
HAL Id: hal-01769613
https://hal.science/hal-01769613

Submitted on 18 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Maximum Labeled Path Problem
Basile Couëtoux, Elie Nakache, Yann Vaxès

To cite this version:
Basile Couëtoux, Elie Nakache, Yann Vaxès. The Maximum Labeled Path Problem. Algorithmica,
2017, 78 (1), pp.298 - 318. �10.1007/s00453-016-0155-6�. �hal-01769613�

https://hal.science/hal-01769613
https://hal.archives-ouvertes.fr

The Maximum Labeled Path Problem?

Basile Couëtoux, Elie Nakache, and Yann Vaxès

Aix-Marseille Université, CNRS, LIF UMR 7279, 13288, Marseille, France.
{basile.couetoux,elie.nakache,yann.vaxes}@univ-amu.fr

Abstract. In this paper, we study the approximability of the Maximum Labeled Path
problem: given a vertex-labeled directed acyclic graph D, find a path in D that collects
a maximum number of distinct labels. For any ε > 0, we provide a polynomial time
approximation algorithm that computes a solution of value at least OPT 1−ε and a self-
reduction showing that any constant ratio approximation algorithm for this problem can be
converted into a PTAS. This last result, combined with the APX-hardness of the problem,
shows that the problem cannot be approximated within any constant ratio unless P = NP .

1 Introduction

Optimization network design problems over labeled graphs have been widely studied in the litera-
ture [2–8, 10, 11]. Since these problems are usually NP -hard, they have been mainly investigated
toward the goal of finding efficiently approximate solutions. Most of these studies consider edge-
labels that represent kinds of connections and the objective is often to minimize the number of
different kinds of connections used. Our motivation is different, we consider vertex-labels that
represent membership to different components. Our goal is then to maximize the number of
components visited by a path in a directed graph. More precisely, our problem is defined on a
directed acyclic graph with labels on the vertices and the objective is to find a path visiting a
maximum number of distinct labels. We call this problem Max-Labeled-Path. Actually, the
vertex-labeled and edge-labeled versions of this problem are equivalent but the vertex-labeled
version is closer to our initial motivation. To our knowledge, there is no prior work on this simple
and natural problem. A related problem is the Min LP s − t problem that asks to find a path
between two vertices s and t minimizing the number of different labels in this path. In [7] Hassin
et al achieve a

√
n ratio for this problem and show that it is hard to approximate within O(log n).

We used a similar approach for our hardness result but the maximization version requires a much
more precise analysis. In contrast with the results of [7], we only consider the case of directed
acyclic graph. This restriction is essential for our algorithms and makes our hardness results
stronger. As illustrated above, this setting captures many situations in which a notion of time
has to be taken into account.

One typical application of this problem arises in the following situation. An agent can move
along the edges of a network and perform a set of tasks. He knows how long it takes to move
between every pair of nodes, the time needed to execute each task and the subset of nodes where
each task can be performed. The goal of the agent is to perform a maximum number of (distinct)
tasks during a given amount of time. Using a discretization of the time, this problem can be
modeled as a Max-Labeled-Path problem. Each vertex ut of the DAG D corresponds to a
possible location u of the agent at a given time t. There is an arc in D between a vertex ut and
a vertex vt′ if the agent located in u at time t can perform the task of u and reach the node v
before time t′. The label of each vertex corresponds to the task that can be performed in this

? An extended abstract of this paper appeared in the proceedings of the 40th International Workshop
on Graph-Theoretic Concepts in Computer Science, WG’14.

2 B. Couëtoux, E. Nakache, Y. Vaxès

vertex (if several tasks can be performed in the same node then we can simply split this node
into several copies and join them by an edge along which the agent can move without delay). In
order to perform a maximum number of tasks the agent has to compute a path in D collecting
a maximum number of distinct labels.

1.1 Contributions

In this paper, we report both positive and negative results about the Max-Labeled-Path.
Namely, we prove that this problem does not admit a constant factor approximation algorithm
unless P = NP and we describe an algorithm that, for any fixed ε > 0, returns in polynomial
time a solution of value at least OPT 1−ε where OPT is the value of an optimal solution. In Sec-
tion 2, the hardness proof starts with a reduction from Max-3SAT preserving the approximation
and therefore proving that Max-Labeled-Path is APX-hard. In Section 3, a polynomial self-
reduction shows that finding a solution on a more complex graph enables us to find a solution
with a better ratio on the initial graph. This, combined with the APX-hardness of the problem,
shows that the problem cannot be approximated within a constant ratio unless P = NP . In
Section 4, we describe an

√
OPT -approximation algorithm for Max-Labeled-Path. This algo-

rithm requires a specific preprocessing and an inductive analysis that uses the poset structure of
the problem. Using this algorithm as a starting point, a more elaborate OPT 1−ε-approximation
is presented in Section 5. By using a scaling technique, this algorithm can be adapted to handle
with the same performance guarantee a label weighted version of Max-Labeled-Path. Finally,
the problem of collecting all the labels with a minimum number of paths is also addressed and,

for any ε > 0, a polynomial time algorithm that computes a solution within a factor |L|
ε

ε of the
optimum is provided in Section 6, where L is the set of labels.

1.2 Preliminaries

A vertex-labeled Directed Acyclic Graph D = (V,A) is a DAG whose vertices are labeled by
a function l : V → L, with L any set representing the sets of labels. For each vertex u ∈ V ,
we denote by λ(u) and call the level of u, the maximum number of vertices in a path having
u as end-vertex. The ith level set Li of D consists of all vertices u ∈ V such that λ(u) = i.
The vertices of L1, i.e. having no ingoing arcs, are called the sources of D. The vertices having
no outgoing arcs are called the sinks. Let k be the largest integer such that Lk 6= ∅. Lk is a
subset of the sinks. Let P be a (directed) path in D. P is maximal by inclusion if and only if it
connects a source to a sink. The set of labels collected by P is the set LP = {l(u) : u ∈ P} of
labels of vertices in P. More generally, the labels collected by a subset of vertices S ∈ V is the
set LS = {l(u) : u ∈ S} of labels of vertices in S. Given a vertex-labeled DAG D, the problem
Max-Labeled-Path consists in finding a path P in D maximizing the number of distinct labels
collected by P, i.e. maximizing |LP |. Any solution can be extended into a maximal path without
decreasing its value, therefore we only consider solutions that connect a source to a sink. In
this paper, we consider only maximization problems. Let D be an instance of a maximization
problem, we denote by OPT (D) its optimum. We say that an algorithm achieves a constant
performance ratio α, if for every instance D, it returns a solution of value at least αOPT (D).
We say that an algorithm is an f(OPT)-approximation if, for every instance D, it returns a
solution of value at least f(OPT).

2 Maximum Labeled Path is APX-hard

In this section, we describe a reduction from Max-3SAT : Given a formula in conjunctive normal
form with at most 3 variables per clause, find an assignment that satisfies the largest number of

Maximum labeled path problem 3

clauses. This reduction establishes that Max-Labeled-Path is APX-hard even when restricted
to instances satisfying the following conditions:

(C1) All maximal (by inclusion) paths of D contain the same number k of vertices.
(C2) D contains a path that collects all the labels, i.e. OPT (D) = |L|.
(C3) D contains a path that collects each label exactly once, i.e. OPT (D) = k = |L|.
(C4) OPT (D) = k = |L| is a power of two.

