v2
ajÞ
¼ 0; (28)

the electromagnetic mode including the Weibel instability is

given by

x2 � x2
k þ x2

pðx2 � k2c2Þ

�
XþN

j¼�N

ajC
2
j

m2c2Caj 1þ
C2

j

m2c2

� �
ðx2 � k2v2

ajÞ
¼ 0: (29)

Notice that in the cold limit where paj ! 0, the dispersion

relation given by Eq. (27) looks like the dispersion relation

of CFI in Ref. 23.

IV. MOMENTS OF THE DISTRIBUTION FUNCTION
IN THE MULTISTREAM MODEL

In the kinetic version of the multistream model pre-

sented in Sec. II, we can keep a full Vlasov description in the

longitudinal direction (here denoted px), the temperature is

then described in a standard way using the data of the differ-

ent distribution functions fjðx; px; tÞ, which depend explicitly

of the px variable. Now, in the perpendicular py direction, the

concept of temperature may be recovered by considering the

moments of the distribution function, or in other words, by

looking at the equivalence in the fluid moment sense of the

multistream distribution and a continuous version of the dis-

tribution function. To this purpose, let us consider the case

of a cold distribution function in px but keeping a relativistic

temperature in py. In this section of the paper, we choose to

normalize the frequency x, the wave vector k, momentum

px=y and Cj respectively to the plasma frequency xp, the elec-

tron skin depth c=xp and to mc. We have also introduced the

normalized velocity b ¼ v=c. The equilibrium distribution

corresponds to:

F0ðpx; pyÞ ¼
n0

2K1ðlÞ
e�l

ffiffiffiffiffiffiffiffi
1þp2

y

p
dðpxÞ; (30)

with the standard definition of l ¼ mc2=Ty. Thus by defining

the quantity hðpyÞ ¼
Ð

F0ðpx; pyÞdpx, we can used for the

multistream model the following functional form:

hðpyÞ ¼
XN

j¼�N

Fjdðpy � CjÞ: (31)

We then defined the 2n-moment of the quantity hðpyÞ as

p2n
y

c

* +
¼
ðþ1
�1

p2n
y hðpyÞdpy

c
¼
XN

j¼�N

C2n
j Fjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C2
j

q ¼
XN

j¼�N

C2n
j Fj

Cj
;

(32)
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where we have defined the Lorentz factor Cj by Cj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

j

q
. By introducing the notation aj ¼ Fj=n0, the

equivalence condition for the two first non zero moments

hp2
y=ci and hp4

y=ci of the distribution F0 leads to

p2
y

c

* +
¼ 1

l
¼
XN

j¼�N

C2
j aj

Cj
; (33)

p4
y

c

* +
¼ 3K2ðlÞ

2l2K1ðlÞ
¼
XN

j¼�N

C4
j aj

Cj
; (34)

together with the normalization condition

XN

j¼�N

aj ¼ 1: (35)

Here KnðlÞ is the modified Bessel function of second kind of

order n. Now, we assume that the j-stream verifies the fol-

lowing symmetry properties C�j ¼ �Cj and a�j ¼ aj for ev-

ery values of j between 1 to N. We take also C0 ¼ 0 for the

central beam. Now by restricting the system to a three-

stream model, Eqs. (33) and (34) become now

2C2
1a1

C1

¼ 1

l
; (36)

2C4
1a1

C1

¼ 3K2ðlÞ
2l2K1ðlÞ

: (37)

The quantities C1 and a1, together with a0 define the differ-

ent streams in the three-stream model. Dividing Eq. (37) by

Eq. (36), we have C1 ¼ �C�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3K2ðlÞ=2lK1ðlÞ

p
and a1

¼ a�1 ¼ C1=ðlC2
1Þ. For the central stream we recall that

C0 ¼ 0 and that a0 can be calculated from Eq. (35). Thus, we

have here a0 ¼ 1� 2C1=ðlC2
1Þ. While in the Maxwell-

J€uttner distribution in Eq. (30), the quantity l�1 defines the

effective kinetic temperature in the perpendicular direction

as:

