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Abstract:  

Planned lead times are crucial parameters in management of supply networks that continue to 
be more and more extended with multiple levels of inventory of components and 
uncertainties. The object of this study is the problem of determining planned lead times in 
multi-level assembly systems with stochastic lead times of different partners of supply chains. 
A general probabilistic model with a recursive procedure to calculate all the necessary 
distributions of probability is proposed. A Branch and Bound algorithm is developed for this 
model to determine planned order release dates for components at the last level of a BOM 
which minimize the sum of inventory holding and backlogging costs. Experimental results 
show the behaviour of the proposed model and optimisation algorithm for different numbers 
of components at the last level of the BOM and for different numbers  of levels and values of 
holding and backlogging costs. The model and algorithm can be used for assembly 
contracting in an assembly to order environment under lead time uncertainty. 

Keywords: Multi-level assembly systems, Assemble-to-order, Assembly contracting, 
Stochastic lead-times, Planned lead times optimization, Stochastic modeling, Branch and 
Bound.  

1 Introduction  
In today's global marketplace, planners have to take appropriate actions in response to supply 
disruptions (Snyder et al. 2016, Speier et al. 2011, Kleindorfer and Saad 2005) and supply 
uncertainty (Flynn et al. 2016, Simangungsong et al. 2012, Wazed 2009). In comparison to 
supply-demand coordination uncertainties, Revilla and Sáenz (2013) defined disruption as 
random, unplanned events that stop operation either completely or partially for a certain 
duration. Snyder et al. (2016) specified that disruptions can often be viewed as a special case 
of lead time uncertainty.  
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In the last few years, academics and decision-makers have recognised that supply chains have 
become extremely vulnerable due to uncertain lead times, demand prediction and price 
variability. For planners, it seems difficult to improve the efficiency of the supply chain when 
lead times frequently have uncertain values (Bandaly et al. 2016). They therefore have to 
manage assembly and delivery as an uncertain process. 

In the Assemble-To-Order (ATO) environment, finished products are assembled only after 
customer orders have been received. This kind of environment enables firms to assemble on 
customer orders with a specific quantity and due date, and so unwanted inventory of finished 
products can be zero.  

Despite the widespread adoption of the ATO environment, there are considerable weaknesses. 
Some input data are often considered as deterministic parameters, but in reality are inherently 
uncertain. For example, the assembly process can be interrupted by machine breakdown and 
components replenishment lead times may be significantly longer than planned ones. 
Therefore, the stock-out of one component may delay the delivery of finished products. 

The literature reports many investigations into production planning that consider the 
randomness of the finished product demand (see Peidro et al. 2009, Mula et al. 2006 and Koh 
et al. 2002), but few studies have examined how to cope with the uncertainty of lead times 
(see Damand et al., 2013 and Guide and Srivasta 2000). Safety stocks have largely 
highlighted how to handle different uncertainties, whereas safety lead times have not been 
sufficiently studied. Interested readers may refer to Van Kampen Tim et al. (2010), where the 
cases in which the use of safety stocks and/or safety lead times could be advantageous are 
explained, or to Jansen and de Kok (2011) for further details on the importance of lead time 
anticipation. More generally, readers who are interested in supply planning models under 
uncertainty may turn to Aloulou et al. (2014), Díaz-Madroñero et al. (2014), Dolgui et al. 
(2013), Ko et al. (2010), Peidro et al. (2009), Mula et al. (2006) and Koh et al. (2002). 

Therefore, it is necessary to examine the influence of lead times on supply planning and to 
develop methods that minimize costs, considering the non-deterministic behaviour of lead 
times.  

In this study, we consider an ATO environment. The whole supply network is configured for 
a given tailored finished product. This product is customized according to the customers’ 
requests and composed of a given set of personalized components. 

Our problem arises at contract negotiation step. A client orders a specific product, we need to 
design the corresponding supply network and decide both (i) the due date for client delivery 
and (ii) the date when the overall process is launched at the bottom level. All partners of the 
supply network (local assembly units or suppliers) are independent enterprises. Thus we 
cannot coordinate activities inside them. But we are responsible for client delivery at the fixed 
due date, and we know, at the supply network design stage, the statistics on lead times of all 
partners. We are thus able to give to the client an estimate of the total lead time, and launch 
the overall process at the bottom level. 

In our case, the demand of clients is not known in advance, and no stocks of finished products 
or components are planned to anticipate this demand.  As stated in Berlec et al. (2008), 
Chandra and Grabis (2008), Arda and Hennet (2006), Golini and Kalchschmidt (2011), 
Farhani et al. (2014), in this case, the planners need information about the tailored product, 
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personalized components and assembly process to negotiate the delivery time with the 
customer, select suppliers and plan release dates based on cost and lead times. 

Obviously, the lead time are uncertain because of different factors including capacity 
constraints, machine breakdowns, stochastic variations on operation processing times, etc. 
However, at the considered stage, we know only the distributions of probability for partners’ 
lead times (based on statistical data). Different components produced by different partners 
need to be assembled to obtain a finished product. So to decide the client delivery due date 
and the start times for supply chains, a model based on the probability distributions of the 
partner lead times is developed. This is a common approach in contracting and planning under 
uncertainty (Song et al. 2000, Fiala 2005, Berlec et al. 2008 and Yoo et al. 2015), which is 
commonly used owing to the complexity of the problem (Guide and Srivasta 2000, Koh et al. 
2002, Dolgui and Prodhon 2007, Damand et al. 2013, Dolgui et al. 2013 and Díaz-Madroñero 
et al. 2014). 

The rest of the paper is organized as follows. Firstly, we make a short review of previous 
work on the optimization of assembly systems under lead time uncertainty (Section 2). A 
description of the problem is presented in Section 3. The analytical model is given in Section 
4. In Section 5, a technique is given to reduce the initial space of research. It will be used with 
a Branch and Bound algorithm to optimize the mathematical expectation of the total cost 
(Section 6). Some results are shown in Section 7. Finally, we outline the work done in a 
conclusion, and give some perspectives for future research. 

2 Related publications 
An analysis of the literature shows that in the case of assembly systems, the lead time is most 
often considered deterministic and rarely uncertain. To handle the uncertainty of lead times, 
the studies found in the literature can be split into two categories: one-level and multi-level 
assembly systems (Dolgui et al. 2013). Yano (1987a) was among the first to study assembly 
systems with supply timing uncertainties after her studies on serial production systems (Yano 
1987b, c). In Yano (1987a) only the case of the single-period model was considered. The 
assembly system is composed of one component at level 1 and two components at level 2. 
The lead times of these three components are considered stochastic. An algorithm was 
developed to find optimal planned lead times, which minimize holding and backlogging costs. 
This study has been cited 148 times and in subsequent publications, models have been limited 
to one or two-level assembly systems (Chu et al. 1993, Tang and Grubbström 2003, Mohebbi 
and Choobineh 2005, Hnaien et al. 2008a, Fallah-Jamshidi et al. 2011, Dolgui et al. 2013, 
Hnaien et al. 2016 and Borodin et al. 2016). Chu et al. (1993) addressed the same problem, 
but in the case of one-level assembly systems. The convexity of the expected total holding 
and backlog costs was proven, and an iterative algorithm was used to minimize it. 

Dolgui et al. (1995) and Dolgui (2002) developed an approach based on the coupling of an 
integer linear programming and a simulation to model a multi-period problem. They studied 
one-level assembly systems under a deterministic demand and random lead times in the case 
of the lot-for-lot policy. The authors considered several types of finished product. Several 
types of component are needed to assemble a finished product, and for each component, an 
inventory holding cost is considered. In this study, both the number of components to be 
ordered at the beginning of each period and the number of products to be assembled during 
each period are determined. 
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 Ould Louly and Dolgui (2002), Dolgui et al. (2008) and Ould Louly et al. (2008) were 
focused on one-level assembly systems for one product under component lead time 
uncertainties. The demand for the considered product was assumed to be known  and fixed 
and the capacity was considered unlimited. A multi-period under component lead time 
uncertainties was considered. A generalization of the discrete Newsboy model was suggested 
to find optimal release dates which maximize the customer service level for the finished 
product and minimize the expected inventory holding cost for the components for a specific 
case where the distributions of probability of lead times and holding cost are the same for all 
components. A Branch and Bound procedure was developed to solve it for a general case of 
distributions of probability and costs. In Shojaie et al. (2015), the same model was studied, 
but for the case of POQ policy, service level constraints and over a single inventory. The 
authors explain that the proposed model can function with no major restriction on the type of 
the lead time distribution. However, a concrete example is missing in the study. 

A two-level assembly system was studied by Tang and Grubbström (2003) in the case of both 
stochastic lead times and the process time for components at level one of the BOM. Both the 
demand and the due date are assumed to be known. The capacity is considered unlimited. To 
determine the optimal safety lead times, which minimize the total backlogging and inventory 
holding cost, a Laplace transform procedure was introduced. Later, Hnaien et al. (2008a) 
treated only a one-period demandor a two-level assembly system and developed a genetic 
algorithm to minimize the total expected cost, which equal to the sum of the backlogging cost 
for the finished product and the inventory holding costs for components. The authors assumed 
that the components at level 1 of the BOM were stored and the finished product was 
assembled only after the given due date. Fallah-Jamshidi et al. (2011) exploit the same 
problem in a multi-objective context. An electromagnetism-like mechanism is proposed to 
reinforce the GA and to determine minimal expected costs. However, the authors focused on 
the number of components at the last level and neglected the influence of different costs. The 
case of a one-period inventory model for a one-level assembly system under stochastic 
demand and lead times was studied by Hnaien et al. (2016). A mathematical model and a 
Branch and Bound procedure were developed to determine optimal quantity and optimal 
planned lead times for components. Drawing on this work, Borodin et al. (2016) proposed a 
joint chance constrained model and an equivalent linear formulation to solve this problem.  

Recently, Atan et al. (2015) considered a parallel multi-stage process feeding of final 
assembly process. To determine optimal planned lead times for different stages minimizing 
the expected cost for a customer order, an iterative heuristic procedure was developed. It 
could be considered as a special case of our problem.. Bollapragada et al. (2015) examined a 
multi-product, multi-component, procurement and assembly problem under supply and 
demand uncertainty. A numerical example illustrates the impacts of lead times and capacity 
on the performance of the assembly system. However, no resolution method is provided. 

To our knowledge, in the literature, there is no other multi-level model that determines 
optimal order release dates with several levels in the BOM, several types of components and 
stochastic lead times for each component at each level. The existing models are limited: 

 to one-level assembly systems, continuous random lead times, real decision variables 
and one-off demand (Chu et al., 1993), 
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 or to one-level assembly systems, discrete random lead times, discrete decision 
variables and a constant demand which is the same for all periods (Ould-Louly et al., 
2008 and Ould-Louly and Dolgui 2013), 

 or to two-level systems with only one component at level 1 and two components at 
level 2, continuous random lead times and one period planning (Yano 1987a), 

 or to two-level assembly systems and several types of components at each level 
(Hnaien et al., 2008a, Fallah-Jamshidi et al., 2011). 

In the field of project planning, Trietsch (2006) performed a study on a problem closest to our 
problem. It focused on the role of gates by creating safety time cushions, and optimized the 
later by optimizing gates. These gate times are considered as lower bounds on the actual start 
times of activities, and the final activity is completed at the earliest on the due date (as in Chu 
et al. 1993 and Hnaien et al. 2008a). Trietsch (2006) considered a centralized model of a 
supply network. The decision-maker can decide the start times at every level. By contrast, our 
model was developed for the case of decentralized decisions in the supply networks where all 
partners are independent enterprises. Thus we cannot decide the start times at all levels. We 
decide only the due date for the final product and release dates for the components of last 
level of BOM, i.e. the dates of launching of the corresponding supply chains. The decisions 
which can be made with our model are useful at the assembly contracting step in ATO 
decentralized environments. We have selected a modeling approach based only on lead time 
distributions of probability for all partners. To obtain these distributions of probability, we use 
statistics and consider that a partner lead time starts when all components for the considered 
partner are available. Thus the difference from Trietsch (2006) is in the modelling approach, 
which is based on a different objective, and in the system studied (decentralized in our case). 

Moreover, in Trietsch (2006), the duration of activities is assumed to be continuous random 
variables (they are discrete in our model), the costs for starting activities earlier are linear, and 
a linear project tardiness penalty cost is also introduced. The objective function of the 
proposed project-gating model is convex under gate constraints. An optimal solution is found 
by simulation. The author does not specify the number of simulations, the size of the studied 
problem, or the limits of the approach. In addition, to obtain the convexity of the cost 
function, specific assumptions on costs were proposed. By contrast, in our model, there is no 
specific assumption on costs and decision variables are discrete. 

