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Abstract

In additive manufacturing process support structures are often required to ensure the
quality of the final built part. In this article we present mathematical models and their nu-
merical implementations in an optimization loop, which allow us to design optimal support
structures. Our models are derived with the requirement that they should be as simple as
possible, computationally cheap and yet based on a realistic physical modeling. Supports
are optimized with respect to two different physical properties. First, they must support
overhanging regions of the structure for improving the stiffness of the supported structure
during the building process. Second, supports can help in channeling the heat flux pro-
duced by the source term (typically a laser beam) and thus improving the cooling down
of the structure during the fabrication process. Our optimization algorithm is based on the
level set method and on the computation of shape derivatives by the Hadamard method. In
a first approach, only the shape and topology of the supports are optimized, for a given and
fixed structure. In second and more elaborated strategy, both the supports and the structure
are optimized, which amounts to a specific multiphase optimization problem. Numerical
examples are given in 2-d and 3-d.

1 Introduction

Additive manufacturing (AM) refers to the construction of objects using a layer by layer depo-
sition system. Such fabrication processes have the advantage of being able to build complex or
unique structures starting from a given design. Additive manufacturing offers multiple advan-
tages over classical fabrication techniques, like molding or casting. In particular, the complexity
of the structure is only limited by the precision given by the width of the layers, while there
are no topological constraints. Moreover, the design can be modified at any moment in the
fabrication process, allowing the immediate correction of eventual design errors. Recent devel-
opments in technologies regarding AM processes based on melting metal powder with the aid
of a laser (or electron) beam provide great opportunities for the usage of these technologies in
various industrial branches like aeronautics, automotive, biomedical engineering, etc. [8], [20].

As already underlined in many works [13, 14, 17, 18, 23, 24, 25, 26, 27, 28, 29, 32, 34, 38, 39]
a recurring issue when dealing with AM processes is the conformity of the printed structures
to the original design. Indeed, it has been observed that structures which have large portions
of surfaces which are close to being horizontal and are unsupported tend to be distorted after
the manufacturing process. Such horizontal regions are called overhangs. These deformations,
which were not in the original design, may have multiple sources. Firstly, the overhang sections
may be rough or deformed because the melted powder is not supported. This constraint is
linked to the angle of normals to overhang surfaces with the build direction and it varies with
the material or machines involved. As a rule of thumb, it is agreed that angles greater than
45◦ − 60◦ (depending on the 3D printer technology) are admissible in order to be able to build
the structures. Secondly, the uneven temperature distribution in the structure, which is due to
the path of the heating laser (or electron) beam, may create thermal residual stresses or thermal
dilation of the structure in various directions. In order to avoid such undesired deformations,
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the structure can either be redesigned taking into consideration the limitation of the overhang
regions and of the thermal effects, or support parts can be added with the goal of improving
the construction process, which will be removed after the fabrication is finished.

Shape and topology optimization is by now a well known technique to automatically design
structures with optimal mechanical or thermal properties [1], [9]. Recently, there has been a
growing interest in extending these techniques in the framework of additive manufacturing.
There are at least two main directions of research in this context.

First, structures can be optimized, not only for their final use, but also for their behavior
during the building process, without requiring the addition of supports. In general, the main
goal is to limit the apparition of overhang parts during the design optimization and very often
it is achieved by enforcing a geometric constraint on the overhang angle. In the framework of
the SIMP method, the topology optimization of support-free structures was proposed in [30].
Unfortunately, relying only on a penalization of the overhang angle is not enough. An horizon-
tal overhanging part can be replaced by a zig-zag structure, which passes the angle penalization
but is still globall an overhang. This is called the dripping effect. It shows that mechanical prop-
erties should be taken into account. In the framework of the level set method, it is achieved by
a combination of geometric and mechanical constraints in [3, 4]. The minimization of thermal
residual stresses or thermal deformations has been considered in [5]. The optimization of the
orientation of the shape was studied in [33], [42].