Ty

mc2
¼ 1

n0

ð ð
p2

yffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

y

q F0ðpx; pyÞdpxdpy ¼
1

l
; (38)

in the non-continuous version, the concept of temperature can

be recovered by the “spacing” of streams in the perpendicular

momentum space. For the three-stream model, it is the spac-

ing of the streams j¼61 which plays this role; the central

beam having finally no contribution. In the multistream

model, the perpendicular temperature can be defined as

Ty

mc2
¼
XN

j¼�N

C2
j aj

Cj
¼ 1

l
: (39)

In the general case with 2Nþ 1 streams, the system of Eqs.

(33)–(35) may be generalized and takes the form of a

Vandermonde system. In particular, when trying to solve this

system numerically, it becomes ill-conditioned for large

values of the number of streams. A more convenient way

can be found for the resolution of the system for a large num-

ber of streams and for a regular sampling of the py axis, i.e.,

for an equispaced set of Cj values. The idea is then to com-

pute the Fj values at points Cj ¼ jDC (using for instance

DC � 1
2

pth;y where pth;y is the thermal momentum along the y
axis) for a given distribution function. We will see that such

an approximation becomes accurate for a total number of

streams greater than five, at least in the linear regime. These

results will be used in paper III to initiate the plasma using a

more general shape of equilibrium distribution introduced by

Schlickeiser in Ref. 24 taken into account a temperature ani-

sotropy in generalized Maxwell-J€uttner-type distribution. As

mentioned previously, the part III companion paper18

presents numerical comparison with full kinetic Vlasov-

Maxwell simulations.

V. THE SYMMETRIC CASE: PURE TRANSVERSE WI

Let us consider the linear dispersion relation for the rela-

tivistic regime given in Eq. (29) in presence of stream sym-

metry in the py direction which indeed is a particular case of

the coupled ES/EM dispersion relation (27). Notice that the

second member of Eq. (27) becomes zero when the reparti-

tion of the Cj values is symmetrical in py. The analytical for-

mulation of the linear dispersion (27) as a discrete

summation over an assembly of streams provides a general

and exact approach to take into account any type of anisot-

ropy of the distribution function. The case of CFI, involving

two cold beams, was recently treated in Ref. 12.

As a first application of WI, let us consider the case

where baj ¼ 0. In that case, Eq. (29) can be rewritten in a

dimensionless polynomial form of fourth degree. One

thereby gets the following dispersion relation:

x4 � x2 x2
k �

XþN

j¼�N

ajC
2
j

Cjð1þ C2
j Þ

0
@

1
A� k2

XþN

j¼�N

ajC
2
j

Cjð1þ C2
j Þ
¼ 0;

(40)

where the frequency, wave vector, and velocity are normal-

ized to xp; de ¼ c=xp and c. Equation (40) has two real

roots x2
1 and x2

2 such that

x2
1x

2
2 ¼ �k2

XþN

j¼�N

ajC
2
j

Cjð1þ C2
j Þ
< 0; (41)

showing that the system is always unstable. Such a polyno-

mial equation in the case where baj ¼ 0 presents the advant-

age of being solved for any value of the number of streams

without difficulty since the order of the polynom does not

depend of N. Thus, we can check the convergence of the

model for a large number of streams. Finally, the numerical

resolution of the dispersion relation given by Eq. (40) is per-

formed under two initial techniques to build the position of

streams corresponding to a Maxwell-J€uttner distribution of

transverse temperature of Ty ¼ 2000 keV. A graphical repre-

sentation is given in Fig. 1 to aid comparison of the obtained

convergence of the numerical solution when the number of

082109-5 A. Ghizzo and P. Bertrand Phys. Plasmas 20, 082109 (2013)



streams is modified. Fig. 1 displays the normalized growth

rate C=xp as a function of the normalized wave number

kc=xp. By choosing a regular sampling of the py axis (i.e., an

equispaced set of Cj values, separated by DC � 0:50pth;y),

the convergence is already obtained for 2Nþ 1¼ 15 streams.