In the present paper, there is no specific assumption on costs. The supply planning and plan 
execution activities are decentralized and only the aspect of synchronization between partners 
of supply chains is considered. We cannot manage the coordination issues inside of each 
partner. At our decision level, we know only the distributions of probability of partner lead 
times. At this level of abstraction, considering the available information, all other aspects are 
assumed to be integrated into the probability distributions of partner lead times. This is a 
standard assumption made by several scholars worked in this field (May et al. 2017, Kuang et 
al. 2016, Ding et al. 2005, Petrovica et al. 1998). We assume that the lead time of a partner 
starts when all needed components are available. A partner manages its own production 
process considering capacity and coordination issues. But we cannot take into account these 
decisions because we do not know them at the considered planning stage. We have only the 
distributions of probability of lead times obtained by using the statistics that are also results of 
similar past decisions. 
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To summarize, the available information for us is only the probability distributions of lead 
times. Based on this information, we search for planned lead times for all components of last 
supplier level for every new customer order. In other words, taking into account the supply 
network design and the distributions of probability of partner lead times obtained with 
statistics or estimated by partners themselves, we need to define the client delivery due date 
and when at the latest the supply network should start all the supply chain processes. 

Based on the approaches presented in the literature, this paper proposes a new generalized 
model to study multi-level assembly systems under lead time uncertainty in an ATO 
environment. To the best of our knowledge, our paper reports the first study of a model for 
multi-level assembly systems with stochastic lead times with the number of level greater than 
two. Moreover, the model and algorithm developed in this paper are different from the model 
and Branch and Bound procedure presented in Ould-Louly et al. (2009) and Hnaien et al. 
(2016). The later have required specific assumptions about costs: (i) the inventory holding 
cost of a component ݅ is greater than the sum of unit inventory holding costs of all the 
individual components ݇ which make it up; and (ii) the unit inventory holding cost ݎ of the 
finished product is greater than the sum of unit inventory holding costs of the individual 
components ݇ which make it up. In our paper, these constraints are lifted.  

3 Notation and background 
To get closer to the industrial methods of planning, we consider a discrete temporal 
environment and integer decision variables. Fig. 1 shows that the finished product is produced 
from components themselves obtained from components of the next level and so on.  

The assembly system is constituted by ݉ levels and ௟ܰ components at each level ݈ (݈ =
1, … , ݉). ∑ ௟ܰ

௠
௟ୀଵ  is the number of components necessary to assemble the finished product. It 

is necessary to define the order release dates for components ܿ௜,௠ (݅ = 1, … , ܰ௠) at level ݉ 
(the last level). No decision is possible on the start date for intermediate levels. At 
intermediate levels, ܿ௜,௟ (݅ = 1, … , ௟ܰ, ݈ = 1, … , ݉ − 1) components are assembled. 

Without loss of generality, we assume that the finished product demand ܦ is known and equal 
to one, and exactly one unit of each component is required to produce the finished product. 
The unit backlogging cost ܾ and the unit inventory holding cost ݎ for the finished product, 
and the unit inventory holding cost ℎ௜,௟ for the component ܿ௜,௟ are known. Note that we assume 
that each supplier or local assembly unit is independent. Overall, we know relatively a little 
about how they manage production. Nevertheless, we suppose that  distribution of probability 
of lead time for each  component and partner are available to assess lead times. They can be 
obtained from the statistics or estimated by partners. In the case of statistics, the time  
statistics automatically include not only processing times, but also additional times depending 
on load, capacity constraints and variations, local planning decision, etc. This is a common 
approach at the contracting stage to predict lead times under uncertainty. The lead times ܮ௜,௟ 
of components are modelled as independent random discrete variables with known probability 
distributions and finite upper values.  
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Figure 1. A multi-level assembly system 

For each level ݈, when all the necessary components are available, level ݈ delivers the 
components to level ݈ − 1 after a random discrete lead time. When a semi-finished product 
arrives at the final level (level 0), it undergoes the necessary final assembly operations and 
afterwards the finished product is delivered to the customer in order to satisfy the demand  .ܦ 
The assembly capacity at every level is considered as infinite. It is assumed that each 
component of level ݈ is used to assemble only one type of component at level ݈ − 1. Thus, for 
this model, only planned order release dates ௜ܺ,௠ for components ܿ௜,௠ at level ݉ are unknown 
parameters and are the set of our decision variables. 

Note the following notations: 

Parameters 

ܶ 
 

Due date for the finished product, ܶ > 0  
 

 ܦ
 

Demand (known) for the finished product at the date ܶ, without loss of generality, let ܦ = 1 
 

݈ 
 

Level in the bill of material (BOM), ݈ = 1, … , ݉ 
 

ܿଵ,ଶ ܿ௜,ଶ ܿேమ ,ଶ 

ܿଵ,ଵ ܿேభ ,ଵ ܿ௞,ଵ 

ܿ௜,௠ ܿଵ,௠ ܿே೘ ,௠ 

Customer 

Finished 
Product 

Product delivery Demand (known) 

Level 0 

Level 1 

Level 2 

Level m 

Lead times 
(random) 

Lead times 
(random) 

Lead times 
(random) 

Lead times 
(random) 

Order release dates 
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௟ܰ 
 

Number of components at level ݈ 
 

ܿ௜,௟ Component ݅ of level ݈ of BOM, ݅ = 1, … , ௟ܰ 
  
௜ܵ,௟ 
 

Set of components needed to assemble a component ܿ௜,௟ 
 

 ௜,௟ܮ
 

Random lead time for component ܿ௜,௟ 
 

 ௜,௟ݑ
 

Maximum value of ܮ௜,௟; each ܮ௜,௟  varies in ൣ1,  ௜,௟൧ݑ
 

 
௜ܷ,௠ 

The longest time between the release date for component ܿ௜,௠ and ܶ. It is equal to the 
maximum value of  ∑ ௜ೡ,௩ܮ

௠
௩ୀଵ  ; ∑ ௜ೡ,௩ܮ

௠
௩ୀଵ  varies in ൣ݉, ∑ ௜ೡ,௩ݑ

௠
௩ୀଵ ൧, ∀ߠ ∈ [1, ݉ − 1] and 

∀ܿ௜ഇశభ,௟ ∈ ܵ௜ഇ,௟ିଵ 
 

ℎ௜,௟ 
 

Unit holding cost for component ܿ௜,௟ per period 
 

ܾ 
 

Unit backlogging cost of the finished product per period 
 

 Unit inventory holding cost for the finished product per period ݎ
Variables 

௜ܺ,௠ 
Decision variable: release date for component ܿ௜,௠ (this type of variable is defined 
only for components at level ݉), ௜ܺ,୫ ∈ ൣܶ − ௜ܷ ,௠; ܶ − ݉൧ 

Functions 

.⟧ܧ ⟧ Expected value 

.)௜,௟ܨ ) Cumulative distribution function of  ܮ௜,௟ 

ܳ(. ) The recursive function used to calculate ܧ⟦. ⟧ value 

Table 1. Notation 

We use the following notations to simplify several expressions of the model: 

• Assembly date for ܿ௜,௠ିଵ : ܯ௜,௠ିଵ = ݔܽ݉
௖ೖ,೘∈ௌ೔,೘షభ

൫ܮ௞,௠ + ܺ௞,௠൯ 

• Assembly date for ܿ௜,௟ିଵ : ܯ௜,௟ିଵ = ݔܽ݉
௖ೖ,೗∈ௌ೔,೗షభ
݈=2,…,݉−1

൫ܯ௞,௟ +  ௞,௟൯ܮ

• Assembly date for the finished product: ܯி௉ = ݔܽ݉
௜ୀଵ,…,ேభ

൫ܯ௜,ଵ +  ௜,ଵ൯ܮ

• Maximum between ܯி௉  and the due date ܶ : ܯி௉
ା = ி௉ܯ)ݔܽ݉ , ܶ) 

• Minimum between ܯி௉  and the due date ܶ : ܯி௉
ି = ி௉ܯ)݊݅݉ , ܶ) 

• ෍ ௜ܪ

ே೗

௜ୀଵ

= ෍ ቌℎ௜,௟ − ෍ ℎ௞,௟ାଵ
௖ೖ,೗శభ∈ௌ೔,೗

ቍ
ே೗

௜ୀଵ

 



9 

 

• ܪ = ෍ ℎ௜,ଵ

ேభ

௜ୀଵ

+ ܾ 

• ܴ = ݎ − ෍ ℎ௜,ଵ

ேభ

௜ୀଵ

 

4 Mathematical model 
 
We search to know when the overall processes should be launched to satisfy the demand of 
our customer for a due date. This model is used at the stage of contracting with our customer 
in an assembly to order environment. Note that for the considered problem, taking into 
account that all partners of supply networks are independent enterprises and the network will 
be managed in a decentralized manner, we search only for values of decision variables ௜ܺ,௠. 
From the moments ௜ܺ,௠ when we order components ܿ௜,௠ from suppliers at the last level ݉, 
and until the date when we deliver the finished product to our customer, all the processes at 
different levels are considered to be launched when all necessary components from previous 
levels are available. The assembly capacity is considered infinite. We know the distributions 
of probability of lead time for each level and component.. we use the infinite capacity model. 
There is no decision variable for internal levels (no possibility to take into account the future 
local decisions only the distributions of probability of lead times of our partners are known). 
The production cycle extends from order release dates ௜ܺ,௠ of ܿ௜,௠ to the delivery date 
ி௉ܯ

ା൫݉ܽܯ)ݔி௉ , ܶ)൯ of the finished product.  

Inventory holding costs are considered if components arrive before the triggering of the 
assembly process. 
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Figure 2. The composition of the total cost (the case of backlog) 

Then, the total cost ܥ(ܺ,  is the sum of inventory holding costs for components and (ܮ
inventory holding or backlogging costs for the finished product. An example when the 
finished product is assembled after the due date ܶ is given in Fig. 2. 

The proofs of the following theoretical results are in the Appendix. 

Property 1. 

An explicit form for the total cost is the following: 

,ܺ)ܥ (ܮ = ෍ ℎ௜,ଵܯி௉

ேభ

௜ୀଵ

− ෍ ෍ ௜ܪ

ே೗

௜ୀଵ

௠ିଵ

௟ୀଵ

௜,௟ܯ − ෍ ෍ ℎ௜,௟ܮ௜,௟

ே೗

௜ୀଵ

௠

௟ୀଵ

− ෍ ℎ௜,௠ܺ௜,௠

ே೘

௜ୀଵ

 

+ܾ × ൫ܯி௉
ା − ܶ൯ − ݎ × (ܶ − ி௉ܯ

ି) 

(1) 

with ܮ = ൫ܮଵ,ଵ, … , ,௜,ଵܮ … , ,ேభ,ଵܮ … , ଵ,௠ܮ , … , ௜,௠ܮ , … ,  ே೘,௠൯ܮ

and ܺ = ( ଵܺ,௠ , … , ௜ܺ,௠ , … , ܺே೘ ,௠). 

The objective is to find the order release dates for components at level ݉ minimizing the 
expected value of the total cost ܥ(ܺ,  This total cost is a random discrete variable (because .(ܮ
the lead times ܮ௜,௟ and assembly dates (ܯ௜,௟ and ܯி௉) are random variables, ∀݅ = 1, … , ௟ܰ and 
∀݈ = 1, … , ݉). Thus, we can calculate the mathematical expectation of the total cost 
,ܺ)ܥ⟧ܧ  .In Fig. 3, different mathematical expectation costs are presented .⟦(ܮ

T 

 
Finished Product 
backlogging cost 
 
Real Lead time 
 
Component inventory 
holding cost 
 
Order release dates 
 
Assembly date 

 

 ଵ,ଷܮ
 ଵ,ଶܮ

 ଵ,ଵܯ

 ଶ,ଵܯ ଷ,ଶܯ

 ସ,ଶܮ

 ଶ,ଵܮ

 ܲܨܯ

଼ܺ,ଷ 

  

 ଶ,ଷܮ

 ଷ,଼ܮ

 ଷ,ଷܮ

 ସ,ଷܮ

 ହ,ଷܮ

 ଺,ଷܮ
 ଻,ଷܮ

 ଶ,ଶܮ

 ଷ,ଶܮ

 ଵ,ଵܮ
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Property 2. 

From Eq. (1), the total expected cost, which is noted by ܥ⟧ܧ(ܺ,  :can be formulated ⟦(ܮ

,ܺ)ܥ⟧ܧ ⟦(ܮ = ෍ ℎ௜,ଵܧ⟦ܯி௉⟧
ேభ

௜ୀଵ

− ෍ ൫ܪ௜ × ௜,௟൷൯ܯ൳ܧ
௠ିଵ

௟ୀଵ

− ෍ ቌ෍ ℎ௜,௟ܧ൳ܮ௜,௟൷
ே೗

௜ୀଵ

ቍ
௠

௟ୀଵ

− ෍ ℎ௜,௠ܺ௜,௠

ே೘

௜ୀଵ

+ ܾ × ൫ܧ൳ܯி௉
ା൷ − ܶ൯ + ݎ × (ܶ − ி௉ܯ⟧ܧ

ି⟧) 

(2) 

The expressions ܧ൳ܯி௉
ା൷, ܯ⟧ܧி௉

 ௜,௟൷ are calculated and the exactܯ൳ܧ and ⟦ி௉ܯ⟧ܧ ,⟦ି
expression of ܥ⟧ܧ(ܺ,  .is given in the Appendix ⟦(ܮ

 

Figure 3. Composition of the total expected cost 

The intervals ܶ − ௜ܷ,௠ ≤ ௜ܺ,௠ ≤ ܶ − ݉ are the initial space of research. It depends on 
maximum and minimum lead times and the number of levels. In the next section, a technique 
is proposed to obtain upper limits for decisions variables. 