Second, for given structures (optimal or not) one can optimize the placement of supports to
improve the building process and avoid any of the possible defects, previously mentioned, like
overhang deformations or residual stresses. There are many more works in this second class of
problems. Various ways of optimizing the supports were proposed, like sloping wall structures
[24], tree-like structures [39], [18], periodic cells [38], lattices [25] and support slimming [23].
A procedure for the automatic design of supports under the form of bars, with applications to
polymer 3D printers was presented in [17]. An approach to optimize the topological structure
of supports using the SIMP method was considered in [19]. The optimization of supports was
also addressed in [28], where mechanical properties and geometric aspects were consider in
the optimal design process. In [11] the authors consider the optimization of supports under
mechanical stresses, using the SIMP method in dimension 2. Still in the framework of the
SIMP method, but adding the ease of removal as an additional constraint, the optimal design
of supports was studied in [27]. The addition of supports via a level set method in order to
limit the overhang regions was studied in [13] for some two dimensional tests.

Of course, the two approaches can be combined in a simultaneous optimization of shape
and support. Topology optimization coupled with support structure design was considered in
[32]. In [29] the simultaneous optimization of the shape, support and orientation is treated.

In the present paper we are concerned with the second approach, i.e. optimizing the sup-
ports for a given structure, and its extension to a multiphase topology optimization problem
where both the structure and its supports are optimized. In the optimization process, both me-
chanical and thermal properties are taken into account. The goal is to provide relatively simple
and cheap models for optimizing the position of supports which increase the rigidity of the
structure and facilitate the evacuation of the heat. These models are computationally efficient
and could be implemented in a straightforward way into automatic design softwares. Here,
our computations are based on the free finite element software FreeFem++ [21].

The content of our paper is the following. In Section 2 we focus on minimizing the me-
chanical effects of overhangs, without taking into account a thermal model. In Subsection 2.1
the shape is assumed to be fixed and only the supports are optimized by using a mechanical
criterion. More precisely we minimize a weighted sum of the support volume and of the com-
pliance for the union of the shape and its support, submitted to gravity. Of course, under such
a load, overhang regions of the shape will have a tendency to get supported during the opti-
mization process. In Subsection 2.2 we extend our analysis to the simultaneous optimization of
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the shape and support. It involves two state equations: one for the final use of the shape (with-
out supports) and another one for gravity effects during the building process. It is therefore a
multi-phase optimization problem and we rely on the method proposed in [2]. Subsection 2.3
makes a comparison with the more involved layer by layer model, introduced in [3, 4], restricted
here to the case of a fixed shape.

Section 3 turns to the support optimization in order to facilitate the evacuation of the heat
coming from the laser beam. In this case the model is the stationay heat equation or its long
time behavior, given by the first eigenmode, posed in the union of the shape and its support.
Thermal compliance is minimized for a given source term supported only in the shape.

As explained in Section 4 our main numerical tool is the level set method [37]. Shape deriva-
tives, computed by Hadamard method, are the velocities in the transport Hamilton-Jacobi
equation [7]. Our optimization algorithm is a simple Augmented Lagrangian method [10].
Dealing with the level set method needs certain specific tools regarding the reinitialization and
the advection of the level set function. We rely the publicly available tools MshDist [16] and
Advect [12] from the ICSD Toolbox available online: https://github.com/ISCDtoolbox.
Our partial differential equations models are solved by finite elements in the FreeFem software
[21].

Eventually Section 5 contains our numerical test cases. At first a few examples concerning
supports which maximize the rigidity of the structure under gravity loads are presented, using
the ideas of Section 2. Numerical examples in dimensions two and three show that our algo-
rithm can handle complex cases. Then, some simulations concerning the optimization of the
supports with respect to their thermal properties are displayed in the framework of Section 3.
Of course, it is possible to optimize the supports for both thermal and elastic loads, as in Sec-
tion5.3. The simultaneous optimization of the shape and its support, as discussed in Section
2.2, is also illustrated. The behavior of the support with respect to the orientation of the shape
is also considered in Section5.5. Finally, for the sake of comparison, the layer by layer algo-
rithm, presented in Section 2.3, is tested for two and three dimensional test cases. The resulting
optimal supports are not very different from the ones obtained with the simpler algorithm of
Section 2, showing the interest of the present approach, which is much cheaper in terms of CPU
time.

Concluding remarks and perspectives are given in Section 6.