We have represented in solid line the case of 2Nþ 1¼ 257

streams (we have however used a smaller value of DC � 0:3
which is identical to the case of 15 streams). The case of a

regular sampling using five streams with DC ¼ 0:75pth;y

ðpth;y ’ 4:032mcÞ is plotted in dotted line. Note that the

curve is very close of the exact solution plotted in solid line,

even with a small number of streams.

Now let us consider the equivalence in the sense of the

moments of the distribution. We have plotted the numerical

solutions obtained using three streams (i.e., with N¼ 1) and

five streams (with N¼ 2) in dashed lines, but now using the

equivalence in the sense of the moments of f. In that case the

initial position of streams Cj was determined by solving Eqs.

(33)–(35) for three streams, or the system formed by Eqs.

(32) and (35) when the number of stream is bigger than

three. We observe that the convergence now is slow and the

result obtained for three streams exhibits a non negligible

error while the case N¼ 2 (i.e., 5 streams) leads to a solution

close to the expected value.

Hence, the case where baj 6¼ 0 corresponds now to a

weaker anisotropy temperature, because we choose to keep

the same perpendicular temperature but increases now the

degree of the polynom form when the number of streams

increases. We have tried three then five streams in Eq. (29).

Thus, using a three-stream model in the transverse direction

and a simplified water-bag description (with only one bag),

we are able to recover the case of WI, driven by a tempera-

ture anisotropy if one of the roots is negative. We have

shown, for a three-stream model that

x2
1x

2
2 ¼ x2

kk2b2
a1 �

2a1C2
1k2

Ca1ð1þ C2
1Þ
< 0; (42)

and we are able to recover the case of WI, driven by a tem-

perature anisotropy if one of the roots is negative. From the

last inequality (42), one gets the threshold condition of the

temperature anisotropy necessary to initiate the instability in

the relativistic regime.

The dispersion relation for seven streams is presented in

Appendix A. The imaginary part of the stationary solution

(the real part being zero) of the dispersion relation given by

Eq. (A3) of the Appendix, for different sets of temperature

parameters are plotted in Figs. 2 and 3 for the case of seven

streams. Here, the equivalence in the sense of the moments

has been used. Similar results have been obtained using five

streams. Fig. 2 shows a typical plot of the growth rate C=xp

against kc=xp for four different values of the longitudinal

bag momentum pa. Here the parameter pa is kept fixed for

each stream and pa is taken from 0 till 1.5 by step of 0.5.

When pa increases, Fig. 2 confirms that the maximum

growth rate of the instability shifts toward shorter wave num-

bers. In the above examples of Figs. 1 and 2, the perpendicu-

lar temperature of the distribution function is fixed to

Ty ¼ 2000 keV. Let us now remove such a constraint and

consider the third example where Ty is now varying, while

the longitudinal pa value (and therefore the longitudinal tem-

perature) is fixed to pa ¼ 1:5. The plot of the growth rate

C=xp versus kc=xp, shown in Fig. 3, looks qualitatively sim-

ilar to Fig. 2 and shows that the growth rate C decreases

strongly when the perpendicular temperature decreases.

VI. THE DISSYMMETRIC CASE: CUMULATIVE
EFFECT OF THE CFI AND WI GROWTH RATES

For completeness, now a relativistic distribution func-

tion is investigated that is asymmetric in momentum. The

chosen distribution will couple linearly the filamentation and

Weibel instabilities leading to a cumulative effect of these

two instabilities. The cumulative effect is given by the solu-

tions of Eq. (27), when the electrostatic branch is taken into

account. Thus, the physical mechanism of WI and CFI are

very similar and the amplification of the longitudinal plasma

field has to be found in the symmetry breaking of the streams

FIG. 1. Normalized growth rate C
xp

versus kc
xp

. The solid line corresponds to

the asymptotic solution reached for 15 streams using a regular sampling. The

curve is identical using N¼ 128 (i.e., 257 streams). The case of five streams

is plotted in dotted line, unlike the dashed lines (below) are determined using

the equivalence in the sense of the moments of f. It is necessary to use at least

five streams when the equivalence in the sense of moments is used.