5 Reducing the space of research 
The main idea is to decompose the multi-level assembly system (Fig. 1) to ܰ௠ (the number of 
components at level ݉) multi-level linear supply chains (Fig. 4). Each linear chain ݆ , ݆ ∈
{1, . . , ܰ௠}, delivers a finished product on a specified delivery date ߰௝. There are (i) 
backlogging costs if the finished product is available after the due date ܶ and (ii) an inventory 
holding cost if it arrives before. The optimal order release date for one linear chain will be 
used to reduce the initial space of research for the corresponding component release date at 
last the level in the BOM. 
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 ଵ,ଵ൷ܯ൳ܧ

ଶ,ଵ൷ܯ൳ܧ ଷ,ଶ൷ܯ൳ܧ

 ସ,ଶ൷ܮ൳ܧ

 ଶ,ଵ൷ܮ൳ܧ

⟦ி௉ܯ⟧ܧ
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ି⟧ 
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Oder release date 
  
Expected assembly 
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 ଶ,ଷ൷ܮ൳ܧ
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Figure 4. Decomposition of the assembly system to several multi-level linear chains 

Let ݑ௜,௟ the maximum value of ܮ௜,௟ and ௜ܷ,௟ the longest time between the release date for 
component ܿ௜,௠ and ܶ. Each ܮ௜,௟ varies in ൣ1,  ௜,௟൧ and each order release date ௜ܺ,௠ varies inݑ
ൣܶ − ௜ܷ,௠; ܶ − ݉൧. 

Let ܿ௜೘,௠ a component at level ݉ whose lead time is equal to ܮ௜೘,௠. This component is 
necessary to make up the component ܿ௜೘షభ,௠ିଵ (its lead time is equal to ܮ௜೘షభ,௠ିଵ) ; itself 
make the component ܿ௜೘షమ,௠ିଶ , etc. (Fig. 4). The availability date of the product of this linear 
chain is equal to ߰௝ = ߰௜೘ = ܮ + ௜ܺ೘,௠ with ܮ = ௜భ,ଵܮ + ௜మ,ଶܮ + ⋯ + ௜೘షభ,௠ିଵܮ + ௜೘,௠ܮ . 

Let ߰௝
ା = ൫߰௝ݔܽ݉ , ܶ൯ and ߰௝

ି = ݉݅݊൫߰௝ , ܶ൯. The total cost ܥ( ௝ܺ ,  is a random variable (ܮ
and equal to: ܥ൫ ௝ܺ , ൯ܮ = ܾ × ൫߰௝

ା − ܶ൯ − ݎ × ൫ܶ − ߰௝
ି൯. 

Therefore, it can be inferred that the total expected cost ܧ൳ܥ( ௝ܺ,  :൷ is equal to(ܮ

)ܥ൳ܧ ௝ܺ, ൷(ܮ = ܾ × ൫ܧ൳߰௝
ା൷ − ܶ൯ − ݎ × ൫ܶ − ൳߰௝ܧ

ି൷൯ 

From Eq. (A.7) and Eq. (A.8) we can deduce that ܧ൳߰௝
ା൷ = ܶ + ∑ ൫1 − ൳߰௝ݎܲ ≤ ൷൯௦ஹ்ݏ  and 

൳߰௝ܧ
ି൷ = ∑ ൫1 − ൳߰௝ݎܲ ≤ ൷൯଴ஸ௦ஸ்ିଵݏ . Then, the total expected cost can be written as: 

)ܥ൳ܧ ௝ܺ , ൷(ܮ = ܾ × ቌ ෍ ൫1 − ൳߰௝ݎܲ ≤ ൷൯ݏ
்ஸ௦ஸௌೞೠ೛

ቍ + ݎ × ൭ܶ − ෍ ൫1 − ൳߰௝ݎܲ ≤ ൷൯ݏ
଴ஸ௦ஸ்ିଵ

൱ 

Subsequently, let ܨ൫ ௝ܺ൯ = ൳߰௝ݎܲ ≤ ܶ൷ and for each linear chain ݆, ௝ܺ
∗∗  be the optimal order 

release date which minimizes this total expected cost ܧ൳ܥ( ௝ܺ
∗∗,   .൷(ܮ

ே೘,௠ܥ ேమ,ଶܥ ே೘షభ,௠ିଵܥ
Finished 

Product m 
 ேభ,ଵܥ

 ௝,௠ Finishedܥ ௜మ,ଶܥ ௜೘షభ,௠ିଵܥ
Product j 

 ௜భ,ଵܥ

 ଵ,௠ Finishedܥ ଵ,ଶܥ ଵ,௠ିଵܥ
Product 1 

 ଵ,ଵܥ

 ௜భ,ଵܮ ௜మ,ଶܮ  ௜೘షభ,௠ିଵܮ ௜೘,௠ܮ



13 

 

Property 3. 

The optimal order release date ௝ܺ
∗∗ satisfies the optimality condition for the discrete Newsboy 

model, where the cumulative distribution function ܨ(. ) of the total lead time ܮ is used:  

൫ܶܨ − ௝ܺ
∗∗  − 1൯ ≤

ܾ
ܾ + ݎ

≤ ൫ܶܨ − ௝ܺ
∗∗ ൯ (3) 

The complete proof is detailed in Appendix A.3. 

Remark 1. 

It is worthwhile to mention that in our case, each multi-level linear supply chain is composed 
of ݉ levels (successive production stages) with ݉ random processing times and without 
planned production dates (see Elhafsi (2002) for the case when there are planned production 
date for each stage). A due date for the final product is known, and each production process 
starts the moment the previous one is completed. Therefore, inventory-holding costs for 
intermediary processes do not exist and only backlogging and inventory-holding costs of the 
finished product appear in expression (3). 

Numerical example 

To illustrate the procedure for reducing the research space, the example in Fig. 5 is studied. A 
three level assembly system is considered (݉ = 3). Two components ܿଵ,ଵ and ܿଶ,ଵ constitute 
the first level. The second one contains four components ( ଶܰ = 4) and the third one contains 
eight components ( ଷܰ = 8). 

 
Figure 5. A three-level assembly system 

 ଵ,ଵܥ

 ܲܨ

 ଶ,ଵܥ

 ଵ,ଶܥ

 ଶ,ଶܥ

 ଷ,ଶܥ

 ସ,ଶܥ

 ଵ,ଷܥ

 ଶ,ଷܥ

 ଷ,ଷܥ
 

 ସ,ଷܥ

 ହ,ଷܥ
 

 ଺,ଷܥ
 

 ଻,ଷܥ
 

 ଷ,଼ܥ
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The due date ܶ is equal to 15. The unit inventory holding cost ݎ of the finished product is 
equal to 10. The unit backlogging cost ܾ of the same product per period is fixed to 11 values: 
10ିଷ, 10ିଶ, 10ିଵ, 1, 10, 10ଶ, 10ଷ, 10ସ, 10ହ, 10଺ and 10଻. The unit inventory holding costs for 
components per period are given in the following table: 

 8 7 6 5 4 3 2 1 ࢏
       ૚ 8 1,࢏ࢎ
     ૛ 2 1 0.2 0.05,࢏ࢎ
 ૜ 1 0.5 0.3 0.25 0.1 0.05 0.02 0.01,࢏ࢎ

Table 2. The unit inventory holding costs for components per period 

The maximum lead time of each component ݑ௜,௟ is equal to 5 and each lead time varies 
between 1 and 5. Its probability distributions are given in the Table 3. 

Initially, each order release date ௜ܺ,௠ varies between 0 ൫ܶ − ௜ܷ,௠൯ and 13 (ܶ − ݉). The initial 
cardinality of research space is equal to 13଼ ((ܶ − ݉ + 1)ே೘) solutions. 

The multi-level assembly system is decomposed to 8 linear chains. The cumulative 
distribution function of ܮ in each linear chain can be obtained. Only the first one (ܥଵ,ଷ →
ଵ,ଶܥ → ଵ,ଵܥ → ܨ ଵܲ) is presented as follows: 

F(3)=0.0558;   F(4)=0.3645;   F(5)=0.78945;  F(6)=0.88719; 
F(7)=0.953165;  F(8)=0.986065;  F(9)=0.995651;  F(10)=0.9986; 
F(11)=0.999653;  F(12)=0.999943;  F(13)=0.999985;  F(14)=0.999998; F(15)=1. 

 

level ࢒ of BOM 5 4 3 2 1 ࢝ 

1 
ଵ,ଵܮ൳ݎܲ =  ൷ 0.93 0.03 0.02 0.01 0.01ݓ
ଶ,ଵܮ൳ݎܲ =  ൷ 0.93 0.03 0.02 0.01 0.01ݓ

2 

ଵ,ଶܮ൳ݎܲ =  ൷ 0.2 0.7 0.05 0.04 0.01ݓ
ଶ,ଶܮ൳ݎܲ =  ൷ 0.96 0.01 0.01 0.01 0.01ݓ
ଷ,ଶܮ൳ݎܲ =  ൷ 0.02 0.03 0.05 0.1 0.8ݓ
ସ,ଶܮ൳ݎܲ =  ൷ 0.96 0.01 0.01 0.01 0.01ݓ

3 

ଵ,ଷܮ൳ݎܲ =  ൷ 0.3 0.6 0.05 0.03 0.02ݓ
ଶ,ଷܮ൳ݎܲ =  ൷ 0.09 0.01 0.1 0.45 0.35ݓ
ଷ,ଷܮ൳ݎܲ =  ൷ 0.25 0.15 0.2 0.2 0.2ݓ
ସ,ଷܮ൳ݎܲ =  ൷ 0.95 0.01 0.02 0.01 0.01ݓ
ହ, ଷܮ൳ݎܲ =  ൷ 0.01 0.02 0.03 0.04 0.9ݓ
଺, ଷܮ൳ݎܲ =  ൷ 0.95 0.01 0.02 0.01 0.01ݓ
଻, ଷܮ൳ݎܲ =  ൷ 0.01 0.95 0.02 0.01 0.01ݓ
ଷ ,଼ܮ൳ݎܲ =  ൷ 0.96 0.01 0.01 0.01 0.01ݓ

Table 3. The probability distributions of lead times 

For the first supply chain ܥଵ,ଷ → ଵ,ଶܥ → ଵ,ଵܥ → ܨ ଵܲ the optimal release date ଵܺ
∗∗ depends on ܾ 

and ݎ and is given by the expression (3). For example for ݎ = 10 and ܾ = 10ିଷ: (2)ܨ ≤
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15)ܨ − ଵܺ
∗∗  − 1) ≤ 10ିସ ≤ 15)ܨ − ଵܺ

∗∗ ) ≤ Thus, ଵܺ .(3)ܨ
∗∗ = 12. For ܾ = 10଺: (13)ܨ ≤

15)ܨ − ଵܺ
∗∗  − 1) ≤ 0.999990 ≤ 15)ܨ − ଵܺ

∗∗ ) ≤ and ଵܺ (14)ܨ
∗∗ = 1. 

Then, the value of ଵܺ
∗∗ it is the upper limit ߪ൫ ଵܺ,ଷ൯ for the order release date ଵܺ,ଷ for the 

component ܥଵ,ଷ in the assembly system. Thus, for ܾ = 10ିଷ the initial research space of 
possible solutions [0; 12] is the same. For ܾ = 10଻, it is reduced to 0. ܺଶ

∗∗ , ܺଷ
∗∗, … , ଼ܺ

∗∗ are 
determined in the same way. 

For the same example, the influence of ܾ and ݎ is studied. Table 4 and Fig. 6 present the 
upper limits ߪ൫ ௜ܺ,ଷ൯ of the reduced research space of possible solutions according to the 
backlogging and inventory holding costs of the finished product. 

 
 Figure 6. Upper limits ࣌൫࢏ࢄ,૜൯ of the space of research according to ܾ/ݎ 

In the first case (ܾ/ݎ = 10଺), the reduced space of research is equal to one. In the second 
case (ܾ/ݎ = 10ହ), the proposed technique to reduce the space of research decreases it by 
99.99% (from 13଼ to 2ଷ). In the seventh case (ܾ/ݎ = 1), the space of research is reduced by 
90.57%. In the last one (ܾ/ݎ = 10ିସ), the space of research is not reduced. This seems be 
logical, for a small ܾ/ݎ (the inventory holding cost for the finished product is much greater 
than the backlogging cost for the same product) components have to be ordered as late as 
possible. 

Cases ࣌ ࢘/࢈൫ࢄ૚,૜൯ ࣌൫ࢄ૛,૜൯ ࣌൫ࢄ૜,૜൯ ࣌൫ࢄ૝,૜൯ ࣌൫ࢄ૞,૜൯ ࣌൫ࢄ૟,૜൯ ࣌൫ࢄૠ,૜൯ ࣌൫ࢄૡ,૜൯ 

1 ૚૙૟ 0 0 0 0 0 0 0 0 

2 ૚૙૞ 1 0 0 2 0 0 2 2 

3 ૚૙૝ 3 1 2 4 0 1 3 4 

4 ૚૙૜ 4 3 4 6 0 3 5 6 

5 ૚૙૛ 6 4 5 8 1 4 7 8 

6 ૚૙ 8 6 8 10 4 7 10 10 
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7 ૚ 10 8 10 12 4 8 11 12 

8 ૙. ૚ 11 10 12 12 6 10 11 12 

9 ૚૙ି૛ 12 12 12 12 8 12 11 12 

10 ૚૙ି૜ 12 12 12 12 10 12 12 12 

11 ૚૙ି૝ 12 12 12 12 12 12 12 12 

Table 4. Upper limits of the space of research 

The research space of possible solutions can have a significant impact on the choice of 
resolution methods. For a high unit backlogging cost a Branch and Bound procedure can be 
sufficient to resolve this problem independently of the system and the number of components 
at the last level of the BOM. 