Note that (C4) is stronger than (C3) which is stronger than (C2). Applying our initial reduction
to satisfiable instances of Max-3SAT, we produce instances of Max-Labeled-Path satisfying
conditions (C1) with k ≤ 3|L| and (C2) and prove Theorem 2. Then, we proceed in two steps: first
we establish the APX-hardness for instances satisfying conditions (C1) and (C3) in Theorem 3
and then the APX-hardness for instances satisfying conditions (C1) and (C4) in Theorem 4. In
the next section we use a self-reduction of Max-Labeled-Path to prove that Max-Labeled-
Path does not belong to APX. This self-reduction is valid only for instances satisfying conditions
(C1) and (C4).

Theorem 1. (H̊astad [9]) Assuming P 6= NP , no polynomial-time algorithm can achieve a
performance ratio exceeding 7

8 for Max-3SAT even when restricted to satisfiable instances of the
problem.

Theorem 2. Assuming P 6= NP, no polynomial-time algorithm can achieve a performance ratio
exceeding 7

8 for Max-Labeled-Path even when restricted to instances satisfying conditions (C1)
with k ≤ 3|L| and (C2).

Before proving Theorem 2, we prove the following lemma showing that (C1) is not a strong
requirement in the sense that each instance of Max-Labeled-Path can be converted into an
equivalent instance satisfying (C1).

Lemma 1. Given an instance D of Max-Labeled-Path, it is possible to construct an instance
D′ satisfying condition (C1) and such that there exists a mapping between the set of maximal
paths in D and the set of maximal paths in D′ preserving the number of labels collected.

Proof. We obtain D′ from D by first splitting each arc uv of D such that λ(v) > λ(u) + 1 into
a path consisting of λ(v)− λ(u) arcs and assigning to the internal vertices of this path the label
of u. Then, we consider every sink w that belongs to a level set Li distinct from the last level
set Lk and add a path of length k− i starting in w whose vertices receive the label l(w) in order
to create new sinks with level k. Clearly, the level of a vertex u in D is the same as its level
in D′. Moreover, any arc in D′ connects two vertices lying in two consecutive level sets and all
sinks belong to the last level set Lk. Therefore, all maximal paths have the same number k of
vertices, i.e. D′ satisfies (C1) (see Fig. 1). Moreover, given a path P ′ in D′ one can compute in
polynomial time a path P in D collecting the same number of labels and vice versa. �

Proof (of Theorem 2). Given an instance F of Max-3SAT, we define an instance DF = (V,A)
of Max-Labeled-Path as follows. Let {w1, w2, ..., wq} be the set of variables of F. For all j ∈
{1, ..., q}, we denote by |wj | the number of occurrences of the literal wj and by |¬wj | the number
of occurrences of its negation. We create |wj | + |¬wj | vertices and call them wj1, w

j
2, ..., w

j
|wj |

and ¬wj1,¬w
j
2, ...,¬w

j
|¬wj |. We connect in a directed path P (wj) the vertices which represent the

literal wj , i.e. we create an arc (wji , w
j
i+1) for all i ∈ {1, . . . , |wj |−1}. In the same way, we connect

in a directed path P (¬wj) the vertices representing ¬wj . For all j ∈ {1, ..., q− 1}, we connect by
an arc the last vertices of P (wj) and P (¬wj) to the first vertices of P (wj+1) and P (¬wj+1). Let

4 B. Couëtoux, E. Nakache, Y. Vaxès

us define the labeling function l : V → L := {1, . . . ,m} where m is the cardinality of the set of
clauses {C1, C2, . . . , Cm} of F. There is a one to one correspondence between the occurrences of
the literals in the clauses and the vertices of DF . A vertex u receives the label j if u corresponds
to an occurrence of a literal in the clause Cj (see Fig. 1).

Applying the reduction to a satisfiable instance F of Max-3SAT, we obtain an instance
DF of Max-Labeled-Path that contains a path collecting all the labels, i.e. that satisfies
condition (C2). Moreover, since each clause contains at most three literals, the number k of
vertices in a maximal path of DF is at most thrice the number m of labels, i.e. k ≤ 3m. In
the resulting graph DF , each maximal path P is a path from a vertex in {w1

1,¬w1
1} to a vertex

in {wq|wq|,¬w
q
|¬wq|} that contains for all j ∈ {1, . . . , q} either P (wj) or P (¬wj) but not both.

Therefore, it represents in an obvious way an assignment of the variables (wj = true⇔ P (wj) ⊂
P). From the choice of the labeling of vertices in DF , it is easy to verify that an assignment
of the variables satisfying n clauses corresponds to a maximal path collecting n labels. This
transformation produces in polynomial time an instance DF satisfying the conditions (C2) with
k ≤ 3|L|. It remains to ensure (C1), this can be done by applying the transformation of Lemma 1.
Together with Theorem 1, this concludes the proof of Theorem 2. �

a11 ¬a1 2

b11

b22

¬b1 3

c11

c23

¬c1 2

a11 ¬a1 2

b11

b22

¬b1 3

3
3

c11

c23

¬c1 2

2

Fig. 1. The digraph DF for the formula F = (a∨b∨c)∧(¬a∨b∨¬c)∧(¬b∨c) before the transformation
of Lemma 1 (to the left) and after (to the right).

The next step consists in showing that the problem Max-Labeled-Path remains APX-hard
even when restricted to instances such that all maximal paths have the same number of vertices
and containing a path collecting each label exactly once.

Theorem 3. Assuming P 6= NP, no polynomial time algorithm can achieve a performance
ratio exceeding 23

24 for Max-Labeled-Path even when restricted to instances satisfying (C1)
and (C3).

Proof. Consider a DAG D = (V,A) with a labeling function l that satisfies the conditions (C1)
with k ≤ 3|L| and (C2). Every maximal path in D contains the same number k of vertices. Let

Maximum labeled path problem 5

m := |L| ≤ k be the number of labels of vertices in D. We construct a DAG D′ by adding
to D, for each vertex v ∈ V, a set {v1, . . . , vr} of r := k − m copies of the vertex v. There
is an arc between two vertices in D′ if and only if there is an arc between their preimages
in D (the preimage of a vertex v ∈ V is v itself). Every maximal path in D′ corresponds to
a maximal path in D, in particular it contains exactly k vertices. The set of labels of D′ is
L′ := L∪{m+1,m+2, . . . ,m+ r = k}. For each vertex v of D and each integer j ∈ {1, 2, . . . , r}
the label of the vertex vj is m + j. The labels in D′ of the vertices that belong to D remain
unchanged. We call the resulting instance D′ the extension of the instance D.

The following two lemmata establish a close relationship between the optimum of the instances
D and D′.

Lemma 2. If there is a path in D collecting n labels then there is a path in D′ collecting n+ r
labels. If there is a path in D′ collecting n labels then there is a path in D collecting at least n− r
labels.

The proof of Lemma 2 follows by construction of D′.

Lemma 3. If there exists a polynomial time algorithm that achieves a performance ratio 1 − ε
for Max-Labeled-Path restricted to instances satisfying conditions (C1) and (C3) then there
exists a polynomial time algorithm that achieves a performance ratio 1− 3ε for Max-Labeled-
Path restricted to instances satisfying conditions (C1) with k ≤ 3|L| and (C2).