FIG. 2. Typical plot of the growth rate C
xp

against kc
xp

for four different values

of the longitudinal bag momentum pa, taken identical for the ensemble of

streams. The perpendicular direction is described by seven streams, deter-

mined using the equivalence of the moments of the distribution function using

Eq. (A3) in Appendix A. The perpendicular temperature is Ty ¼ 2000 keV.
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in the perpendicular momentum space. Note that a similar

result was recently proposed by Bret et al. in Ref. 25 in the

case of a shifted Maxwell-J€uttner distribution and previously

by Tzoufras et al. in Ref. 26, this symmetry breaking being

driven in the last situation, by space-charge effects.

Furthermore, using a fluid cold relativistic model, Pegoraro

et al.23 have already indicated such a behaviour of CFI in a

situation somewhat different.

Let us now consider the coupling of both CFI and WI

instabilities. Because we want to simplify the presentation,

we do not take into account a longitudinal temperature and

just consider the cold approximation (for px) of our multi-

stream model. Thus, the Weibel instability is described in

the standard way using 2N–1 streams in the py direction,

while CFI is exactly described by only the set of two

streams. In others words, the dissymmetry in WI is here

described by the introduction of only two non symmetric

streams in the distribution of streams along the py direction.

Of course, it is possible to take into account a more complex

shape of the distribution function in py, by introducing a dis-

symmetry over many streams.

The resulting global distribution function, in the perpen-

dicular direction py, is then described by the set of 2Nþ 1

“particle bunches” or streams, assuming that the right-hand

side of the global dispersion relation, Eq. (27) is now differ-

ent from zero through the presence of the term

ð
P

j ajCj=C
2
j Þ

2 6¼ 0. Here Cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

j

q
is the normalized

Lorentz factor obtained from Eq. (18) taking paj ¼ 0.

Equation (27) can be rewritten in a polynomial form of sixth

degree. In a dimensionless expression, we get

x6þx4 �x2
kþ
XþN

j¼�N

Aj�
XþN

j¼�N

aj

Cj

0
@

1
Aþx2 �k2

XþN

j¼�N

Ajþx2
k

XþN

j¼�N

aj

Cj
�
XþN

j¼�N

aj

Cj

XþN

j¼�N

ajAj

Cj

0
@

1
Aþk2

XþN

j¼�N

Aj

XþN

j¼�N

aj

Cj
�k2

XþN

j¼�N

ajCj

C2
j

0
@

1
A

2

¼0:

(43)

Here, we have assumed a charge neutrality condition and an

initial zero net current
PþN

j¼�N ajCj=Cj ¼ 0 while keepingPþN
j¼�N ajCj=C

2
j 6¼ 0. Here, the quantity Aj is given by Eq.

(A4) in Appendix A, replacing Caj by Cj.

We study the coupling of WI driven by a temperature

anisotropy with Tx ¼ 0 and Ty ¼ 2000 keV coupled with CFI

induced by two cold Dirac-type streams of respective

momentum p1 ¼ �0:8925 and p2 ¼ 20:40 in mc–units. The

corresponding beam densities are then n01 ¼ 0:60 and n02

¼ 0:40 (with n01 þ n02 ¼ 1). These physical parameters

have been determined assuming that the initial net current is

zero for CFI, i.e., n01p1=C1 ¼ n02p2=C2 and using the stand-

ard notation of the Lorentz factor Cj for each stream.