6 Optimization 
 

In this section, a Branch and Bound approach is developed. The total expected cost 
,ܺ)ܥ⟧ܧ  :mentioned in Eq. (2) is minimized under ⟦(ܮ

ܶ −  ௜ܷ,௠  ≤ ௜ܺ,௠ ≤  ௜ܺ
∗∗ 

6.1 Branch and Bound procedure 

A Branch and Bound procedure was proposed by Ould-Louly et al. (2009) and Hnaien et al. 
(2016)for an one-level assembly and a one-level production problems, respectively. 
Nevertheless, it is only valid if 

⎩
⎪
⎨

⎪
⎧ℎ௜,௟ − ෍ ℎ௞,௟ାଵ

௖ೖ,೗శభ∈ௌ೔,೗

≥ 0

ݎ − ෍ ℎ௜,ଵ

ேభ

௜ୀଵ

≥ 0

� 

In other words, only if: (i) the inventory holding cost of a component ݅ is greater than the sum 
of unit inventory holding costs of components ݇ which make it up; and (ii) the unit inventory 
holding cost ݎ of the finished product is greater than the sum of unit inventory holding costs 
of components ݇ which make it up.  

We will use the idea of such a Branch and Bound procedure, adapt it to our problem and 
prove upper and lower bounds as well as additional recursive properties to obtain an efficient 
Branch and Bound algorithm for our problem and without these restrictive assumptions about 
costs and system that were employed in Ould-Louly et al. (2009) and Hnaien et al. (2016).. 

6.1.1 Upper bound 

An upper bound (ܷܤ) is calculated by the following procedure and the algorithm is detailed 
in Fig. 7. 
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൫ݕ݂݅ݏݏ݈ܽܥ ௜ܺ೘,௠ , ߱௜೘ ൯; 

ଵܸ ← ∅; ଶܸ ← ∅;  

For ݇ from 1 to ܰ௠ do 

While ߔ)ܥ⟧ܧ, is decreasing and ߶௞ ⟦(ܮ ≤ ܺ௞೘
∗∗ , do 

ଵܸ ← ,ߔ)ܥ⟧ܧ  ⟦(ܮ

߶௞ ← ߶௞ + 1 

Done 

While ߖ)ܥ⟧ܧ, is decreasing and ߰௞ ⟦(ܮ ≥ ܶ − ௞ܷ೘,௠, do 

ଶܸ ← ,ߖ)ܥ⟧ܧ  ⟦(ܮ

߰௞ ← ߰௞ − 1 

Done 

Done 

ܤܷ ← ݉݅݊( ଵܸ, ଶܸ) ; 

Figure 7. Calculation of the upper bound 

It equals to the minimum between two variables ଵܸ and ଶܸ. As in section 5, the multi-level 
assembly system is decomposed to ܰ௠ (the number of components at level ݉) multi-level 
linear supply chains (Fig. 3). The different ௜ܺ೘ ,௠ are ordered ቀݕ݂݅ݏݏ݈ܽܥ൫ ௜ܺ೘ ,௠ , ߱݅݉൯ቁ in 
descending order according to the costs of linear chains. So, the first ଵܺ೘,௠ has the largest 
cost ߱௜೘ = ℎ௜భ,ଵ + ℎ௜మ,ଶ + ⋯ + ℎ௜೘షభ,௠ିଵ + ℎ௜೘,௠. 

Let two vectors Φ = ൫߶ଵ, ߶ଶ, … , ߶ே೘൯ = ( ܶ − ଵܷ೘ ,௠; ܶ − ଶܷ೘,௠; … ; ܶ − ܷே೘ ,௠) and 
ߖ = ൫߰ଵ, ߰ଶ, … , ߰ே೘ ൯ = ( ଵܺ

∗∗; ܺଶ
∗∗; … ; ܺே೘

∗∗ ). We start by delaying the order release date ߶ଵ 
(respectively by advancing ߰ଵ), the same operation is executed until the ܥ⟧ܧ(Φ,  does not ⟦(ܮ
decrease anymore. Moreover, there we do the same operations for order release date ߶ଶ of the 
next component. 

6.1.2 Lower bound 

Let ܣ = ( ଵܺ,௠ , … , ௜ܺ,௠ , … , ܺே೘,௠) a vector composed of order release dates for components 
ܿ௜,௠. Each decision variable is between ܽ௞,௠ = ܶ − ௞ܷ,௠ and ܾ௞,௠ = ܶ − ݉. 

A vector ܣଵ = ൫ ଵܺ,௠ , ܽଶ,௠ , … , ܽ௞೘
ᇲ ,௠ , … , ܽே೘,௠൯ will be noted ܣଵ = ൛ ଵܺ,௠ൟ. Nodes in the first 

level of the search tree correspond to different release dates of the first component ଵܺ,௠ at 
level ݉. Vectors associated with these nodes are defined as follows: ∀݅ ∈ ൣ0; ܾ௞,௠൧, ܣଵ,௜ =
൫ܽଵ,௠ + ݅, … , ܽ௞೘

ᇲ ,௠ , … , ܽே೘ ,௠൯. It will be noted ܣଵ,௜ = ൛ܽଵ,௠ + ݅ൟ. The first value ܽଵ,௠ + ݅ 
corresponds to the order release date of the first component ܿଵ,௠ and the other values ܽ௞,௠ 
correspond to the order release dates of the other components ܿ௞,௠, ݇ = 2, … , ݇௠

ᇱ , … , ܰ௠. The 
search tree nodes are illustrated in Fig. 8. 
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Let the vector ܣ௞೘
ᇲ ,௑ೖ೘ᇲ ,೘

= ൫ ଵܺ,௠ , ⋯ , ܺ௞೘
ᇲ ,௠ , ܽ௞೘

ᇲ ାଵ,௠ , ⋯ , ܽே೘ ,௠൯ which defines the ݇௠
ᇱ ௧௛ 

node in the search tree. This vector is composed of ܰ௠ dates: 

 ∀݇ ∈ [1; ݇௠
ᇱ − 1], ܺ௞,௠ are fixed and belong to ൣܽ௞,௠; ܾ௞,௠൧ (4) 

 ܺ௞೘
ᇲ ,௠ are fixed and belong to ൣܽ௞೘

ᇲ ,௠; ܾ௞೘
ᇲ ,௠൧ (5) 

 ∀݇ ∈ [݇௠
ᇱ + 1; ܰ௠], ܺ௞,௠ are fixed and equal to ܽ௞,௠ (6) 

We introduce the following additional notations: 

 The component ܿ௞೗
ᇲ,௟ is necessary to assemble the component ܿ௭೗షభ,௟ିଵ, it is the ݇௟

ᇱ௧௛  
component in the search tree. 

 ݇௟
ᇱᇱ is defined as follows : (7) 

 If ܿ௞೗
ᇲ,௟ is the last component necessary to assemble ܿ௭೗షభ,௟ିଵ then ݇௟

ᇱᇱ is equal to ݇௟
ᇱ. 

 If ܿ௞೗
ᇲ,௟ is not the last component necessary to assemble ܿ௭೗షభ,௟ିଵ so ݇௟

ᇱᇱ is equal to 
the sum of the number of components necessary to assemble the components 
ܿ௜,௟ିଵ ∀݅ ∈ [1; ݈) ௟ିଵ] fromݖ − 1)௧௛ level of the BOM. 

 
Figure 8. The representation of search tree nodes. 

ଵ,ଵܣ = ൛ܽଵ,௠ൟ 

∅ 

ଵ,௠ܣ = {ܽଵ௠ + ଵ,௕భ,೘ܣ {1 = ൛ܾଵ,௠ൟ 

ଶ,ଵܣ = ଵ,ଵܣ ∪ ൛ܽଶ,௠ൟ ܣଶ,ଶ = ଵ,ଵܣ ∪ ൛ܽଶ,௠ + 1ൟ 

௞೘ܣ
ᇲ ,ଵ = ௞೘ܣ

ᇲ ିଵ,ଵ ∪ ൛ܽ௞೘
ᇲ ,௠ൟ 

ே೘ܣ ,ଵ = ே೘ିଵ,ଵܣ ∪ ൛ܽே೘ ,௠ൟ ܣே೘ ,ଶ = ே೘ିଵ,ଵܣ ∪ ൛ܽே೘ ,௠ + 1ൟ ܣே೘ ,௕ಿ೘,೘
= ே೘ିଵ,ଵܣ ∪ ൛ܾே೘ ,௠ൟ 

ଶ,௕మ,೘ܣ = ଵ,ଵܣ ∪ ൛ܾଶ,௠ൟ 

ே೘ିଵ,ଵܣ = ே೘ିଶ,ଵܣ ∪ ൛ܽ௠ିଵ,௠ൟ 
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 The component ܿ௞೗
ᇲᇲ,௟ is necessary to assemble ܿ௭೗షభ

ᇲ ,௟ିଵ. We note that if ݇௟
ᇱᇱ = ݇௟

ᇱ, 
௟ିଵݖ = ௟ିଵݖ

ᇱ .  

• ܯ ௜,௟
∀௞; ௑ೖ,೘ஹ௔ೖ,೘

: The assembly date of the component ܿ௜,௟. Components in the last level ݉ 
of the BOM of the assembly subsystem of ܿ௜,௟  have order release dates 
ܺ௞,௠  equal to or greater than ܽ௞,௠. 

• ܯ ௜,௟
∀௞வ௞೘

ᇲ ; ௑ೖ,೘ୀ௔ೖ,೘

: The assembly date of the component ܿ௜,௟. The last (ܰ௠ − ݇௠
ᇱ ) 

components in the last level ݉ of the BOM of the assembly subsystem 
of ܿ௜,௟  have order release dates ܺ௞,௠  equal to ܽ௞,௠. 

• ܯ ி௉
∀௞; ௑ೖ,೘ஹ௔ೖ,೘

ା  : The maximum between ܯி௉  and ܶ with ܯி௉ the assembly date of the 
finished product. The order release dates ܺ௞,௠ belong to the search 
intervals ൣܽ௞,௠; ܾ௞,௠൧ with ܽ௞,௠ = ܶ − ܷ௞,௠ and ܾ௞,௠ = ܶ − ݉. 

• ܯ ி௉
∀௞வ௞೘

ᇲ ; ௑ೖ,೘ୀ௔ೖ,೘

ା : The maximum between ܯி௉  and ܶ with ܯி௉ the assembly date of the 
finished product. The order release dates ܺ௞,௠ are detailed in 
expressions (4), (5) and (6). 

Proposition 4. 

The lower bound corresponding to the vector ܣ௞ᇲ,௑ೖᇲ,೘
is equal to: 

(௞ᇲܣ)ܫܤ = ෍ ℎ௜,ଵ

௭భ
ᇲ

௜ୀଵ

ܧ ቢܯ ி௉
∀௞வ௞೘

ᇲ ; ௑ೖ,೘ୀ௔ೖ,೘

ባ + ܾ ൭ܧ ൵ܯ ி௉
∀௞வ௞೘

ᇲ ; ௑ೖ,೘ୀ௔ೖ,೘

ା ൹ − ܶ൱

− ෍ ෍ ቎ቌℎ௜,௟ − ෍ ℎ௩,௟ାଵ
௖ೡ,೗శభ∈ௌ೔.೗

ቍ ܧ ቢܯ ௜,௟ାଵ
∀௞; ௑ೖ,೘ஹ௔ೖ,೘

ባ቏

௭೗
ᇲ

௜ୀଵ

௠ିଵ

௟ୀଵ

+ ෍ ෍ ℎ௩,௟ାଵܧ ൵ܯ ௭೗,௟
∀௞வ௞೘

ᇲ ; ௑ೖ,೘ୀ௔ೖ,೘

൹
௖ೡ,೗శభ∈ௌ೥೗,೗

௞೗శభ
ᇲᇲ ழ௞ஸ௞೗శభ

ᇲ

௠ିଵ

௟ୀଵ

− ෍ ෍ ℎ௩,௟ାଵܧ ൵ܯ ௩,௟ାଵ
∀௞வ௞೘

ᇲ ; ௑ೖ,೘ୀ௔ೖ,೘

൹
௖ೡ,೗శభ∈ௌ೥೗,೗

௞೗శభ
ᇲᇲ ழ௞ஸ௞೗శభ

ᇲ

௠ିଶ

௟ୀଵ

− ෍ ℎ௜,௠ܧ൳ܽ௜,௠൷
௞೘

ᇲ

௜ୀଵ

−  ෍ ෍ ℎ௜,௟ܧ൳ܮ௜,௟൷
௞೗

ᇲ

௜ୀଵ

௠

௟ୀଶ

− ෍ ℎ௜,ଵܧ൳ܮ௜,ଵ൷
௭భ

ᇲ

௜ୀଵ

 

with: 

௟ݖ ∈ ௞೗శభܿ \ ܰܫ
ᇲ ,௟ାଵ ∈ ܵ௭೗,௟ , ௟ݖ

ᇱ ∈ ௞೗శభܿ \ ܰܫ
ᇲᇲ ,௟ାଵ ∈ ܵ௭೗

ᇲ,௟ , ܿ௞೗శభ
ᇲᇲ ାଵ,௟ାଵ ∈ ܵ௭೗

ᇲାଵ,௟ , ݇௟ାଵ
ᇱᇱ ≤ ݇௟ାଵ

ᇱ  
and ݖ௟ − 1 ≤ ௟ݖ

ᇱ ≤  .௟ݖ
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The complete proof of the previous lower bound is detailed in Appendix A.4. Please also note 
that a depth-first search, a reduced space of research and other strategies based on vertical and 
horizontal dependencies between nodes are used to reduce the search complexity. 