Proof. Suppose there exists a polynomial time algorithm ALG′ that achieves a performance
ratio 1 − ε for Max-Labeled-Path restricted to instances D′ satisfying conditions (C1) and
(C3). For such an instance D′, this algorithm computes in polynomial time a path P ′ collecting
(1 − ε)OPT (D′) labels where OPT (D′) is both the number k of vertices in a maximal path of
D′ and the number |L′| of labels in D′, i.e. OPT (D′) = |L′| = k. For all instances D of Max-
Labeled-Path satisfying the conditions (C1) with k ≤ 3|L| and (C2), the following algorithm
ALG, that uses ALG′ as routine, computes a path P that collects (1− 3ε)OPT (D) labels where
OPT (D) = |L| is the number of labels in D.

Algorithm 1: ALG(D) : a maximal path in D that collects (1− 3ε)OPT (D) labels

Compute the extension D′ of the instance D ;
Perform ALG′ on D′ to compute a path P ′ that collects (1− ε)OPT (D′) labels of D′;
Return the projection P of the path P ′ on D ;

To prove the correctness of algorithm ALG, first notice that the extension D′ of D contains a
path that collects each label of D′ exactly once. Indeed, by assumption, the instance D satisfies
condition (C2), thus there exists a path P ∗ in D that collects m = |L| labels. By Lemma 2, the
extension of P ∗ to D′ collects m+ (k−m) = k = |L′| labels. It remains to prove that the path P
returned by ALG collects at least (1− 3ε)|L| labels. By the choice of ALG′, P ′ collects (1− ε)k
labels. By Lemma 2, P collects at least (1− ε)k− (k−m) = m− εk labels. Since D satisfies the
condition k ≤ 3m, P collects at least (1− 3ε)m = (1− 3ε)OPT (D) labels. �

To complete the proof of Theorem 3, suppose that there exists a polynomial time algorithm
ALG′ achieving a ratio exceeding 23

24 for the problem Max-Labeled-Path restricted to the
instances satisfying conditions (C1) and (C3). Then, by Lemma 3, we deduce that there exists a
polynomial time algorithm ALG achieving a ratio exceeding 7

8 for the problem Max-Labeled-
Path restricted to the instances satisfying conditions (C1) with k ≤ 3|L| and (C2), this cannot
occur by Theorem 2, unless P = NP . �

6 B. Couëtoux, E. Nakache, Y. Vaxès

The last result of this section shows that Max-Labeled-Path remains APX-hard if we add
the condition that the number of vertices in any maximal path is a power of two.

Theorem 4. Assuming P 6= NP, no polynomial time algorithm can achieve a performance ratio
exceeding 47

48 for Max-Labeled-Path even when restricted to instances satisfying conditions
(C1) and (C4).

Proof. Consider a DAG D = (V,A) with a labeling function l that satisfies the conditions (C1)
and (C3). Every maximal path in D contains the same number k = |L| of vertices. Let p be the
smallest integer such that k ≤ 2p. The set L′ of labels of D′ is L ∪ {k + 1, . . . , k + r = 2p = k′}.
Let T be the set of vertices of D with no outgoing arcs. We consider the DAG D′ obtained from
D by adding a directed path Q = (q1, q2, . . . , qr) and by connecting via an arc each vertex t ∈ T
to the vertex q1. For i = 1, . . . , r, we assign to the vertex qi the new label k + i. The labels of
the vertices of D′ that belong to D remain unchanged. Using the above transformation, the fact
k′ = 2p ≤ 2k and a proof similar to the one of Lemma 3, it is possible to derive a polynomial
time algorithm ALG achieving a ratio 1 − 2ε for instances of Max-Labeled-Path satisfying
conditions (C1) and (C3) from a polynomial time algorithm ALG′ achieving a ratio 1 − ε for
instances of Max-Labeled-Path satisfying conditions (C1) and (C4). This last assertion and
Theorem 3 imply Theorem 4 exactly in the same way that Lemma 3 and Theorem 2 imply
Theorem 3. �

3 Maximum Labeled Path does not belong to APX

In this section, using a self-reduction of the problem Max-Labeled-Path, we will prove the
following result:

Theorem 5. Assuming P 6= NP, no polynomial time algorithm can achieve a constant per-
formance ratio for Max-Labeled-Path even when restricted to instances satisfying conditions
(C1) and (C4).

3.1 Self-reduction

In Section 3, we consider only instances of Max-Labeled-Path satisfying conditions (C1) and
(C4). Namely, a DAG D = (V,A) whose vertices are labeled by a function l : V → L = {1, . . . , k}
such that there exists a path collecting each label exactly once and the number k = |L| of vertices
in any maximal path is a power of two. We will prove that such instances of the problem Max-
Labeled-Path cannot be approximated in polynomial time within a constant factor. For the
sake of simplicity, we also assume that there is only one source s and one sink t. Therefore, any
maximal path is an st-path (i.e. a path from s to t) and all vertices of D belong to an st-path.
Recall that, for each vertex u ∈ V , λ(u) is the number of vertices in an su-path (all such paths
have the same length because D satisfies (C4)). For all u ∈ V, λ(s) = 1 ≤ λ(u) ≤ k = λ(t).

Pseudo square and pseudo cubic acyclic digraph. The pseudo square digraph D̄ of D is
obtained from D by replacing each vertex u ∈ V by a copy Du of the digraph D. We denote
by vu the copy of the vertex v ∈ V in the digraph Du. There is an arc vuwu in D̄ if and only
if there is an arc vw in D. In addition to the arcs of the subgraphs Du, u ∈ V , we add to D̄
an arc tusv for each arc from uv in D. The pseudo cubic digraph D̃ of D is obtained from D̄ by
replacing each vertex vu of D̄ by a path P (vu) with k vertices. Each arc entering a vertex vu in
D̄ is replaced by an arc of D̃ entering the first vertex of P (vu). Analogously, each arc leaving

Maximum labeled path problem 7

the vertex vu in D̄ is replaced by an arc of D̃ leaving the last vertex of P (vu) (see Fig. 2). We
define a new instance of Max-Labeled-Path on the digraph D̃ with the first vertex of P (ss)
as a source and the last vertex of P (tt) as a sink and a labeling function l̃ defined as follows.

a2

b

3

c
1

d

2

e
3

f 4

aaS1,2(2)

ba

S1,2(3)

ca

S1,2(1)

da

S1,2(2)

ea

S1,2(3)

fa S1,2(4)

ac

bc

cc

dc

ec

fc ae

be

ce

de

ee

fe

af

bf

cf

df

ef

ff

ab

bb

cb

db

eb

fb ad

bd

cd

dd

ed

fd

f1
d f2

d f3
d f4

d

Da

P (fd)

Fig. 2. An example of pseudo square digraph D̄ with k = |L| = 4. An optimal path P in D and the
corresponding optimal path P̄ in D̄ are drawn in bold. In the subgraph Da, each vertex v of D̄ is labeled
by the subset of labels received by the vertices of the path P (v) of D̃. In D̃, the vertex fd of D̄ is replaced
by the path P (fd) = (f1

d , f
2
d , f

3
d , f

4
d).