Concerning WI, we use 2N–1 streams (here 127

streams) for describing the distribution function using equi-

spaced CWI
j invariants of the perpendicular canonical

momentum. Thus, the values of the set of parameters

faWI
j ;CWI

j g, which describe WI for jjj � N � 1, are obtained

through the data of a Maxwell-J€uttner distribution and we

have considered the case of a symmetric distribution given

by aWI
�j ¼ aWI

j and CWI
j ¼ �CWI

�j . We have chosen here pWI
aj

¼ 0 for the longitudinal direction. Thus we have built an ini-

tial distribution for both types of contribution, i.e., WI plus

CFI, having 2Nþ 1 streams globally and characterised by

the set of parameters faj;Cjg chosen such that

Cj ¼ CWI
j for jjj � N � 1 for WI;

C�N ¼ p1 and CN ¼ p2 for CFI:
(44)

The amplitude of streams is then defined by

aj ¼ aWI
j ð1� nÞ for jjj � N � 1 for WI;

a�N ¼ n01n and aN ¼ n02n for CFI:
(45)

The set of parameters faj;Cjg for jjj � N verifies the two fol-

lowing conditions:

XþN

j¼�N

aj ¼ 1 and
XþN

j¼�N

ajCj

Cj
¼ 0: (46)

Here the parameter n is the coupling coefficient for which

WI is dominant for n ¼ 0, while CFI is dominant for n ¼ 1.

Fig. 4 displays the results. We point out that the

growth rates of the mixed WI/CFI instability have their max-

imum for kc=xp ! þ1 as the result of the choice of the

FIG. 3. Growth rate C
xp

against kc
xp

using seven streams from the resolution of

the dispersion relation (A3) given in Appendix A for different values of the

perpendicular temperature Ty. A water bag model with pa ¼ 1:5mc is used

in the longitudinal direction in px.
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Dirac-type distribution in the px direction. In addition, we

show that, for large wave numbers, the features of the WI

instability changes and the mixed WI/CFI instability exhibits

a cumulative effect in the sense that the growth rate is found

larger than those of pure CFI and pure WI. For instance for

n ¼ 0:50 (i.e.,
PN�1

j¼�Nþ1 aj ¼ 1
2

and aN þ a�N ¼ 1
2
, for the

total contribution in amplitude for WI and CFI, respectively),

the growth rate of the mixed instability is found close to

CWIþCFI=xp ’ 0:44, i.e., well above the linear expected

value of 1
2
ðCWI þ CCFIÞ=xp ’ 1

2
ð0:48þ 0:27Þ ’ 0:375, i.e.,

of the sum of both contributions taken alone without the

coupling.

We have shown that the cumulative effect of the thermal

anisotropy in presence of a dissymmetric streams leads to

growing rates, which are markedly larger than those obtained

in the same conditions for pure filamentation and Weibel

instabilities. Here, the cumulative effect is linked to the

growth of the Langmuir mode allowing to couple between

both filamentation and Weibel instabilities. Notice that the

excitation of a Langmuir wave may lead to a resonant-type

instability in the sense that we expect wave-particle resonan-

ces in the non linear regime of the Weibel instability when

the saturation is reached.

VII. CONCEPT OF “RING” FOR CIRCULARLY
POLARIZED WAVE

It is instructive to consider, as an example, the case of a

circularly polarized electromagnetic field. In the general

case, the dispersion relation may be found from Eqs. (23)

and (24) in the standard form of a matrix determinant equal

to zero. The different coefficients of the tensor �ab can be

found in section B of appendix in Eqs. (B1)–(B4). Here, we

assume again that we have the condition

XþN

j¼�N

ajCjhc�1
aj i ¼ 0: (47)

We see that, at least in the linear regime, the coupling with

the longitudinal electric field is induced by the tensor

coefficient �xb ¼ �bx given by Eq. (B2) and we are faced

with the same problem of the previous section where the

coupling with the electrostatic mode is created by the non di-

agonal terms of the tensor �ab. If we assume now that both

electromagnetic and electrostatic contributions are de-

coupled (WI becoming purely transverse), it is then possible

to build the different streams repartited on several “rings” of

radius C?r. Thus for a class of streams faj;Cjg having the

same radius C?r (C?r being the modulus of the vector Cj),

we can introduce a random phase hj which determines the

angular position of each stream on a given “ring” of label r.