6.1.3 Vertical dependencies 

Each lower bound is cut into three parts. This technique has already been used to calculate a 
lower bound for the Knapsack problem (Kellerer et al., 2004 and Martello and Toth, 1990). The 
idea is not to redo some calculations where we explore in the depth. Let a node ݏᇱ. To determine 
the lower bound ܫܤ(ܣ௦ᇲ) related to this node, a part ݎܽݒ(ܣ௦ᇲ) is calculated every time, another 
part ݂݅ݔ(ܣ௞ᇲ) is recovered from the parent node and a last part is calculated and is added 
to ݂݅ݔ(ܣ௞ᇲ) ; it constitutes the fixed part related to this node and to be used by son nodes. An 
illustration is given in Fig. 9. 

 
Figure 9. Vertical dependencies between nodes. 

 

Then, the lower bound ܫܤ(ܣ௦ᇲ) is equal to the sum of ݎܽݒ(ܣ௦ᇲ),  :with (௦ᇲܣ)ߙ and (௞ᇲܣ)ݔ݂݅

• (௦ᇲܣ)ݎܽݒ = ቌܾ + ෍ ℎ௜,ଵ

௬భ
ᇲ

௜ୀଵ

ቍ × ൭ܧ ൵ܯ ௉ி
∀௞வ௦ᇲ; ௑ೖ,మୀ௔ೖ,మ

ା ൹ − ܶ൱

+ ෍ ℎ௜,ଵ ൭ܧ ൵ܯ ௉ி
∀௞வ௦ᇲ; ௑ೖ,మୀ௔ೖ,మ

ି ൹൱
௬భ

ᇲ

௜ୀଵ

+ ෍ ෍ ෍ ℎ1+݈,ݒ
݈,݅ܵ∋1+݈,ݒܿ

ஸ௦೗శభݒ
ᇲ

൫ܧ൳݅ܯ,݈൷൯

݈ݕ

݈ݕ=݅
′+1

௠ିଵ

௟ୀଵ

 

• (௞ᇲܣ)ݔ݂݅ = − ෍ ቌℎ௜,ଵ − ෍ ℎ௩,ଶ
௖ೡ,మ∈ௌ೔,భ

ቍ ௜,ଵ൷ܯ൳ܧ
௭భ

ᇲ

௜ୀଵ

− ෍ ෍ ቌℎ௜,௟ − ෍ ℎ௩,௟ାଵ
௖ೡ,೗శభ∈ௌ೔,೗

ቍ ௜,௟൷ܯ൳ܧ
௞೗

ᇲ

௜ୀଵ

௠ିଵ

௟ୀଶ

− ෍ ℎ௜,ଵܧ൳ܮ௜,ଵ൷
௭భ

ᇲ

௜ୀଵ

− ෍ ෍ ℎ௜,௟ܧ൳ܮ௜,௟൷
௞೗

ᇲ

௜ୀଵ

௠

௟ୀଶ

− ෍ ℎ௜,௠ܽ௜,௠

௞೘
ᇲ

௜ୀଵ

 

 

(௦ᇲܣ)ܫܤ = (௦ᇲܣ)ݎܽݒ + (ᇲ࢑࡭)࢞࢏ࢌ +  (௦ᇲܣ)1ߙ
= (௦ᇲܣ)ݎܽݒ +  (ᇲ࢙࡭)૚࢞࢏ࢌ

(௞ᇲܣ)ܫܤ = (௞ᇲܣ)ݎܽݒ +  (ᇲ࢑࡭)࢞࢏ࢌ

(௩ܣ)ܫܤ = (௩ܣ)ݎܽݒ + (ᇲ࢙࡭)૚࢞࢏ࢌ +  (௩ܣ)ߙ
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• (௦ᇲܣ)ߙ = − ෍ ቌℎ௜,ଵ − ෍ ℎ௩,ଶ
௖ೡ,మ∈ௌ೔,భ

ቍ ௜,ଵ൷ܯ൳ܧ
௬భ

ᇲ

௜ୀ௭భ
ᇲାଵ

− ෍ ෍ ቌℎ௜,௟ − ෍ ℎ௩,௟ାଵ
௖ೡ,೗శభ∈ௌ೔,೗

ቍ ௜,௟൷ܯ൳ܧ
௦೗

ᇲ

௜ୀ௞೗
ᇲାଵ

௠ିଵ

௟ୀଶ

− ෍ ℎ௜,ଵܧ൳ܮ௜,ଵ൷
௬భ

ᇲ

௜ୀ௭భ
ᇲ ାଵ

− ෍ ෍ ℎ݅,݈ܧ൳݅ܮ,݈൷

݈ݏ
′

݅=݈݇
′+1

௠

௟ୀଶ

− ℎ௦೘
ᇲ ,௠ܽ௦೘

ᇲ ,௠ 

It can be easily proven by devising the upper bound of a given node according to the upper 
bound of a son node. 

6.1.4 Horizontal dependencies 

As with vertical dependencies, it is easy to prove that a given node can be composed of fixed 
and varied parts. We note that ߚ is the quantity which is calculated and added to ݂݅ݔ(ܣ௞ᇲ) to 
determine ݂݅ܣ)ݔ௞ᇲ + 1). So, ܣ)ܫܤ௞ᇲ + 1) = ௞ᇲܣ)ܪݎܽݒ + 1) + (௞ᇲܣ)ݔ݂݅ + ௞ᇲܣ)ߚ + 1) with: 

• ௞ᇲܣ)ܪݎܽݒ + 1)

= ܾ × ൭ܧ ൵ܯ ௉ி
∀௞வ௞ᇲ; ௑ೖ,మୀ௔ೖ,మ

ା ൹ − ܶ൱ + ෍ ℎ௜,ଵܧ ቢܯ ௉ி
∀௞வ௞೘

ᇲ ; ௑ೖ,೘ୀ௔ೖ,೘

ባ
௭భ

ᇲ

௜ୀଵ

+ ෍ ෍ ෍ ℎ௩,௟ାଵ
௖ೡ,೗శభ∈ௌ೔,೗

௩ஸ௞೗శభ
ᇲ

൫ܧ൳ܯ௜,௟൷൯
௭೗

௜ୀ௭೗
ᇲାଵ

௠ିଵ

௟ୀଵ

 

 

• (௞ᇲܣ)ܸݔ݂݅ = ෍ ෍ ෍ ℎ௩,௟ାଵ
௖ೡ,೗శభ∈ௌ೔,೗

௜,௟൷ܯ൳ܧ
௭೗

ᇲ

௜ୀଵ

௠ିଵ

௟ୀଵ

− ෍ ℎ௜,ଵܧ൳ܯ௜,ଵ൷
௭భ

ᇲ

௜ୀଵ

− ෍ ෍ ℎ௜,௟ܧ൳ܯ௜,௟൷
௞೗

ᇲ

௜ୀଵ

௠ିଵ

௟ୀଶ

− ෍ ℎ௜,ଵܧ൳ܮ௜,ଵ൷
௭భ

ᇲ

௜ୀଵ

− ෍ ෍ ℎ௜,௟ܧ൳ܮ௜,௟൷
௞೗

ᇲ

௜ୀଵ

௠

௟ୀଶ

− ෍ ℎ௜,௠ܽ௜,௠

௞೘
ᇲ

௜ୀଵ

 

 
• ௞ᇲܣ)ߚ + 1) = −ℎ௞೘

ᇲ ାଵ,௠ 
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Figure 10. Horizontal dependencies between nodes. 

This horizontal dependency can easily be proven. 

Numerical example 

The proposed methods have been implemented in C++. The experiments are executed on a 
computer with a 2.93 GHz CPU and 4 GB of RAM. We analysed the results obtained in the 
example introduced above where: the number of components in the last level is equal to 8 
(ܰ௠ = 8) and the ratio between ܾ (the unit backlogging cost of the finished product per 
period) and ݎ (the unit inventory holding cost for the finished product per period) is known 
and variable.  

࢈ ൗ࢘  
Levels of search tree 

1 2 3 4 5 6 7 
૚૙૟ 91.67 96.00 96.00 88.00 94.12 94.12 84.62 
૚૙૞ 75.00 88.24 86.67 80.95 92.52 92.52 74.13 
૚૙૝ 66.67 78.13 71.65 62.59 92.33 82.30 65.71 
૚૙૜ 50.00 70.00 62.26 47.02 92.32 63.37 49.58 
૚૙૛ 41.67 54.37 46.23 30.39 84.00 58.45 39.88 
૚૙ 25.00 38.76 30.80 14.91 74.41 49.67 29.25 
૚ 8.33 38.06 26.98 37.90 79.58 51.90 30.67 

૙. ૚ 0.00 30.36 27.27 78.56 80.53 55.96 32.88 
૚૙ି૛ 0.00 27.38 24.41 84.13 78.00 54.34 30.27 
૚૙ି૜ 0.00 27.38 23.78 84.82 77.41 54.12 29.50 
૚૙ି૝ 0.00 27.38 23.78 84.82 77.39 54.21 29.43 

Table 5. Percentage of cut branches at each level of search if RSR is not used 

 (௞ᇲିଵܣ)ܫܤ

୩ᇲܣ)ݎܽݒ + 1) 
+ 

ᇲ࢑࡭)࢞࢏ࢌ + ૚) 
 

௞ᇲܣ)ܫܤ + 1) = 

୩ᇲܣ)ܪݎܽݒ + 1) 
+ 

 (ᇲ࢑࡭)࢞࢏ࢌ
+ 

୩ᇲܣ)ߚ + 1) 

= 

(௞ᇲܣ)ܫܤ = 

 (୩ᇲܣ)ܪݎܽݒ
+ 

 (ᇲ࢑࡭)࢞࢏ࢌ
 

൫ܺ୩ᇲܫܤ
∗∗൯ = 

൫ܺ୩ᇲܪݎܽݒ
∗∗൯ 

+ 
ᇲܓࢄ൫࢞࢏ࢌ

∗∗ − ૚൯ 
+ 

൫ܺ୩ᇲߚ
∗∗൯ 
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In the first case, the gap between the upper bound (the minimum between ௔ܸ௦௖  and ௗܸ௘௦௖) and 
the exact solution is null. The Branch and Bound procedure is not required to find the optimal 
solution that is determined directly from the reduced space of research (0, 0, 0, 0, 0, 0, 0, 0). 

 

Figure 11. Percentage of cut branches at each level of search if RSR is not used (%) 

 Levels of search tree ࢘/࢈
1 2 3 4 5 6 7 

૚૙૟ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
૚૙૞ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
૚૙૝ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
૚૙૜ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
૚૙૛ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
૚૙ 0.00 0.00 0.00 0.00 2.46 0.61 0.40 
૚ 0.00 1.79 6.68 16.88 6.16 1.57 0.84 

૙. ૚ 0.00 14.29 21.39 51.46 11.41 2.94 0.83 
૚૙ି૛ 0.00 27.38 24.41 84.13 47.23 22.66 5.56 
૚૙ି૜ 0.00 27.38 23.78 84.82 62.03 32.19 11.87 
૚૙ି૝ 0.00 27.38 23.78 84.82 77.39 54.21 29.43 

Table 6. Percentage of cut branches at each level of search if RSR is used (%) 

In Table 5 and Fig. 11, are reported the results for the case where the Branch and Bound 
procedure does not use the reduced space of research (RSR). In Table 6 and Fig. 12, are given 
the results with RSR procedure. For a ratio ܾ/ݎ > 1, RSR reduces considerably the 
percentage of branches to be cut (null for ܾ/ݎ > 10 and < 3% for ܾ/ݎ = 10). 
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 Figure 12. Percentage of cut branches at each level of search if RSR is used (%) 

Then, the efficiency of this technique decreases according to the ratio ܾ/ݎ and the percentage 
of branches to be cut when the RSR is considered (Table 5) and tends to the same percentage 
when this RSR is not used (Table 6). This finding is confirmed when ܾ/ݎ is equal to 10ିସ. 