Labeling. Let vu be a vertex of D̃, the set of labels of the vertices of P (vu) will depend on
the labels of u and v in D and on the level of u in D. Since a path from the source to the sink
visits either all vertices of P (vu) or none of them, our labeling function assigns a set of labels
to the path P (vu) and does not precise the order in which the labels appear on P (vu). The
set of labels L̃ used to define the labeling of D̃ consists of k disjoint subsets L̃1, . . . , L̃k such
that |L̃1| = . . . = |L̃k| = k2. For each label c ∈ L and each level i ∈ {1, . . . , k}, we construct
a partition Si,c := {Si,c(c′) : c′ ∈ L} of L̃c into k subsets of size k such that any two subsets
arising from different partitions intersect in exactly one label, i.e. if i1 6= i2 then for all c′, c′′ ∈ L,
|Si1,c(c′) ∩ Si2,c(c′′)| = 1. Since k2 is a power of two (k2 = 2r), such partitions can be easily
constructed as classes of parallel lines of a finite affine plane (each class of parallel lines induces
a partition in which the subsets are the lines). The construction of finite affine planes from
finite fields is described for instance in [1]. This construction can be done in polynomial time
in the size of D by first identifying an irreducible polynomial of degree r by brute force and
then constructing the corresponding finite fields GF (2r). The labeling function l̃ assigns to the
vertices of P (vu) the labels that belong to the subset Sλ(u),l(u)(l(v)) of the partition Sλ(u),l(u).

Claim. There is a path in D̃ that collects each label in L̃ exactly once.

8 B. Couëtoux, E. Nakache, Y. Vaxès

Proof. Let P be the path of D collecting all the labels in L. Consider the path P̃ passing via each
subgraph Du for all u ∈ P and such that the subpath P̃u of P̃ inside the subgraph Du consists
of the vertices vu for all v ∈ P (see Fig 2). Since P collects each label in L once, the subpath P̃u
collects every subset of the partition Sλ(u),l(u). This implies that P̃u collects each label of L̃l(u)
once. Applying this assertion to all vertices u ∈ P and using again that P collects each label in
L, we conclude that P̃ collects all the labels of L̃ =

⋃
u∈P L̃l(u) once. �

The previous claim and the fact that |L̃| is a power of two ensure that D̃ is an instance of
Max-Labeled-Path satisfying the conditions of (C1) and (C4). Clearly, the instance D̃ can be
constructed in polynomial time from the instance D.

3.2 Proof of Theorem 5

Let g denote the reciprocal function on the interval]0, 1] of the following continuous and strictly
increasing function h:

h(x) :=

{
h1(x) := x(x2 − x+ 1) if 0 < x < 1

2 ;
h2(x) := x2 − 1

4x+ 1
4 if 1

2 ≤ x ≤ 1.

Lemma 4. For each 0 < β < 1, the sequence βn defined by β0 = β and βn+1 = g(βn) has a
limit of 1.

Proof. If x ∈ [12 , 1[then the difference h2(x) − x = x2 − 5
4x + 1

4 = (x − 1)(x − 1
4) is negative.

Now suppose that x ∈]0, 12 [, since h1(x)
x = x2 − x + 1 < 1, h1(x) < x. We conclude that for all

x ∈]0, 1[, h(x) < x. Since h is strictly increasing on the interval]0, 1[, so is g and applying it
on the two sides of this inequality, we obtain that x < g(x) for all x ∈]0, 1[. This implies that
the sequence βn is strictly increasing and bounded by 1. Therefore its limit is a real l such that

g(l) = l⇔ l = h(l). Since β0 > 0 and h1(l)
l = l2− l+ 1 < 1 for all l ∈]0, 12 [, we deduce that l ≥ 1

2 .
Finally, using h2(l)− l = (l− 1)(l− 1

4) = 0 and l > 1
4 , we conclude that the limit of the sequence

βn is 1. �

In the next section, we show the following results:

Lemma 5. Given any path Q in D̃ that collects at least βk3 labels, a path P in D that collects
at least g(β)k labels can be computed in polynomial time.

This construction itself implies the following lemma:

Lemma 6. If there is a polynomial-time algorithm with a ratio β for Max-Labeled-Path then
there is a polynomial-time algorithm with a ratio g(β) for Max-Labeled-Path.

Proof. Suppose there exists a polynomial time algorithm ALGβ with a ratio at least β for Max-
Labeled-Path. Let D be an instance of Max-Labeled-Path, we use the following algorithm:

Algorithm 2: ALG(D) : a maximal path in D that collects g(β)k labels

Construct the digraph D̃ from the digraph D;
Perform ALGβ to obtain a path Q of D̃ that collects βk3 labels;
Derive from Q a path P of D that collects at least g(β)k labels;
Return P ;

This algorithm is clearly polynomial because all the steps are, thus we have a polynomial time
algorithm with a ratio g(β) for Max-Labeled-Path. �

Maximum labeled path problem 9

Suppose there exists an approximation algorithm with a constant factor β for Max-Labeled-
Path. By Lemma 4, there exists an integer n such that βn >

47
48 . Applying n times Lemma 6,

we derive a polynomial-time algorithm for the problem Max-Labeled-Path with a ratio ex-
ceeding 47

48 . A similar argument shows that any constant factor approximation algorithm for
Max-Labeled-Path can be converted into a PTAS for this problem. Such an algorithm does
not exist unless P = NP by Theorem 4. Assuming Lemma 5, this concludes the proof of Theo-
rem 5.

3.3 Proof of Lemma 5

We explain how to construct in polynomial time a path P in D that collects a set LP ⊆ L
containing at least g(β)k labels from a path Q in D̃ that collects a set L̃Q ⊆ L̃ containing at
least βk3 labels. We denote by V Q ⊆ V the set of vertices u such that Q passes via Du and by
LQ ⊆ L the set of labels of the vertices in V Q. For each vertex u ∈ V Q, we define WQ

u ⊆ V the
set of vertices v such that Q contains P (vu) as a subpath and by LQu ⊆ L the set of labels of
the vertices in WQ

u . Let αu := |LQu |/k. We will prove that either |LQ| ≥ g(β)k or there exists a
vertex u ∈ V Q such that |LQu | = αuk ≥ g(β)k. In the first case, the vertices of V Q induce in D a
path that collects g(β)k labels. In the second case, the vertices of Q that belong to the subgraph
Du induce in D a path that collects g(β)k labels. Therefore, if one of the two assertions hold,
one can derive in polynomial time a path P of D collecting g(β)k labels and we are done.

Suppose by way of contradiction that none of the two assertions hold. Namely, |LQ| < g(β)k
and for all u ∈ V Q, αu < g(β). Let c be a label in LQ. We denote by V Qc ⊆ V Q the set of vertices
u ∈ V Q such that l(u) = c and we define αc := maxu∈V Qc αu and uc := arg maxu∈V Qc αu. By

assumption, αc < g(β). In Duc , Q collects
∑

c′∈LQuc

|Sc,λ(u)(c′)| =
∑

c′∈LQuc

k = αck
2 labels.