By conserving the central stream located at C0 ¼ 0, we can

sample each ring by 2N=Nring “streams” having the same

C?r and where Nring denotes the total number of considered

rings. The canonical invariant writes then in the standard

form in the perpendicular momentum space:

Cj ¼ C?r cos hjey þ C?r sin hjez: (48)

By averaging over the phase variable hj, it is then possible to

recover the standard formalism of a purely transverse elec-

tromagnetic Weibel instability without amplification of an

electrostatic component. By introducing an equilibrium dis-

tribution function in the form of a representation of Nring cir-

cular rings:

F0ðpx; p
2
?Þ ¼

XNring

r¼0

Fr½Hðpx þ parÞ

� Hðpx � parÞ�
dðp? � C?rÞ

2pp?
; (49)

it is possible to write the dispersion relation in the form

1� k2c2

x2
�

x2
p

x2

XNring

r¼0

arGðbarÞ
Car

�
x2

p

x2
ðk2c2 � x2Þ

�
XNring

r¼0

arb
2
?r

2Carð1� b2
arÞðx2 � k2c2b2

arÞ
¼ 0; (50)

using the notation of Yoon and Davidson, i.e., hc�1
ar i ¼

GðbarÞ
Car

and b?r ¼ C?r

mcCar
. Here, we use ar ¼ 2Frpar=n0 and we have

introduced the quantity bar ¼ par=mcCar where the Lorentz

factor Car is given by Eq. (18) by replacing the label j by r,

which now determines the considered ring and by replacing

the quantity Cj:Cj by C2
?r . Note that the case r¼ 0 corre-

sponds to the central Dirac-type stream, located at the origin

of the perpendicular momentum space with C?0 ¼ 0. The

normalization condition of the distribution function leads to

choose
PNring

r¼0 ar ¼ 1. In the case where we consider only

one ring and no central stream (i.e., assuming that a0 ¼ 0

and a1 ¼ 1), we recover the exact solution of Yoon and

Davidson in Ref. 8. Indeed in the multistream model, we

have assumed that each ring can be sampled by Ns streams

using a Dirac-type distribution of parameters faj;Cjg with

j ¼ 1; :::;Ns and Ns ¼ 2N=Nring which obey the conditionsPNs

j¼1 aj ¼ ar and Cj is given by (48).

In the relativistic regime, the effective temperature in

the perpendicular and parallel directions with respect to the

wave vector direction is now defined by

FIG. 4. Growth rate C
xp

against kc
xp

in the case of a mixed CFI-WI instability

exhibiting an unexpected resonant character. The case n ¼ 0 corresponds to

a dominant WI while CFI is dominant for n ¼ 1.
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T?
mc2
¼
ðþ1

0

dp?2pp?

ðþ1
�1

dpx
p2
?

2m2c2
F0ðpx; p

2
?Þ; (51)

Tk
mc2
¼
ðþ1

0

dp?2pp?

ðþ1
�1

dpx
p2

x

m2c2
F0ðpx; p

2
?Þ: (52)

Specifically, by introducing the distribution (49) used within

our model, Eqs. (51) and (52) lead to

T?
mc2
¼
XNring

r¼0

arb
2
?rCarGðbarÞ

2
¼
XNring

r¼0

arT?r

mc2
; (53)

Tk
mc2
¼
XNring

r¼0

arCar½1� ð1� b2
arÞGðbarÞ� ¼

XNring

r¼0

arTkr
mc2

; (54)

where T?r and Tkr defined by Eqs. (53) and (54), respec-

tively, define the perpendicular and parallel temperatures

associated with the ring of label r. First notice that Tkr ! 0

and T?r

mc2 ! C2
?r

2m2c2Car
when bar ! 0 (or equivalently when the

function GðbarÞ ! 1).