The heuristic mentioned in Fig. 7 calculates an upper bound. This bound is equal to 
݉݅݊( ଵܸ, ଶܸ). Table 7 shows the gaps between the exact solution, provided by the Branch and 
Bound procedure, and ଵܸ (݃ܽ݌௏భ ) and between the exact solution and ଶܸ (݃ܽ݌௏మ). The ݃ܽ݌௨௣ 
is equal to ݉݅݊(݃ܽ݌௏భ ,  it is less than 21%. We see from Table 7 that ,ݎ/ܾ ௏మ) and for all݌ܽ݃
the upper bound is generally determined by ଵܸ when the unit backlogging cost for the finished 
product is more important than the unit inventory holding cost for the same product; and is 
determined by ଶܸ in other cases. It is worthwhile to mention that for this example, it seems to 
be possible to get optimal solutions only using both RSR and a heuristic (as the one given in 
Fig. 7, which calculates an upper bound) in less than 0.01 seconds. This assertion is valid only 
if the unit backlogging cost of the finished product is 100 times more than the unit inventory 
holding cost of the same product. 

.૚૙૟ ૚૙૞ ૚૙૝ ૚૙૜ ૚૙૛ ૚૙ ૚ ૙ ࢘/࢈ ૚ ૚૙ି૛ ૚૙ି૜ ૚૙ି૝ 

௏భ݌ܽ݃  0.00 0.00 1.88 0.16 0.68 1.25 7.94 36.18 53.67 52.64 94.68 

௏మ݌ܽ݃  0.00 0.00 0.00 4.00 2.79 3.80 6.81 20.54 17.24 16.12 16.01 

 16.01 16.12 17.24 20.54 6.81 1.25 0.68 0.16 0.00 0.00 0.00 ࢖࢛࢖ࢇࢍ

Table 7. The gap between the exact solution provided by the Branch and Bound 
procedure and the upper bound (%) 

CPU times (Table 8) vary significantly according to the ratio ܾ/ݎ. For a very large ratio, the 
space of research is small (see Table 4) and the vast majority of nodes in the tree are cut. 
When the ratio decreases, the cardinality of the reduced space of research (RSR) tends to the 
cardinality of the initial space of research. This explain that the CPU times required for the 
Branch and Bound procedure reinforced by a RSR tend to the CPU times required for the 
Branch and Bound procedure that used the initial space of research. In other words, reducing 
the space of research is not necessary when the unit inventory holding cost is much greater 
than the backlogging cost for the finished product. Lower limits for order release dates could 
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possibly be developed, using properties and techniques proposed in Trietsch (2006), to further 
reduce the initial space of research taking into account a very small ܾ/ݎ. 

.૚૙૟ ૚૙૞ ૚૙૝ ૚૙૜ ૚૙૛ ૚૙ ૚ ૙ ࢘/࢈ ૚ ૚૙ି૛ ૚૙ି૜ ૚૙ି૝ 

B&B+RSR 0.00 0.00 0.01 0.30 5.08 37.78 34.66 12.34 12.19 12.17 12.28 

B&B 0.00 0.01 0.11 1.02 8.68 50.27 35.53 12.52 12.25 12.25 12.31 

Table 8. CPU times (seconds) 

To understand the effect of dispersion variability on the robustness of the solution, the effect 
of variance is studied. The example in Fig. 5 is employed. The following parameters are 
unchanged: the due date ܶ, the unit inventory holding cost ݎ of the finished product, and the 
unit inventory holding costs for components per period. The unit backlogging cost ܾ of the 
finished product per period is set at 3 values: 1, 10 and 100. To consider a large variation in 
the variance of the lead time, we assume that the probability distributions are the same for all 
components: ܲݎ൳ܮ∗,∗ = 1൷ = 0.245, ∗,∗ܮ൳ݎܲ = 2൷ = 0.48, ∗,∗ܮ൳ݎܲ = 3൷ = 0.255,
∗,∗ܮ൳ݎܲ = 4൷ = 0.01 and ܲݎ൳ܮ∗,∗ = 5൷ = 0.01. 

In Table 9 and in Fig. 13, the effect of variance, between −200% and 200%, is studied. The 
evaluation of the relative solution proves that the variation of the total expected cost remains 
below 3% when the variance is between −100% and 100%, and below 13% when the 
variance is between −200% and 200%. This analysis proves that the variability of the lead 
time (a variance less than 200%) affects slightly the expected total cost whatever the ratio ܾ/
 .ݎ

Variation of variance ࢈ = ૚ ࢈ = ૚૙ ࢈ = ૚૙૙ 
-200% 12.50 9.138 7.535 
-100% 1.97 1.101 2.924 
100% 0.59 1.261 0.156 
200% 1.24 1.579 0.805 

Table 9. The effect of variance on the best solution (%) 

 
Figure 13. The effect of variance of lead times on the variance of the total expected cost 

 

In the next section, we analyse the results obtained by instances where the number of levels of 
the BOM tree varies between 1 and 5 levels and the ratio ܾ/ݎ varies between 10ିଷ and 10ସ. 
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We note also that the number of components at the last level is fixed to eight components 
(ܰ௠ = 8). 

7 Tests on randomly generalized examples 
The influence of the ratio ܾ/ݎ has been studied for multi-level assembly systems, it varies in 
{10ିଷ, 10ିଶ, … , 10ସ}. We consider the results of 150 examples that are generated by a 
randomized algorithm and grouped into five families, according to the number of levels 
(݉ = 1,2, … ,5). In each family, 30 different instances are generated. The input data are due 
dates, the distribution function of the component lead times, unit holding costs of 
components, and unit backlogging and unit inventory holding costs for the finished product.  

The 150 examples are generated randomly as follows: 

 Each component lead time ܮ௜,௝ , ∀݆ ∈ {1, … , 5}, ∀݅ ∈ ൛1, … , ௝ܰൟ varies between 1 and 5 
with discrete uniform probability distribution; 

 The unit inventory holding cost ℎ௜,௝, ∀݆ ∈ {1, … , 5}, ∀݅ ∈ ൛1, … , ௝ܰൟ for component 
ܿ௜,௝ ranges from 1 to ∑ ௞ܰ

௠
௞ୀଵ ; 

 The unit inventory holding cost ݎ for the finished product ranges from 10ିଷ to 10ସ; 

 The unit backlogging cost ܾ for the finished product is calculated according to ݎ. 

Table 10 shows the influence of the number of levels ݉ of the BOM and the ratio ܾ/ݎ on the 
cardinality of research space (ܵ଴ is the initial cardinality of the research space and ܵோ  is the 
average cardinality of reduced research space). We note that if the ratio decreases, ܵோ  tends to 
ܵ଴. 

 Spaces of search ࢓
 ࢘/࢈

૚૙ି૜ ૚૙ି૛ ૚૙ି૚ 1 10 ૚૙૛ ૚૙૜ ૚૙૝ 

1 
ܵ଴ 3.91 10ହ 

ܵோ  3.91 10ହ 3.91 10ହ 2.76 10ହ 5810 111 1 1 1 

2 
ܵ଴ 4.30 10଻ 

ܵோ  4.30 10଻ 3.62 10଻ 2.11 10଻ 6.14 10଺ 3.24 10ହ 6.33 10ଷ 64.6 2 

3 
ܵ଴ 8.16 108 

ܵோ  7.85 108 6.36 108 3.06 108 7.04 107 5.45 106 2.34 105 7630 114 

4 
ܵ଴ 6.98 109 

ܵோ  6.04 109 4.30 109 2.01 109 4.34 108 4.68 107 4.50 106 3.09 105 1.50 104 

5 
ܵ଴ 3.78 1010 

ܵோ  3.10 1010 2.35 1010 1.02 1010 2.62 109 3.74 108 5.51 107 6.86 106 4.37 105 

Table 10. Cardinalities of the initial and reduced spaces of research 

Table 11 shows the gap (݃ܽ݌௨௕) between the upper bound (is equal to ݉݅݊ ( ଵܸ, ଶܸ)) and the 
exact solution provided by the Branch and Bound procedure, only if optimal solutions are 
provided for all instances in the corresponding family. We note that, for each instance, an 
upper limit of calculation time of one hour was allowed to find optimal solutions.  
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 ࢓
 ࢘/࢈

૚૙ି૜ ૚૙ି૛ ૚૙ି૚ 1 10 ૚૙૛ ૚૙૜ ૚૙૝ 
1 30.75 30.33 27.59 5.43 0.00 0.00 0.00 0.00 
2 11.02 11.80 12.91 2.60 1.18 0.26 0.00 0.00 
3 8.10 9.26 14.43 2.25 2.40 1.58 0.51 0.10 
4 - - - - - 1.74 0.57 0.27 
5 - - - - - - - 0.57 

Table 11. The gap between the exact solution and the upper bound (%) 

The value of this gap depends on both the ratio ܾ/ݎ and the number of levels ݉. When ܾ/ݎ 
tends to +∞ or −∞, ݃ܽ݌௨௕ tends to 0. For one-level assembly systems from a ratio equal to 
10, the upper bound is very often equal to the exact solution, Nevertheless, for five-level 
assembly systems, the ratio ܾ/ݎ has to be more than 10ସ to go under 0.5%.  

In other words, the upper bound used in the Branch and Bound procedure has a good quality 
when the unit backlogging cost for the finished product is greater than the unit inventory cost 
for the same product. 

Table 12 reports the percentage of nodes visited by the Branch and Bound procedure at the 
last level over the reduced space of research. For one-level assembly systems and for a ratio 
 equal to 100%, most of the nodes are visited. For five-level assembly systems and for a  ݎ/ܾ
ratio equal to 10ସ, this percentage drops to 83.99%.  

That proves the importance of the reduced space of research for the performance of the 
Branch and Bound procedure. On the one hand, for the unit backlogging cost of the finished 
product, which is much bigger than the unit inventory holding cost for the same product, the 
RSR reduces the cardinality of the initial space of research immensely and the few remaining 
nodes are then visited. In the opposite case, the RSR reached its limits but the Branch and 
Bound procedure seems to be effective: a great percentage of branches is cut and a small 
percentage of nodes is visited. 

 ࢓
 ࢘/࢈

૚૙ି૜ ૚૙ି૛ ૚૙ି૚ 1 10 ૚૙૛ ૚૙૜ ૚૙૝ 
1 0.07 0.11 0.65 2.59 11.93 100.00 100.00 100.00 
2 8.46 9.01 13.20 25.58 53.06 61.29 89.91 100.00 
3 3.66 4.19 9.47 33.18 64.75 76.18 67.93 88.33 
4 - - - - - 78.11 80.07 80.67 
5 - - - - - - - 83.99 

Table 12. The percentage of nodes visited by the Branch and Bound algorithm (%) 

In Table 13, the average time in which the algorithm finds the exact solution is presented. It 
depends on the number of levels and the ratio ܾ/ݎ. For one level assembly systems, exact 
solutions are found in less than one second. For the five-level systems and for a ܾ/ݎ less than 
10ଷ, more than one hour is required to solve the problem. Finally, the CPU times do not 
depend only on the number of components in the last level ݉, but on other parameters as 
different costs and the number of levels.  
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 ࢓
 ࢘/࢈

૚૙ି૜ ૚૙ି૛ ૚૙ି૚ 1 10 ૚૙૛ ૚૙૜ ૚૙૝ 
1 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 
2 1.36 1.23 1.012 0.62 0.09 0.002 0.00 0.00 
3 55.84 52.12 58.14 45.34 7.168 0.35 0.02 0.00 
4 - - - - - 62.83 2.68 0.15 
5 - - - - - - - 15.40 

Table 13. Average CPU times 

To study the influence of the number of components at the last level, we tested the solution 
approach on a randomly generated instance set. We created 12 examples grouped into three 
families according to the number of levels (݉ = 1,2,3). The number of components at the last 
level varies in [10, 20, 30,40]. In each family, 10 test instances for each example are 
generated as instances defined in the first part of section 7. Only the unit backlogging cost ܾ is 
equal to 5 times the unit holding cost ݎ for all instances. We note that, for each instance, an 
upper limit of one hour on calculation time was fixed and CPU times are given only if all 
optimal solutions are provided for all instances in the corresponding family. For these 
instances, the performance of the Branch and Bound procedure decreases according to the 
number of components and the number of levels (Table 14). From three-assembly systems 
with more than 10 components, more than one hour is required to find exact solutions. 
Therefore, metaheuristics should be developed to generate good quality approximate solutions 
for larger instances. 

 ࢓ࡺ ࢓
10 20 30 40 

1 0.00 0.01 0.06 0.19 
2 0.05 4.62 73.47 - 
3 37.93 - - - 

Table 14. Average CPU times for B&B 

 

8 Conclusion and perspectives 
The paper deals with the modelling and optimization of multi-level assembly systems under 
uncertainty of components lead times. We have proposed a one-period planning model with 
infinite assembly capacity at all levels and for a known demand. The model calculates the 
mathematical expectation of the total cost composed of inventory holding costs for 
components at all levels and for the finished product and a backlogging cost for the finished 
product. The proposed lower and upper bounds and recursive function which expresses the 
dependence among levels, enabled us to study assembly systems with more than two levels 
and thus extend the results of (Yano 1987a, Chu et al. 1993, Tang and Grubbström 2003, 
Hnaien et al. 2008a, Fallah-Jamshidi et al. 2011, Hnaien et al. 2016 and Borodin et al. 2016). 
Specific techniques were introduced to reduce the initial cardinality of research space, they 
considerably decreases the percentage of branches to be pruned. In particular, an original 
technique, based on the Newsboy model, was developed to reduce the initial space of 
research. In addition, bounds were developed and a Branch and Bound procedure was 
suggested to determine planned lead times when the component lead times are independent 
and identically distributed discrete random variables. 
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The proposed model and optimisation algorithm were developed to furnish a help to decision 
maker at the assembly contract negotiation with a customer in an ATO environment under a 
complex multi-level structure of supply network and  uncertain partner lead times. They help 
the decision makers to define a due date for the finished product delivery and release dates for 
the components of last level of BOM. 