2 Shape optimization for minimizing the mechanical effects of over-
hangs

2.1 Optimizing the Support when the Shape is Fixed

Let us consider a shape ω, which has to be printed, together with its supports S. Both S and
ω are open sets of Rd (with d = 2 or 3 in practice). In a first stage the shape ω will be fixed
and only the support S will be the optimized. In a second stage (see the next subsection),
both the support S and the shape ω will be optimized. Our numerical framework could be
used for arbitrary build directions. In our computations, however, we always suppose that the
build direction is the vertical one: a structure is built from bottom towards its top. A point in
Rd is denoted by x = (x1, ..., xd) and the vertical direction is ed = (0, ..., 0, 1). The supported
structure is denoted by Ω = S ∪ ω and is assumed to be contained in a given computational
domain D, which can be interpreted as the build chamber. For simplicity, the build chamber will
always be a rectangular box. The build chamber D always contains the baseplate as its bottom
boundary, denoted by ΓD. By definition, the bottom boundary ΓD corresponds to xd = 0. We
assume that the support S is clamped on the boundary ΓD of the computation domain D. The
other regions of the boundary of the supported structure Ω are traction-free, denoted by ΓN .
In the following for an open domain Ω ⊂ Rd and a (d − 1)-dimensional set Γ we consider the
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space
H1

Γ(Ω)d = {u ∈ H1(Ω)d : u = 0 on Γ} (1)

The deformation of the supported structure Ω is governed by the equations of linearized
elasticity. Following [4] only gravity forces are applied to Ω. Then, optimizing the support S
for minimizing the compliance of Ω will induce minimal overhang regions. The elastic dis-
placement uspt of the supported structure Ω = ω∪S is the unique solution in the space H1

ΓD
(Ω)

(defined in (1)) to the mechanical system
−div(Ae(uspt)) = ρg in Ω,

uspt = 0 on ΓD,
Ae(uspt)n = 0 on ΓN .

(2)

In (2), e(u) = 1
2(∇u+∇uT ) is the linearized strain tensor associated to the displacement u, g is

the (vertical) gravity vector and n denotes the unit normal vector to Ω. We denote by ρ(x) the
density of the structure Ω and by A(x) its Hooke’s tensor, which may both vary with respect to
the position x. Typically, these material properties may be different in the shape ω and in the
support S, which happens often in practice. More precisely we haveAe(u) = 2µe(u)+λ div u Id,
where Id is the identity matrix and µ, λ are the Young modulus and Poisson ratio, respectively.
If µω, λω, ρω are the mechanical parameters for the shape ω and µS , λS , ρS are the corresponding
parameters for the support, then

µ = µωχω + µSχS , λ = λωχω + λSχS , ρ = ρωχω + ρSχS .

We evaluate the mechanical performance of the supported structure Ω in terms of its struc-
tural compliance

J(S) =

∫
ω∪S

Ae(uspt) · e(uspt) dx =

∫
ω∪S

ρg · uspt dx . (3)

Other objective functions would be possible. This objective function is minimized in the set Uad
of admissible supports defined by

Uad = {S ⊂ (D \ ω) such that ,ΓD ∩ ∂S 6= ∅, ∂ω ∩ ∂S 6= ∅}.

If we do not impose any constraints then the optimization procedure will not produce relevant
supported structures since the support S will simply fill the space under the shape ω in D. In
order to prevent this we add a constraint on the volume of the support S. This is of course
relevant from a physical point of view, since we wish to obtain optimal structures which do not
use too much material.

The constraint can be incorporated in the functional by using a Lagrange multiplier `.
Therefore we will consider problems of the form

min
S∈Uad

J(S) + `Vol(S), (4)

where ` is either a given penalization parameter, or a parameter which changes during the
optimization process in order to reach the equality in the volume constraint at the end of the
optimization process. When we wish to work with a volume constraint an Augmented La-
grangian method is used, as described in Section 4.