For a single ring with Nring ¼ 1, Eq. (50) can be

expressed in a dimensionless and polynomial form:

�x4 þ x2ðx2
k þ k2b2

a1 � A?Þ � k2b2
a1x

2
k þ A?k2 ¼ 0; (55)

where A? ¼ a1C2
?

2Ca1ð1þC2
?Þ

and where we have replaced C?1

mc by

C? to describe the ring’s size. The corresponding instability

condition for Eq. (55) yields now to

b2
a1x

2
k <

a1C2
?

2Ca1ð1þ C2
?Þ
¼ ð1� a0Þb2

?1

Ca1ð1� b2
a1Þ

; (56)

which depends explicitly of the effective density of the cen-

tral stream.

We choose C? ¼ pth;? ’ 3:426mc for a temperature of

T? � 840keV. As a numerical example, shown in Fig. 5, is

the plot of the growth rate C
xp

against kc
xp

for different values

of the effective density a0 from 0.1 till 0.6. It is evident from

Fig. 5 that the growth rate strongly decreases when the

density of the central beam increases. Thus a stabilization

process is observed when a0 � 0:80, showing that the shape

of the distribution plays a central role in WI. Applications of

these results are left to paper II where the study of the as-

ymptotic stationary equilibrium will be studied in the case of

circularly polarized wave.

VIII. CONCLUSION

This first part of a series of articles on the Hamiltonian

multistream model describes the linear and relativistic regime

of Weibel-type instabilities. Specifically, the multistream

model, or its “multiring” extension for circularly polarized

waves, is a set of one-dimensional reduced Vlasov-type equa-

tions obtained in a Hamiltonian framework when one spatial

dimension is lacking allowing the use of the invariance prop-

erty of the canonical momentum in a perpendicular direction.

By approximating the system as a finite number of particle

“bunches” or “streams,” or in other words, as a summation of

Dirac distributions, we have obtained the linear dispersion

relation of the Weibel instability in the relativistic regime

when a temperature anisotropy is taken into account.

Although a simplification is introduced in the analytical treat-

ment by using a water-bag description in the parallel direction

in momentum space, the model can be extended to a more

general situation without difficulty. This formulation gives

also a clear description of the temperature effects in the rela-

tivistic regime of the instability and there are no constraints

on the shape of the equilibrium distribution which can be far

from the relativistic Maxwell-J€uttner equilibrium.

For the case of a dissymmetric distribution, it has been

shown that the dispersion relation possesses two branches,

one of the purely electromagnetic character (i.e., transverse)

and an another of a purely electrostatic nature leading to a

possible mixed electrostatic- electromagnetic nature. Our an-

alytical model can be used without difficulty to study the lin-

ear coupling between filamentation and Weibel instabilities

leading to a cumulative effect of both instabilities.

From the analytical and numerical treatment of the prob-

lems of interest of this paper, the multistream formalism is

more appropriate. This is particularly true for the numerical

simulations since the Vlasov-Maxwell formalism is cast into

a four-dimensional phase space, while the multistream model

only requires the discretization of a two-dimensional phase

space plus the introduction of a limited number of streams.

Numerical simulations based on the multistream model are

left to papers II and III where specific problems are

addressed pertaining now to the nonlinear aspects of the

instability where trapped particle populations play a key role

in the saturation process of the Weibel instability.
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APPENDIX A: POLYNOMIAL FORM OF THE
DISPERSION RELATION IN THE WATER-BAG
APPROACH

In the multistream approach, the equilibrium state is

described by the set of parameters faj;Cj; pajg for jjj � N,

FIG. 5. Typical plot of the growth rate C
xp

against kc
xp

for a ring-type distribu-

tion in the perpendicular momentum space for WI. A stabilization process is

observed when the effective density of the central beam a0 is greater than 0.8

indicating that the global shape of the distribution plays a key role in WI.
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corresponding to a plasma description in terms of 2Nþ 1

streams, each stream keeping its initial perpendicular mo-

mentum Cj in the perpendicular direction py, constant in

time. Furthermore we used here normalized quantities: mo-

mentum px=y or Cj, wave vector k, and frequencies x being

normalized to mc, xp=c and xp respectively. Choosing for

each stream paj ¼ pa, independent of j (but keeping in mind

that baj ¼ pa=Caj depends explicitly of Cj by the Lorentz fac-

tor Caj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

a þ C2
j

q
), the set of parameters faj;Cjg is

then determined through the resolution of the following

system:

XN

j¼1

2ajC
2n
j hc�1

aj i ¼
p2n

y

c

* +
for n ¼ 1; 2; ::: (A1)

We keep for the central stream the condition C0 ¼ 0 and the

parameter a0 must be calculated from the normalization con-

dition
PþN

j¼�N aj ¼ 1. The right-hand side of Eq. (A1) is then

determined numerically by the following relation:

p2n
y

c

* +
¼

ðþ1
�1

dpy

p2n
y expð�l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

y

q
ÞGðpyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
y þ p2

aj

q
ðþ1
�1

expð�l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

y

q
Þdpy

: (A2)

Thus, for a given number of streams, the set of parameters

faj;Cj; pajg is used for the resolution of the dispersion rela-

tion given in Eq. (29) which corresponds to the pure trans-

verse Weibel instability.

The determination of quantities faj;Cj; pajg for jjj � 3 is

made by solving Eqs. (A1) and the condition of normaliza-

tion
P3

j¼�3 aj ¼ 1, using the analytical expression (A2) to

calculate the moment of order 2n of the quantity hp2n
y =ci till

n¼ 6. The corresponding polynomial expression of the dis-

persion relation can be easily obtained and writes as

x8�x6 k2
X3

j¼1

b2
ajþx2

k � 2
X3

j¼1

Aj

0
@

1
A

þx4 k4
X
i<j

b2
aib

2
ajþx2

kk2
X3

j¼1

b2
aj

2
4

�2k2
X3

j¼1

Aj

X
i6¼j

b2
aj

� �
� 2k2

X3

j¼1

Aj

3
5

þx2 2k4
X3

j¼1

Aj

Y
i 6¼j

b2
ai

� �
þ 2k4

X3

j¼1

Aj

X
i 6¼j

b2
ai

� �
� k6

Y3

j¼1

b2
aj

2
4

� k4x2
k

X
i<j

b2
aib

2
ajþ k6x2

k

Y3

j¼1

b2
aj

#
� 2k6

X3

j¼1

Aj

Y
i 6¼j

b2
ai

� �
¼ 0;

(A3)

where the coefficients Aj are determined by

Aj ¼
ajC

2
j

Cajð1þ C2
j Þ
: (A4)

APPENDIX B: DIELECTRIC TENSOR ELEMENTS �ab

Inserting the perturbation field term as dA? ¼ dAyey

þ dAzez into Eqs. (23) and (24) and taking the determinant of

the obtained system equal to zero yields to the calculation of

the tensor elements. They are expressed without any approxi-

mation in term of the set of parameters faj;Cj; pajg

�xx ¼ 1� x2
p

XþN

j¼�N

aj

Cajðx2 � k2v2
ajÞ
; (B1)

�xb ¼ �bx ¼ �ikx2
p

XþN

j¼�N

ajCbj

mC2
ajðx2 � k2v2

ajÞ
for b ¼ y; z;

(B2)

�bb ¼ x2
p

XþN

j¼�N

ajC
2
bj

m2c2Caj 1þ
C2
?j

m2c2

� �� x2 þ k2c2

þx2
p

XþN

j¼�N

ajhc�1
aj i

�k2x2
p

XþN

j¼�N

ajC
2
bj

m2C3
ajðx2 � k2v2

ajÞ
for b ¼ y; z; (B3)

�ab;ab 6¼x a 6¼b ¼ �x2
p

XþN

j¼�N

ajCajCbj

m2c2Caj 1þ
C2
?j

m2c2

� �

þ x2
pk2
XþN

j¼�N

ajCajCbj

m2C3
ajðx2 � k2v2

ajÞ
: (B4)
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