The numerical results analyse the influences of the number of levels ݉ of the BOM, the 
number of components in each level, and backlogging and the inventory holding costs for the 
finished product. The efficiency of the proposed algorithm does not depend only on the 
number of components ܰ௠ in the last level, but also on other parameters, such as finished 
product backlogging and holding costs and the number of levels. The proposed method is 
efficient for solving small and medium-sized problems, and its performance increases if, the 
backlogging cost greatly exceeds the inventory cost for the finished product.  

Our approach is based on a one-period inventory model: for a given demand and due date, the 
optimization is done to determine optimal order release dates. This approach can be applied 
not only at the contract negotiation stage for Assembly-to-Order systems under lead time 
uncertainty when distributions of probability of lead times are available. For the multi-period 
inventory model, for example for MRP parameterization, it can be used to obtain approximate 
values of planned lead time parameters for MRP tables. The recursive functions developed 
and proved in this paper can be also used to generalize different known models, for example, 
those proposed by Ould Louly and Dolgui (2002), Dolgui et al., (2008) and Shojaie et al. 
(2015), for multi-period models of one-level assembly systems under lead time uncertainty. 
The uncertainty of the demand can be also integrated as in Song et al. (2000). 

The contributions of our study are to be seen in the light of the state-of-the-art results, because 
similar problems have already been studied in the management science literature. Our model 
is based on existing work, and we have proved that our model is more general, and that our 
method outperforms the existing ones. 

From a practitioner's point of view, the interest in our approach lies in the fact that it can be 
used in many industrial situations, because there is no assumption on cost functions and 
distributions of probability of lead times. For example, we worked with ZF in France (Saint-
Étienne), a German company that manufactures gearboxes. ZF classifies suppliers according 
to the statistics, and a safety coefficient is determined for each supplier to set the 
corresponding planned lead times in their MRP system. This coefficient is multiplied by the 
contractual lead time to obtain the planned one. This enables the company to anticipate delays 
by estimating the reliability of suppliers. In other words, the less reliable a supplier, the higher 
its coefficient. However, suppliers were considered independently, and coefficients were 
empirical. The synchronization aspects and costs were not taken into account. From the 
outcome of our investigation it is now possible to use our model to better estimate these 
coefficients by considering inventory and backlogging costs, the independence 
(synchronization) of suppliers via the assembly operations, and distributions of probability for 
supplier lead times. 

It is clear that if some assumptions of our model are not respected, the solution obtained will 
therefore be approximate and not optimal. However, in real applications (with complex 
structures), decision makers often do not seek optimal solutions; approximate ones may be 
satisfactory if they propose good quality decisions. 
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Our future work will focus on the coupling of the analytical method with a genetic algorithm. 
The Branch and Bound procedure seems to be limited to small and medium sized problems. 
To study assembly systems with many more components and levels, metaheuristics are 
necessary. A second objective is to extend this model and different proposed techniques to 
study coordination between parameters of different replenishment calculation tables in a 
complex MRP system, and in particular to calculate parameters of planned lead times for 
multi-level multi-period case. The main difficulty will be to express the total expected cost for 
multi-period planning of assembly systems. 
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Appendix A. Proofs of the theoretical results 
A.1. Proof of Property 1 

The total cost is the sum of: 

 Inventory holding or backlogging costs for the finished product. There will be a 
stockout of the finished product if, at least, one type of component at level 1 is 
delivered after the due date ܶ. Then the backlogging cost ܥ௥ி௉ is equal to: 

௥ி௉ܥ = ܾ × ൫ܯி௉
ା − ܶ൯ (A.1) 

If all components ݅, ∀݅ = 1, … , ଵܰ, are available before ܶ, the finished product may be 
assembled and stored. The corresponding inventory holding cost  ܥ௦ி௉  is equal to: 

௦ி௉ܥ  = ݎ × (ܶ − ி௉ܯ
ି) (A.2) 

 Inventory holding cost for components. There are inventory for components 
 ܿ௜,ଵ during the time period between its arrivals at ܯ௜,ଵ +  ி௉ theܯ  ௜,ଵ andܮ
assembly date for the finished product. The corresponding inventory holding cost 
ௌ஼భܥ  is equal to: 

௦௖భܥ = ෍ ℎ௜,ଵ ቀ ܯி௉ − ൫ܯ௜,ଵ + ௜,ଵ൯ቁܮ
ேభ

௜ୀଵ

 (A.3) 

There are inventory for components ܿ௜,௟ , ݈ = 2, … , ݉ − 1, ܿ௞,௟ ∈ ௜ܵ,௟ିଵ, during the time 
period between their arrival at ܯ௞,௟ +  ௜,௟ିଵ the assembly date of theܯ ௞,௟ andܮ
component ܿ௜,௟ିଵ. The corresponding holding cost ܥௌ஼మ,…,೘షభis equal to: 

ௌ஼మ,…,೘షభܥ = ෍ ቌ ෍ ቌ ෍ ℎ௞,௟ ቀܯ௜,௟ିଵ − ൫ܯ௞,௟ + ௞,௟൯ቁܮ
௖ೖ,೗∈ௌ೔,೗షభ

ቍ
ே೗షభ

௜ୀଵ

ቍ
௠ିଵ

௟ୀଶ

 (A.4) 

The components  ܿ௞,௠ at the last level ݉ are ordered at the date ܺ௞,௠ and are delivered 
at the date ܮ௞,௠ + ܺ௞,௠. The assembly of the components  ܿ௜,௠ିଵ begins when all 
necessary components ܿ௞,௠ ∈ ௜ܵ,௠ିଵ are available, i.e. at the date ܯ௜,௠ିଵ. The 
corresponding components holding cost ܥ௦௖೘

 is equal to: 

௦௖೘ܥ = ෍ ቌ ෍ ℎ௞,௠ ቀܯ௜,௠ିଵ − ൫ܮ௞,௠ + ܺ௞,௠൯ቁ
௖ೖ,೘∈ௌ೔,೘షభ

ቍ
ே೘షభ

௜ୀଵ

∎ (A.5) 

Then, the total cost is the sum of ܥ௥ி௉ , ௕ி௉ܥ , ௦௖భܥ , ௦௖೘ܥ ௌ஼మ,…,೘షభ andܥ . 
 
A.2. Proof of Property 2 

To calculate the mathematical expectation of the total cost ܥ⟧ܧ(ܺ, ி௉ܯwe calculate ൳ ,⟦(ܮ
ା൷, 

ி௉ܯ⟧ܧ
 .௜,௟൷ܯ൳ܧ and ⟦ி௉ܯ⟧ܧ ,⟦ି
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Let the following recursive function ܳା; it allows the expression of the dependence among 
levels: 

ܳା൫ܮ௜,ఈ , ,ݏ ൯ߙ =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ ෑ ෍ ௜,ఈܮൣܲ = ఈ൧݋ × ܳା൫ܮ௞,ఈାଵ , ,ݓ ߙ + 1൯

௢ഀା௪ୀ௦௖ೖ,ഀశభ∈ௌ೔,ഀ

, ߙ ≠ ݉, ߙ ≠ 1 

ෑ ௞,௠൫−ܺ௞,௠ܨ + ൯ݓ
௖ೖ,೘∈ௌ೔,೘షభ

, ߙ = ݉

ෑ ෍ ௜,ଵܮൣܲ = ଵ൧݋ × ܳା൫ܮ௜,ఈାଵ , ,ݓ ߙ + 1൯
௢భା௪ୀ௦௜ୀଵ,…,ேభ

, ߙ = 1

� 

ܲܨܯ൳ܧ
+൷ = ܶ + ෍(1 − ܲܨܯ ⟧ݎܲ ≤ (⟦ݏ

ܶ≤ݏ
 

Let ߁ a positive random discrete variable with a finished number of possible values. Its 
expected value is equal to: 

⟦Γ⟧ܧ = ෍(1 − ߁⟧ݎܲ ≤ (⟦ݏ
௦ஹ଴

= ෍൫1 − ൯(ݏ)௰ܨ
௦ஹ଴

 (A.6) 

This expression (A.6) is used to calculate ܧ൳ܯி௉
ା൷, ܯ⟧ܧி௉

 .௜,௟൷ܯ൳ܧ and ⟦ி௉ܯ⟧ܧ ,⟦ି

Knowing that: 

ி௉ܯ⟧ݎܲ ≤ ⟦ݏ = ݎܲ ൴ ݔܽ݉
௜ୀଵ,…,ேభ

൫ܯ௜,ଵ + ௜,ଵ൯ܮ ≤ ൸ݏ

= ଵ,ଵܯ൳ݎܲ + ଵ,ଵܮ ≤ ,ݏ … , ௜,ଵܯ + ௜,ଵܮ ≤ ,ݏ … , ேభܯ ,ଵ + ேభ,ଵܮ ≤  ൷ݏ

And that ∀݅ = 1, … , ଵܰ, the random variables ൫ܯ௜,ଵ +  :௜,ଵ൯ are independents, soܮ

ி௉ܯ⟧ݎܲ ≤ ⟦ݏ = ෑ ෍ ௜,ଵܮ൳ݎܲൣ = ଵ൷݋ × ௜,ଵܯ൳ݎܲ ≤ ൷൧ݓ
௢భା௪ୀ௦
௢భା௪∈ࢆ

ேభ

௜ୀଵ

 

In addition, ܲݎ൳ܯ௜,ଵ ≤  ൷ is calculated in the same way. By introducing the recursiveݓ
function, we can easily deduce that ܲܯ⟧ݎி௉ ≤ ⟦ݏ = ܳା൫ܮ௜,ଵ, ,ݏ 1൯. 

Then: 

ி௉ܯ൳ܧ
ା൷ = ܶ + ෍ ቀ1 − ܳା൫ܮ௜,ଵ, ,ݏ 1൯ቁ

௦ஹ்

 (A.7) 

We note that ܯ⟧ܧி௉
ି⟧ is calculated in the same way and is equal to: 

ி௉ܯ⟧ܧ
ି⟧ = ෍ (1 − ி௉ܯ⟧ݎܲ ≤ (⟦ݏ

଴ஸ௦ஸ்ିଵ

= ෍ ቀ1 − ܳା൫ܮ௜,ଵ, ,ݏ 1൯ቁ
଴ஸ௦ஸ்ିଵ

 (A.8) 

The expression of ܧ⟦ܯி௉⟧ is calculated using expressions (A.7) and (A.8) and is equal to: 

⟦ி௉ܯ⟧ܧ = ி௉ܯ൳ܧ
ା൷ + ி௉ܯ⟧ܧ

ି⟧ − ܶ = ෍ ቀ1 − ܳା൫ܮ௜,ଵ, ,ݏ 1൯ቁ
௦ஹ଴

 (A.9) 
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The assembly dates ܯ௜,௟ are positive random discrete variables with a finished number of 
possible values: 

௜,௟൷ܯ൳ܧ = ෍൫1 − ௜,௟ܯ൳ݎܲ ≤ ൷൯ݏ
௦ஹ଴

 

Knowing that: 

௜,௟ܯ൳ݎܲ ≤ ൷ݏ = ݎܲ ቬ max
௖ೖ,೗శభ∈ௌ೔,೗
݈=1,…,݉−2

൫ܯ௞,௟ାଵ + ௞,௟ାଵ൯ܮ ≤  ቭݏ

= ଵ,௟ାଵܯ൳ݎܲ + ଵ,௟ାଵܮ ≤ ,ݏ … , ௜,௟ାଵܯ + ௜,௟ାଵܮ ≤ ,ݏ … , ே೗శభ,௟ାଵܯ + ே೗శభ,௟ାଵܮ ≤  ൷ݏ

And ∀݅ = 1, … , ௟ܰାଵ and ∀݈ = 1, … , ݉ − 2,  the random variables ൫ܯ௞,௟ାଵ +  ௞,௟ାଵ൯ areܮ
independents, so: 

௜,௟൷ܯ൳ܧ = ෍

⎝

⎛1 − ෑ ෍ ൣܲ൳ܮ௞,௟ାଵ = ଵ൷݋ × ܲ൳ܯ௞,௟ାଵ ≤ ଶ൷൧݋
௢భା௢మୀ௦
௢భା௢మ∈ࢆ

௖ೖ,೗శభ∈ௌ೔,೗ ⎠

⎞
௦ஹ଴

 

The recursive function ܳା൫ܮ௜,௟ , ,ݏ ݈൯ is called each time when it is necessary to determine the 
probability related to ܯ௞,௟ାଵ. The expression of ܧ൳ܯ௜,௟൷ can be written as follows: 