Let u be a vertex of V Qc − {uc}. The number of labels collected by Q in Du that are not
collected by Q in Duc is the sum over all labels c′ ∈ LQu of∣∣∣∣∣∣Sc,λ(u)(c′)−

⋃
c′′∈LQuc

Sc,λ(uc)(c
′′)

∣∣∣∣∣∣ = k −

∣∣∣∣∣∣
⋃

c′′∈LQuc

(
Sc,λ(u)(c

′) ∩ Sc,λ(uc)(c
′′)
)∣∣∣∣∣∣

= k −
∑

c′′∈LQuc

∣∣Sc,λ(u)(c′) ∩ Sc,λ(uc)(c′′)∣∣
= k −

∑
c′′∈LQuc

1

= k − αck

The first equation follows from
∣∣Sc,λ(u)(c′)∣∣ = k and set properties. For the second equation,

recall that the family {Sc,λ(uc)(c′′) : c′′ ∈ LQuc} is a partition of L̃c. The choice of the partitions

used to define the labeling function of D̃ ensures that
∣∣Sc,λ(u)(c′) ∩ Sc,λ(uc)(c′′)∣∣ = 1 and yields

the third equation. For the last equation, we use |LQuc | = αck. We conclude that the number of
labels collected by Q in Du and not collected by Q in Duc is |LQu |(k− αck). Since (k− αck) ≥ 0
and |LQu | = αuk ≤ αck, this number is at most αck(k − αck).

Using this bound for all vertices u ∈ V Qc − {uc} and the fact that αck
2 labels are collected

by Q in Duc , we obtain the following bound on the number of labels of L̃c collected by Q:∣∣∣L̃Q ∩ L̃c∣∣∣ ≤ αck2 + (|V Qc | − 1)αck(k − αck)

≤ k2(αc + αc(|V Qc | − 1)(1− αc))

10 B. Couëtoux, E. Nakache, Y. Vaxès

Summing over all labels c ∈ LQ, we obtain that the total number of labels collected by Q is
upper bounded as follows:∣∣∣L̃Q∣∣∣ ≤ k2 ∑

c∈LQ

(
αc + αc(|V Qc | − 1)(1− αc)

)
< k2

∑
c∈LQ

(
g(β) + αc(|V Qc | − 1)(1− αc)

)
(∗)

This last inequality is obtained using the initial assumption αc < g(β).
We distinguish two cases depending on the value of g(β). First, suppose that g(β) ≥ 1

2 . Note
that the maximum 1

4 of the function x(1−x) on the interval [0, 1] is realized for x = 1
2 . Therefore

for all c ∈ LQ, αc (1− αc) ≤ 1
4 and we derive from (∗):∣∣∣L̃Q∣∣∣ < k2

∑
c∈LQ

(
g(β) +

1

4
(|V Qc | − 1)

)

< k2

((
g(β)− 1

4

) ∑
c∈LQ

1 +
1

4

∑
c∈LQ

|V Qc |

)

< k2
((

g(β)− 1

4

)
g(β)k +

1

4
k

)
< k3

(
g(β)2 − 1

4
g(β) +

1

4

)
< k3 (h(g(β)))

< k3β

In the third inequality, the upper bound on the left operand follows from the initial assumption
g(β)k > |LQ| =

∑
c∈LQ 1 and (g(β)− 1

4) ≥ 0. The upper bound on the right operand follows from
the fact that any path in D from s to t contains exactly k vertices, therefore

∑
c∈LQ |V Qc | = k.

The last equation contradicts the choice of Q and concludes the proof for the case g(β) ≥ 1
2 .

Now, suppose that g(β) < 1
2 . Since the function x(1− x) is a strictly increasing function on

the interval]0, 12 [and |V Qc |−1 ≥ 0 for all c ∈ LQ, we can replace αc by g(β) in the inequation (∗):

|L̃Q| < k2
∑
c∈LQ

(
g(β) + g(β)(|V Qc | − 1) (1− g(β))

)
< k2g(β)

(∑
c∈LQ

1− (1− g(β)) + |V Qc | (1− g(β))

)

< k2g(β)

(
g(β)

∑
c∈LQ

1 + (1− g(β))
∑
c∈LQ

|V Qc |

)
< k2g(β)

(
g(β)2k + (1− g(β)) k

)
< k3g(β)

(
g(β)2 − g(β) + 1

)
< k3h(g(β))

< k3β

Again we use
∑
c∈LQ 1 < g(β)k and

∑
c∈LQ |V Qc | = k to derive the fourth inequality. In the two

cases, we obtain a contradiction with the assumption that the path Q collects at least βk3 labels.
This concludes the proof of Lemma 5.

Maximum labeled path problem 11

4
√
OPT -approximation algorithm

4.1 Algorithm

In this section, we consider the following weighted version of Max-Labeled-Path: given a DAG
D, a labeling function l : V → L and a weight function w : L → N defined on the set of labels,
the problem Max-Weighted-Labeled-Path consists in computing a path P collecting a set
of labels of maximum total weight, i.e. a path P such that w(P) :=

∑
l∈LP w(l) is maximum.

Note that the weight of a label that appears several times in P counts only once.
We describe a polynomial time algorithm that computes for each instance D of Max-

Weighted-Labeled-Path, a path P of D whose total weight is at least
√
OPT (D). Again, for

the sake of simplicity, we assume that there is only one source s and one sink t. Our algorithm
can be easily adapted to handle the case with several sources and several sinks. Without loss of
generality, we can also suppose that (i) the source s of D has no label (an equivalent instance
satisfying this condition can be obtained by adding to D a new source s′ with no label and an arc
s′s); (ii) all other vertices have a label of positive weight (a vertex having a label of weight zero
can be removed by replacing each path of length two passing through such a vertex by an arc.)
First, we define a function F : V → N such that F (u) can be computed for all vertices u ∈ V in
time O(|V |3). Then, we prove that, for any vertex u ∈ V, F (u) is an upper bound on the total
weight of labels collected by an su-path. Finally, we describe an algorithm that computes for any
vertex u ∈ V a path P such that w(P) is at least b

√
F (u)c. Applying this algorithm to t, we

obtain an st-path that collects labels of total weight at least b
√
OPT c.

For each pair of vertices u, v ∈ V, let Du,v be the subgraph of D induced by the vertices lying
on an uv-path. We denote by Γ (u, v) the total weight of the labels collected by the vertices of
Du,v. Let F : V → N be the function recursively defined as follows :

F (u) :=

{
w(s), if u = s ;
max
P∈Pu

min
xy∈P

F (x) + Γ (y, u), otherwise.

where Pu denotes the set of paths from s to u. Let P (u) be a path in Pu that realizes the
maximum, i.e. such that F (u) = min

xy∈P (u)
F (x) + Γ (y, u).

The following lemma shows that, for any vertex u ∈ V, F (u) is an upper bound on the total
weight of labels that can be collected by an su-path.

Lemma 7. If P = (s = u0, u1, ..., un = u) is an su-path then F (u) ≥ w(P).

Proof. By induction on n. For n = 0, F (u0) = F (s) = w(s). For n > 0, consider a path
P = (s = u0, u1, ..., un = u). For any i = 1, . . . , n, let Pi be the path (u0, u1, ..., ui). The
weight of the path (ui, ..., un) is at least w(P) − w(Pi−1) and it belongs to Dui,u, therefore
Γ (ui, u) ≥ w(P)−w(Pi−1). Since, by induction, F (ui−1) ≥ w(Pi−1), F (ui−1) +Γ (ui, u) ≥ w(P)
for any i = 1, . . . , n yielding F (u) ≥ w(P). �

Corollary 1. If OPT is the maximum weight of labels that can be collected by a path from s to
t then F (t) ≥ OPT .