௜,௟൷ܯ൳ܧ = ෍ ቀ1 − ܳା൫ܮ௜,௟ , ,ݏ ݈൯ቁ
௦ஹ଴

 (A.10) 

Then, using expressions (A.7, A.8, A.9 and A.10), the total expected cost mentioned in 
expression (2) can be directly found. It is given by the next expression: 

,ܺ)ܥ⟧ܧ ⟦(ܮ = ݎ) × ܶ) + ܪ × ൭෍ ቀ1 − ܳା൫ܮ௜,ଵ, ,ݏ 1൯ቁ
௦ஹ்

൱ 

−ܴ × ൭ ෍ ቀ1 − ܳା൫ܮ௜,ଵ, ,ݏ 1൯ቁ
଴ஸ௦ஸ்ିଵ

൱ − ෍ ൭ܪ௜ ෍ ቀ1 − ܳା൫ܮ௜,௟ , ,ݏ ݈൯ቁ
௦ஹ଴

൱
௠ିଵ

௟ୀଵ

 

− ෍ ቌ෍ ℎ௜,௟ܧ൳ܮ௜,௟൷
ே೗

௜ୀଵ

ቍ
௠

௟ୀଵ

− ෍ ℎ௜,௠ܺ௜,௠

ே೘

௜ୀଵ

∎ 

(A.11) 

 
A.3. Proof of Property 3 
The expression (3) can also be deduced from expression (11) in Hnaien et al. (2008b) by 
replacing ℎ by ݎ. ௝ܺ

∗∗ can be an upper limit for ௝ܺ,௠ of the component ௝ܿ,௠ from the multi-
level assembly system and the initial research space of possible solutions ൣܶ − ௝ܷ,௠;  ܶ −
݉ can be reduced to ܶ−ܷ݆,݉; ݆ܺ∗∗. For this, let us suppose that the vector 
ܺ∗ = ൫ ଵܺ,௠

∗ , … , ܺே೘ ,௠
∗ ൯, which is composed of order release dates, minimizes ܥ⟧ܧ(ܺ∗,  .⟦(ܮ

∀(݇, ݆) ∈ [1; ܰ௠]ଶ, this vector is defined as follows: 
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൞
ܺ௞,௠

∗ ∈ ൣܶ − ௞ܷ,௠; ௝ܺ
∗∗൧,      ∀ܿ௞,௠

௞ஷ௝
∈ ௜ܵ,௠ିଵ

௝ܺ,௠
∗ ∈ ൧ ௝ܺ

∗∗;  ܶ − ݉൧,       ∀ ܿ௝,௠
௝ஷ௞

∈ ௜ܵ,௠ିଵ

� 

That is to say, on the one hand, there are order release dates ܺ௞,௠
∗  which are between ܶ − ௞ܷ,௠ 

and ௝ܺ
∗∗ ; and on the other hand, there exist order release dates ௝ܺ,௠

∗  between ௝ܺ
∗∗ + 1 and 

ܶ − ݉. 
It is easy to prove that there is a vector ܣ∗ = ଵ,௠ܣ)

∗ , … , ௞,௠ܣ
∗ , … , ே೘,௠ܣ

∗ ) which dominates ܺ∗ 
such as ∀ ܿ௞,௠ ∈ ܵ௞,௠ିଵ, ߜ∀ ∈ ℕ∗, ௞,௠ܣ

∗ ∈ ൣܶ − ௞ܷ,௠; ௝ܺ
∗∗൧ and ܣ௞,௠

∗ = ܺ௞,௠
∗ −  That is to .ߜ

say that all order release dates are between ܶ − ௞ܷ,௠ and ௝ܺ
∗∗. 

 
Then, we introduce the following function: 

൫ܩ ௝ܺ
∗∗ − 1൯ = )ܥ൳ܧ ௝ܺ

∗∗, ൷(ܮ − )ܥ൳ܧ ௝ܺ
∗∗ − 1,  ൷(ܮ

The optimal solution ௝ܺ
∗∗ has to satisfy, otherwise a neighbouring solution better than ௝ܺ

∗∗ 
exists: 

ቊ
൫ܩ ௝ܺ

∗∗൯ = ܾ − ൣ(ܾ + (ݎ × ൫ܶܨ − ௝ܺ
∗∗൯൧ ≥ 0

൫ܩ ௝ܺ
∗∗ − 1൯ = ܾ − ൣ(ܾ + (ݎ × ൫ܶܨ − ௝ܺ

∗∗ − 1൯൧ ≤ 0
� 

Then, expression (3) can be proven. Therefore, to say that all order release dates are between 
ܶ − ௞ܷ,௠ and ௝ܺ

∗∗, we have to prove that ߝ(ܺ∗, (∗ܣ ≥ 0. 
,∗ܺ)ߝ (∗ܣ = ,∗ܺ)ܥ⟧ܧ ⟦(ܮ − ,∗ܣ)ܥ⟧ܧ ⟦(ܮ

= ෍ ℎ௜,ଵܧ ቘܯ௉ி{௑∗}቙
ேభ

௜ୀଵ

− ෍ ቌ෍ ௜ܪ

ே೗

௜ୀଵ

ܧ ቘܯ௜,௟{௑∗}቙ቍ
௠ିଵ

௟ୀଵ

− ෍ ቌ෍ ℎ௜,௟ܧ൳ܮ௜,௟൷
ே೗

௜ୀଵ

ቍ
௠

௟ୀଵ

− ෍ ℎ௜,௠ ௜ܺ,௠

ே೘

௜ୀଵ

+ ܾ × ቀܧ ቘܯ௉ி{௑∗}
ା ቙ − ܶቁ + ݎ × ቀܶ − ܧ ቘܯ௉ி{௑∗}

ି ቙ቁ

− ෍ ℎ௜,ଵܧ ቘܯ௉ி{஺∗}቙
ேభ

௜ୀଵ

+ ෍ ቌ෍ ௜ܪ

ே೗

௜ୀଵ

ܧ ቘܯ௜,௟{஺∗}቙ቍ
௠ିଵ

௟ୀଵ

+ ෍ ቌ෍ ℎ௜,௟ܧ൳ܮ௜,௟൷
ே೗

௜ୀଵ

ቍ
௠

௟ୀଵ

+ ෍ ℎ௜,௠ܣ௜,௠

ே೘

௜ୀଵ

− ܾ × ቀܧ ቘܯ௉ி{஺∗}
ା ቙ − ܶቁ − ݎ × ቀܶ − ܧ ቘܯ௉ி{஺∗}

ି ቙ቁ 

with: 

• ௜,௠ିଵ{஺∗}ܯ = ݔܽ݉
௖ೖ,೘∈ௌ೔,೘షభ

൫ܮ௞,௠ − ܺ௞,௠
∗ − ൯ߜ = ݔܽ݉

௖ೖ,೘∈ௌ೔,೘షభ
൫ܮ௞,௠ − ܺ௞,௠

∗ ൯ − ߜ

= ௜,௠ିଵ{௑∗}ܯ −  ߜ

• ௉ி{஺∗}ܯ
ା = ,௉ி{஺∗}ܯ൫ݔܽ݉ ܶ൯ = ݔܽ݉ ቀܯ௉ி൛௑ೖ,೘

∗ ିఋൟ, ܶቁ 
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• ௉ி{஺∗}ܯ
ି = ݉݅݊൫ܯ௉ி{஺∗}, ܶ൯ = ݉݅݊ ቀܯ௉ி൛௑ೖ,೘

∗ ିఋൟ, ܶቁ 

• ௉ி{஺∗}ܯ = max
௜ୀଵ,…,ேభ

ቀܯ௜,ଵ{஺∗} + ௜,ଵቁܮ = max
௜ୀଵ,…,ேభ

ቀܯ௜,ଵ{௑∗} + ௜,ଵܮ − ቁߜ = ௉ி{௑∗}ܯ −  ߜ

• ௜,௟ିଵ{஺∗}ܯ = max
௖ೖ,೗∈ௌ೔,೗షభ

൫ܯ௞,௟{஺∗} + ௞,௟൯ܮ = max
௖ೖ,೗∈ௌ೔,೗షభ

൫ܯ௞,௟{௑∗} + ௞,௟ܮ − ൯ߜ = ௜,௟ିଵ{௑∗}ܯ −  ߜ

Then after some algebraic transformations, we obtain: 

,∗ܺ)ߝ (∗ܣ = ܾ × ቀܧ ቘܯ௉ி{௑∗}
ା ቙ − ܧ ቘܯ௉ி{஺∗}

ା ቙ቁ + ݎ × ቀܧ ቘܯ௉ி{஺∗}
ି ቙ − ܧ ቘܯ௉ி{௑∗}

ି ቙ቁ

− ߜ ቎ ෍ ቌ෍ ℎ௜,௟

ே೗

௜ୀଵ

ቍ
௠ିଵ

௟ୀଵ

− ෍ ቌ෍ ෍ ℎ௞,௟ାଵ
௖ೖ,೗శభ∈ௌ೔,೗

ே೗

௜ୀଵ

ቍ
௠ିଵ

௟ୀଵ

+ ෍ ℎ௜,௠

ே೘

௜ୀଵ

− ෍ ℎ௜,ଵ

ேభ

௜ୀଵ

቏ 

using 

෍ ቌ෍ ෍ ℎ௞,௟ାଵ
௖ೖ,೗శభ∈ௌ೔,೗

ே೗

௜ୀଵ

ቍ
௠ିଵ

௟ୀଵ

= ෍ ෍ ℎ௜,௟

ே೗

௜ୀଵ

௠

௟ୀଶ

 

Therefore, we can easily prove that: 

,∗ܺ)ߝ (∗ܣ = ܳ ෍ ቀܲݎ ቘܯி௉{ಲ∗}
> ቙ݏ −

ݎ
ܾ + ቁݎ

்ିఋஸ௦ழ்

 

We have ∀ܯ ,ݏி௉{೉∗}
> ߰௝, so ܲݎ ቘܯி௉{ಲ∗}

> ቙ݏ ≥ ൳߰௝ݎܲ > ,∗ܺ)ߝ ൷ andݏ (∗ܣ ≥

ܳ ∑ ൬ ௕
௕ା௥

− ݏ൫ܨ − ௝ܺ
∗∗൯൰்ିఋஸ௦ழ் . 

According to the expression (3), ∀ܶ − ߜ ≤ ݏ < ܶ: 

൫ܶܨ − ௝ܺ
∗∗ − ൯ߜ ≤

ܾ
ܾ + ݎ ≤ ൫ܶܨ − ௝ܺ

∗∗൯ 

We finally deduce that ߝ(ܺ∗, (∗ܣ ≥ 0. ∎ 

A.4. Proof of Proposition 4 

The Lower bound corresponded to the vector ܣ௞ᇲ,௑ೖᇲ,೘
 and is composed of: 

 The inventory expected cost of the first ݇௠
ᇱ  components in the level ݉ of the BOM. 

These components have fixed order release dates (see expressions 4, 5 and 6):  

௦௖೘ܥ൳ܧ , ௞೘ܣ
ᇲ ൷ = ෍

⎝

⎜
⎛

෍ ℎ௞,௠ ൭ܧ ൵ܯ ௜,௠ିଵ
∀௞வ௞೘

ᇲ ; ௑ೖ,೘ୀ௔ೖ,೘

൹ − ௞,௠ܮ൳ܧ + ܽ௞,௠൷൱
௖ೖ,೘∈ௌ೔,೘షభ

௞ஸ௞೘
ᇲ ; ⎠

⎟
⎞

௭೘షభ

௜ୀଵ
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 The inventory expected cost of the first ݇௟
ᇱ components ܿ௜,௟ , ݈ = 2, … , ݉ − 1: 

ௌ஼మ,…,೘షభܥ൳ܧ , ௞ᇲ൷ܣ = ෍ ൮෍ ෍ ℎ௩,௟ାଵ
௖ೡ,೗శభ∈ௌ೔.೗

௜,௟൷ܯ൳ܧ
௭೗

ᇲ

௜ୀଵ

− ෍ ℎ௜,௟ାଵ൫ܧ൳ܯ௜,௟ାଵ൷ + ௜,௟ାଵ൷൯ܮ൳ܧ

௞೗శభ
ᇲᇲ

௜ୀଵ

൲
௠ିଵ

௟ୀଵ

 

 The inventory expected cost of the first ݖᇱ components in the first level of the BOM: 

௦௖భܥ൳ܧ , ௞ᇲ൷ܣ = ෍ ቌℎ௜,ଵ ቆܧ ቢܯ ி௉
∀௞வ௞೘

ᇲ ; ௑ೖ,೘ୀ௔ೖ,೘

ባ − ௜,ଵ൷ܯ൳ܧ − ௜,ଵ൷ቇቍܮ൳ܧ
௭భ

ᇲ

௜ୀଵ

 

 The backlogging expected cost of the finished product related to the vector 
௞ᇲ,௑ೖᇲ,೘ܣ

whose values are defined in expressions (4), (5) and (6): 

௕௉ிܥ൳ܧ , ௞೘ܣ
ᇲ ൷ = ܾ × ൭ܧ ൵ܯ ி௉

∀௞வ௞ᇲ; ௑ೖ,೘ୀ௔ೖ,೘

ା ൹ − ܶ൱ 

 

 