Suppose that F (v) and P (v) have been already computed for all v ∈ V, we explain below
how to compute them in O(|V |3). Let u be a vertex in V. The algorithm ComputePath returns
an su-path that collects labels of total weight at least b

√
F (u)c. By Corollary 1, applying this

procedure with u = t we obtain an st-path that collects labels of total weight at least b
√
OPT c.

12 B. Couëtoux, E. Nakache, Y. Vaxès

Algorithm 3: ComputePath(u ∈ V) : a path P from s to u such that w(P) ≥ b
√
F (u)c

if u = s then
return (s)

else

Let xy be an arc of P (u) with F (x) ≤ (b
√
F (u)c − 1)2 and F (y) ≥ (b

√
F (u)c − 1)2 ;

P ′ ← ComputePath(y) ;
if w(P ′) ≥ b

√
F (u)c then

return P ′.Q where Q is any yu-path ;

else
Perform a BFS in Dy,u to find a vertex v having a label not collected by P ′ ;
return P ′.Q where Q is any yu-path passing via the vertex v ;

The following lemma is useful to prove that the algorithm ComputePath is correct.

Lemma 8. There is an arc xy in P (u) such that F (x) ≤ (b
√
F (u)c−1)2 and F (y) ≥ (b

√
F (u)c−

1)2. Moreover, for any such arc, Γ (y, u) ≥ b
√
F (u)c.

Proof. The first assertion is true because F (s) = 0 ≤ (b
√
F (u)c−1)2 and F (u) ≥ (b

√
F (u)c−1)2.

To verify the second assertion, let xy be an arc such that F (x) ≤ (b
√
F (u)c − 1)2 and F (y) ≥

(b
√
F (u)c− 1)2. Since xy ∈ P (u), F (x) +Γ (y, u) ≥ F (u). This implies Γ (y, u) ≥ F (u)−F (x) ≥

b
√
F (u)c2 − (b

√
F (u)c − 1)2 = 2b

√
F (u)c − 1 ≥ b

√
F (u)c. �

Theorem 6. ComputePath(u) computes a path P such that w(P) ≥ b
√
F (u)c.

Proof. We proceed by induction on the number of recursive calls. If u = s the algorithm returns
the path (s) that collects the label l(s) of weight F (s) = w(s). Otherwise, the first assertion
of Lemma 8 ensures that P (u) contains an arc xy such that F (x) ≤ (b

√
F (u)c − 1)2 and

F (y) ≥ (b
√
F (u)c − 1)2. By induction hypothesis, ComputePath(y) returns a path P ′ such that

w(P ′) ≥ b
√
F (u)c − 1. If w(P ′) ≥ b

√
F (u)c, then the path P ′.Q returned by the algorithm is

a correct answer. Now, suppose that w(P ′) = b
√
F (u)c − 1. By Lemma 8, Γ (y, u) ≥ b

√
F (u)c.

This implies that Dy,u contains at least one label not collected by P ′ (and thus distinct from
l(y)). A BFS traversal of Dy,u will find a vertex v 6= y having this label together with a path Q
from y to u passing via v. Since w(l(v)) ≥ 1, the path P ′.Q that collects labels of total weight
at least b

√
F (u)c − 1 + w(l(v)) is a correct answer. �

Finally, the following algorithm computes F (u) and P (u) for every vertex u ∈ V in time
O(|V |3). First, we compute the transitive closure of the graph D represented by a matrix M(u, v),
u ∈ V, v ∈ V, such that M(u, v) = 1 if there is an uv-path in D, and M(u, v) = 0 otherwise. Then,
we compute for every pair of vertices uv the set of labels L(u, v) of the vertices of D(u, v) (recall
that Γ (u, v) = |L(u, v)|). This can be done in O(|V |3) using the matrix M. Finally, we consider
the vertices of V in increasing order of their distance to s, i.e. when we compute F (u) the value
of F (x) have been already computed for all vertices x ∈ D(s, u). Therefore, computing F (u)
reduces to solve a bottleneck shortest path problem in the graph D(s, u) where the capacity
of an arc xy is F (x) + Γ (y, u). This problem can be solved in linear time in a DAG using a
Dijkstra-like algorithm. Notice that an implicit representation of D(s, u) is available from the
matrix M and the representation of D. Therefore, computing F (u) and P (u) for every vertex
u ∈ V can be done in time O(|V |3).

Maximum labeled path problem 13

4.2 Tight example for ComputePath

In this section, we describe an instance of the problem Max-Labeled-Path showing that our
analysis of algorithm ComputePath is tight even in the unweighted case, i.e w(l) = 1 for all l ∈ L.
Let D9 be the graph of Fig 3. Let s be the source and t the sink of this graph. One can easily
check that F (u) = λ(u), for all u ∈ V. In particular, F (t) = 9. Indeed, with respect to the
function F each vertex located in the upper path is equivalent to the vertex in same level set
located in the lower path. Moreover, F (x) + Γ (y, t) is at least 9, for each arc xy in the upper
path. Therefore, we can suppose that the path P (t) chosen by the algorithm is the upper path.
When the algorithm ComputePath is invoked with t as parameter, it explores P (t) until it finds
an arc xy such that F (x) ≤ 4 and F (y) ≥ 4. Then it recursively calls ComputePath(y) that may
return the upper path P ′ from s to y that collects two labels 1 and 10. Then, the BFS in Dy,t

find the vertex v located to the right of y and labeled with 9. The path Q from y to t which
passes via v may be again the upper yt-path. Finally, ComputePath(t) may return the upper
path which collects 3 labels whereas the optimum is the lower path which collects 9 labels. This
example shows that our analysis of the algorithm ComputePath is tight. Clearly, arbitrarily large
examples can be obtained using an analogous construction.

s1 t 9

2 3 4 5 6 7 8

10
x

1

y

10

v

9 1 10 9

Fig. 3. D9, a tight example for ComputePath

5 OPT 1−ε-approximation for Max-Labeled-Path

In this section, we describe a method for improving the performance guarantee of our
√
OPT -

approximation for Max-Labeled-Path. We first describe the method in the unweigted case
and then explain how to handle weigths on the labels. Namely, we provide a construction that
tranforms an algorithm that returns paths collecting cOPTα labels into an algorithm that re-
turns c′OPTα

′
labels where α′ = 1

2−α and c′ = (2
3c)

α. Starting with our
√
OPT -approximation

algorithm and applying n time this transformation, we obtain an algorithm that returns paths
collecting at least (2

3)
n
2OPT

n
n+1 labels. For any ε > 0, there exists an integer n such that

n
n+1 > 1 − ε, thus, for OPT large enough, (2

3)
n
2OPT

n
n+1 ≥ OPT 1−ε (if OPT is bounded then

an optimal solution can be computed in polynomial time by dynamic programming).

Theorem 7. For any ε > 0 and any instance D of Max-Labeled-Path, a path collecting
OPT (D)1−ε labels can be computed in polynomial time.

5.1 Preliminaries

Let D be an instance of Max-Labeled-Path, i.e. a DAG labeled by a function l : V (D)→ L.
Consider a subset L′ ⊆ L of the labels, the projection of the instance D on L−L′ is the instance

14 B. Couëtoux, E. Nakache, Y. Vaxès

D − L′ obtained from D by removing the labels of L′. In the projected instance, some vertices
may have no label. These vertices can be removed by replacing each path of length two passing
through such a vertex by an arc (as it was done in Section 4.1 for vertices having zero weight).
Recall that for any pair of vertices x, y ∈ V, Dx,y denotes the digraph induced by the vertices
lying on an xy-path. A vertex y is said to be covered by a vertex x if y ∈ V (Dx,t). By extension,
y is said to be covered by a set of vertices U if at least one vertex of U covers y. The sources of
a set of vertices U, denoted by sources(U), are the vertices of the minimal subset of U covering
all vertices of U, i.e. a vertex u belongs to sources(U) if and only if u ∈ U and no other vertex
of U covers u.

5.2 Proof of Theorem 7

Let A be an algorithm that given a labeled DAG D, with a unique source s ∈ V (D), and an
integer β, returns a collection of paths {Pu : u ∈ U} where Pu is an su-path that collects exactly
β labels. For any 0 < α < 1, we say that A ∈ Aα if there exists a constant c such that for
any instance D and for any sy-path of D collecting p labels, the collection of paths obtained by
running A with parameter β = cpα on D contains an su-path Pu such that u covers y.

The following algorithm ByLevelsβ,k uses an algorithm A ∈ Aα as an oracle. It takes as input
a labeled DAG D with a unique source s ∈ V (D) and returns a collection of paths {Pu : u ∈ U}
where Pu is a path between s and u that collects exactly βk labels. We will show below that
for appropriate choices of parameters β and k, ByLevelsβ,k belongs to A 1

2−α
. The idea of this

algorithm is to split the DAG D into k levels and to collect β labels in each level. The levels are
characterized by the subsets of vertices S0, . . . , Sk. The subset Si consists of vertices v ending
a path P (v) collecting iβ labels discovered during iterations 1, 2, . . . , i. The ith level consists of
all vertices which are covered by Si−1 but not by Si. During the ith iteration, for each vertex
v in Si−1, the algorithm A is called on the instance obtained from D by removing the iβ labels
collected by P (v) and all vertices not lying on a path between the vertex v and the sink t. The
set of vertices Uv for which algorithm A returns a path Qu is added to Si. The path Pu obtained
by concatenating Qu to the path Pv collects exactly iβ distinct labels. At the end of the ith
iteration, the vertices of Si covered by other vertices of Si are removed from Si.

Algorithm 4: ByLevelsβ,k(D) : a collection {Pu : u ∈ U} of su-paths collecting βk labels

S0 = {s}, P (s) = {s};
for i = 1 . . . k do

Si ← ∅;
forall v ∈ Si−1 do

Let Dv,t − LP (v) be the projection on L − LP (v) of the instance Dv,t;
Let {Qu : u ∈ Uv} be the paths returned by A with parameter β on Dv,t − LP (v);
Si ← Si ∪ Uv;
forall u ∈ Uv do

P (u)← P (v).Q(u);

Si ← sources(Si);

return {Pu : u ∈ Sk}

Lemma 9. For any labeled DAG D and any integers β and k, ByLevelsβ,k(D) returns a col-
lection of paths collecting βk labels.

Maximum labeled path problem 15

Proof. Without loss of generality, we suppose that the source s of D has no label (an equivalent
instance satisfying this condition can be obtained by adding to D a new source s′ with no label
and an arc s′s). By induction on i, we prove that a path collecting exactly βi labels exists between
s and every vertex u ∈ Si. Since S0 = {s} and s has no label, the condition is true for i = 0. Now,
suppose that the condition is satisfied for i− 1. During ith iteration of algorithm ByLevels, if a
vertex u is added to Si then algorithm A has computed a path Qu collecting β labels between a
vertex v ∈ Si−1 and u. By induction, there exists a path P (v) collecting β(i− 1) labels between
s and v. Since Qu has been computed in a labeled graph in which the labels collected by Pv have
been removed, the path Pv.Qu collects exactly βi labels. �

Let D be a DAG containing an sy-path P collecting p distinct labels. We denote u1, . . . , up
the vertices where a new label is encountered for the first time in path P. For convenience, we
fix also u0 = s. Since s has no label, u0 6= u1. We denote β̃ = (β/c)

1
α and define recursively the

function µ as follows:

µ(0) := 0

µ(i+ 1) := µ(i) + iβ + β̃

Lemma 10. For all i such that µ(i) ≤ p, the subset of vertices Si computed by ByLevelsβ,k(D)
covers uµ(i).

Proof. By induction. S0 = {s} covers u0 = s. Now, suppose that v ∈ Si covers uµ(i). The

subpath of P between uµ(i)+1 and uµ(i+1) belongs to Dv,t and contains iβ + β̃ distinct labels.

Since |LP (v)| = iβ, the labeled DAG Dv,t obtained from D by removing the labels of Pv and

the vertices not covered by v contains a path ending in uµ(i+1) and collecting at least β̃ distinct
labels. Since algorithm A ∈ Aα is called with parameter β on Dv,t, it returns a path ending in
an ancestor of uµ(i+1). �

Now consider a labeled DAG D, containing an sy-path P with p distinct labels. The procedure

ByLevelsβ,k called on D with β = (2c2/αp
3)

α
2−α and k = β

1
α
−1

c
1
α

returns a path collecting βk =

(2
3cp)

1
2−α labels ending in a vertex v covering y. Indeed, since by definition, µ(k) = kβ̃+ k(k−1)

2 β ≤
kβ̃ + k2

2 β, we deduce

µ
(β 1

α−1

c
1
α

)
≤ 3

2c
2
α

β
2−α
α = p.

Therefore, uµ(k) is a vertex of P and, by Lemma 10, Sk must contain a vertex v covering uµ(k).

By Lemma 9, ByLevelsβ,k returns a path ending in v and collecting exactly βk = c′pα
′

labels

with c′ = (2
3c)

1
2−α and α′ = 1

2−α and thus ByLevelsβ,k ∈ A 1
2−α

.

The above construction transforms any polynomial time algorithm A ∈ Aα, into a polynomial
time algorithm A′ ∈ A 1

2−α
thus concluding the proof of Theorem 7.

5.3 Weighted version

First notice Max-Weighted-Labeled-Path can be reduced to Max-Labeled-Path by as-
signing to each label l ∈ L of weight w(l) a set Wl of w(l) labels of weight 1 and splitting each
vertex u into a path consisting of w(l(u)) vertices labeled the labels of the set Wl(u). This re-
duction is polynomial only if the weights of the labels are polynomial with respect to the size

16 B. Couëtoux, E. Nakache, Y. Vaxès

of the initial instance. This is clearly not true in general. However, by scaling the weights of
the labels, we can ensure polynomial weights while preserving the approximation guarantee. Let

λ := bOPT (D)
2n c where n is the number of vertices in the DAG D. We suppose λ ≥ 1 because

otherwise no scaling is required. The weights of the instance D′ obtained from D by replacing the
weight w(l) of each label l ∈ L by bw(l)/λc is clearly polynomial with respect to the size of D.
Therefore, the reduction of D′ to the unweighted version leads to a polynomial time algorithm.
Let P be the path returned by our OPT 1−ε-approximation on the unweighted instance. The
weight (before scaling) of the labels collected by P is at least

λ× (OPT (D′))1−ε ≥ (λ×OPT (D′))1−ε

≥ (OPT (D)− nλ)1−ε

≥ (1
2OPT (D))1−ε

The first inequality holds since λ ≥ 1. The optimum solution S of D on the scaled instance has a
weigth greater than w(S)/λ− |S|, therefore λOPT (D′) ≥ OPT (D)−nλ. This yields the second
inequality. Finally, the last inequality follows by definition of λ. We conclude that the algorithm
described in this subsection is an OPT 1−ε-approximation for Max-Weighted-Labeled-Path.

6 Collecting all the labels with a minimum number of paths

In this section, we study a problem closely related to Max-Labeled-Path. Given a labeled
DAG, the problem MPCL consists in finding a Minimum number of Paths Collecting all the
Labels. Using results of previous sections, we prove that MPCL does not belong to APX and
describe for any fixed real ε > 0, an algorithm that computes in polynomial time a solution of
MPCL within a factor |L|ε of the optimum.

Theorem 8. Assuming P 6= NP, no polynomial time algorithm can achieve a constant perfor-
mance ratio for MPCL even when restricted to instances D containing a path that collects all
the labels, i.e such that OPT (D) = 1.

Proof. Suppose, by way of contradiction, that there exists an algorithm ALG with constant per-
formance ratio α for MPCL. Let D be a labeled DAG with a path collecting all the labels, ALG
computes in polynomial time at most α paths collecting all the labels of D. One of these paths
must collect at least |L|/α labels. Therefore the existence of a constant factor approximation
algorithm for MPCL implies the existence of a constant factor approximation algorithm for
Max-Labeled-Path which is impossible unless P = NP by Theorem 5. �

6.1 Computing a solution within |L|ε
ε

of the optimum

Theorem 9. For any ε > 0, there exists an algorithm A such that for any labeled DAG D, A

computes in polynomial time a solution of the instance D of MPCL within a factor |L(D)|ε
ε of

the optimum.

Proof. Let δ be the optimal value on D, we construct D′ as δ copies of D: D1, . . . , Dδ such that
for all i < δ, there is an arc from every sink of Di to every source of Di+1. Therefore there exists
a path collecting all the labels in D′. Moreover, from a set of k paths in D′ that collects all the
labels we can extract a set of kδ paths in D that collects all the labels. Guessing δ ≤ |L(D)|, D′
can be constructed in polynomial time. We will now describe an algorithm on D′. By Theorem 7,
for any ε > 0, there exists an algorithm Aε for Max-Labeled-Path which computes a path
collecting |L(D′)|1−ε labels.

Maximum labeled path problem 17

The related algorithm A for MPCL is the following: we apply Aε on D′ to find a path P0,
then we remove the labels of P0 from D′ and we apply again Aε to find a path P1, we repeat
this process until all labels were collected. The value of the solution returned by the algorithm
A is the number of times the algorithm Aε has to be processed on D′.

We define the function f(x) := (|L(D′)|ε−εx)1/ε which is positive, convex and decreasing over

the real interval [0, |L(D
′)|ε
ε]. We will prove by induction on i that, for any positive integer i, f(i)

is an upper bound on the number of labels remaining after the ith iteration. Since f(0) = |L(D′)|,
this property holds for i = 0.

Since f is a convex function, we have

f(x+ 1) ≥ f(x) + f ′(x)

= f(x)− (|L(D′)|ε − εx)
1
ε−1

= f(x)− f(x)1−ε

By induction, after the ith iteration, it remains r ≤ f(i) labels. Since there exists a path
collecting all of them, Aε returns a path P with at least r1−ε labels. After removing these labels,
it remains at most r−r1−ε ≤ f(i)−f(i)1−ε labels in D′ because the function x−x1−ε is increasing
and r ≤ f(i). Therefore, f(i + 1) is indeed an upper bound on the number of labels remaining
after the (i+ 1)th iteration.

Since f(|L(D
′)|ε
ε) = 0, there is no label left after d |L(D

′)|ε
ε e steps, i.e. the number of paths returned

by A on D′ is at most |L(D
′)|ε
ε . We can therefore compute in polynomial time a solution on D of

value at most |L(D)|ε
ε δ. �

7 Conclusion

In this paper, the APX-hardness of Max-Labeled-Path is established through a simple reduc-
tion from MAX-3SAT. Then, using a self-reduction, it is shown that Max-Labeled-Path can
not be approximated within a constant ratio unless P = NP . In view of these negative results, a√
OPT -approximation algorithm is given for the weighted version of the problem. Starting with

this algorithm and applying a transformation technique, an algorithm with approximation guar-
antee of OPT 1−ε for any ε > 0 is obtained. In addition, the paper studies the problem of finding
a minimum number of paths collecting all the labels. Using similar techniques it is shown that
neither this problem belongs to APX, and a polynomial time algorithm computing a solution
with an approximation guarantee of L

ε

ε for any fixed ε is given.

We are interested in the following open questions related to Max-Labeled-Path. A large
gap still remains between our algorithm and our hardness results. As a first step to fill this
gap, one can ask if it is possible to design log(OPT) factor approximation algorithm for Max-
Labeled-Path. A natural restriction of the problem would be to limit the number of times
each label occurs. This question looks already non trivial when a label can be repeated only
twice. The problem has several parameter that could be used for fixed parameter tractability.
The problem is FPT when the parameter is the number of labels, but the maximum length of
a path seems a good parameter to study. Finally, a weakly exponential exact algorithm is an
interesting approach for this problem that is quite hard from the approximation point of view.

Acknowledgment. We are grateful to Jérôme Monnot for suggesting the use of a self-reduction
to prove the hardness result of Section 3.

18 B. Couëtoux, E. Nakache, Y. Vaxès

References

1. L.M. Batten, Combinatorics of Finite Geometries, Cambridge University Press, New York, 1997.
2. H. Broersma and X. Li, Spanning Trees with Many or Few Colors in Edge-Colored Graphs, Discus-

siones Mathematicae Graph Theory 17 (1997) 259–269.
3. H. Broersma, X. Li, G. J. Woeginger, and S. Zhang, Paths and Cycles in Colored Graphs, Aus-

tralasian Journal on Combinatorics 31 (2005) 299–311.
4. T. Brüggemann, J. Monnot, and G. J. Woeginger, Local search for the minimum label spanning tree

problem with bounded color classes, Operations Research Letters 31 (2003) 195?201.
5. R.-S. Chang and S.-J. Leu, The minimum labeling spanning trees, Information Processing Letters

31 (2003), 195–201.
6. B. Couëtoux, L. Gourvès, J. Monnot and O. Telelis, Labeled Traveling Salesman Problems: Com-

plexity and approximation, Discrete Optimization 7 (2010) 74-85.
7. R. Hassin, J. Monnot and D. Segev, Approximation Algorithms and Hardness Results for Labeled

Connectivity Problems, Journal of Combinatorial Optimization 14 (2007) 437–453.
8. R. Hassin, J. Monnot, and D. Segev, The Complexity of Bottleneck Labeled Graph Problems, In

International Workshop on Graph-Theoretic Concepts in Computer Science (WG), Lecture Notes in
Computer Science, 4769, Springer-Verlag, Berlin, 2007, 328–340.

9. J. H̊astad, Some optimal inapproximability results, Journal of ACM 48 (2001) 798–859.
10. S. O. Krumke and H.-C. Wirth, Approximation Algorithms and Hardness Results for Labeled Con-

nectivity Problems, Information Processing Letters 66 (1998) 81–85.
11. J. Monnot, The labeled perfect matching in bipartite graphs, Information Processing Letters 96

(2005) 81–88.