In order to find numerical solutions to problem (4) we use algorithms which are based
on the derivatives of the compliance J(S) and the volume Vol(S). In the shape optimization
context these shape derivatives are computed by the Hadamard method [1], [36]. Given a
vector field θ ∈W 1,∞(Rd,Rd) we consider variations of the set S induced by θ of the form

θ 7→ Sθ = (Id + θ)(S).
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Definition 2.1. A function F (S) of the domain is shape differentiable at S if the underlying map
θ 7→ F (Sθ) from W 1,∞(Rd,Rd) into R, defined above, is Fréchet differentiable at 0. The corresponding
derivative is denoted by F ′(S) and the following asymptotic expansion holds in a neighborhood of 0:

F (Sθ) = F (S) + F ′(S)(θ) + o(θ), where
|o(θ)|

‖θ‖W 1,∞(Rd,Rd)

θ→0−→ 0.

Computing the shape derivative of the compliance is a classical result (see e.g. [7]). Recall
that the shape ω is fixed and only the support S may vary. Note also that, from a mechan-
ical point of view, the support S always lies outside the shape ω and cannot move inside ω.
Therefore, for most results in the following we make the following assumption.

Assumption 2.2. The interface ∂S ∩ ∂ω is assumed to be fixed. Therefore, all vector fields θ in the
shape derivatives are assumed to satisfy θ · n = 0 on ∂S ∩ ∂ω.

Proposition 2.3. Under Assumption 2.2, the shape derivative of the compliance (3) is given by

J ′(S)(θ) =

∫
∂S∩ωc

(
−Ae(uspt) · e(uspt) + 2ρg · uspt

)
θ · n ds

where uspt is the solution of (2) and ωc = D \ ω and ∂S ∩ ωc = ∂S \ ∂ω.

This follows at once from [7, Theorem 7]. The shape derivative is carried merely by ∂S ∩ωc
because the normal components of the vector fields θ vanish on the interface ∂S ∩ ∂ω. This
result is a particular case of the more general result, Proposition 2.5, proved in the following
section.

Eventually, it is well known that the shape derivative of the volume is given by

Vol′(S)(θ) =

∫
∂S∩ωc

θ · nds.

2.2 Simultaneous Optimization of the Support and the Shape

In a second stage we consider the simultaneous optimization of the shape and the support.
While in the previous subsection the support S was optimized only for counter-balancing the
gravity effects during the building process, now the shape ω has also to be optimized for its final
use, independently of the support S. Therefore, in addition to the state equation (2), accounting
for gravity effects on the supported structure S ∪ ω, we now add another state equation for ω
only, which takes into account its final use with new loads and boundary conditions. Figure 1
displays the different type of boundary conditions for these two state equations on an example
which will be studied later in Section 5. From now on the elastic displacement, solution of
the first state equation for the supported structure during its building process, is denoted uspt,
while the other elastic displacement, solution of the second state equation for the shape during
its final use, is denoted ufin.

For its final use, the shape ω is clamped on a boundary Γ̃D and is loaded on another bound-
ary Γ0 by some surface loads by ffin. The rest of the boundary denoted Γ̃N is traction-free. The
mechanical properties of ω with respect to the final functionality of the shape is described by
the following second state equation

−div(Ae(ufin)) = 0 in ω,
ufin = 0 on Γ̃D,

Ae(ufin)n = ffin on Γ0,

Ae(ufin)n = 0 on Γ̃N .

(5)

As already said, the boundary conditions and loadings are not the same for the two state equa-
tions (2) and (5) (see Figure 1).
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Figure 1: Different boundary conditions for the final use of the shape (left) and for the sup-
ported structure (right)

We consider as an objective function to be optimized the sum of the compliances for (5) and
(2)

J2(ω, S) =

∫
ω∪S

ρg · uspt dx+

∫
Γ0

ffin · ufin ds. (6)

Of course, more general objective functions for (5) could be studied, at the expense of introduc-
ing an adjoint equation. This new objective function is minimized in the set Uad of combined
admissible shapes and supports defined by

Uad =
{

(ω, S) ⊂ D such that ω ∩ S = ∅,ΓD ∩ ∂S 6= ∅, Γ̃D ∩ ∂ω 6= ∅, ∂ω ∩ ∂S 6= ∅
}
.

Adding volume constraints on both S and ω, we consider the following optimization problem

min
(ω,S)∈Uad

J2(ω, S) + `S Vol(S) + `ω Vol(ω), (7)

where `S , `ω are two Lagrange multipliers for the volume constraints on S and ω, respectively.
Contrary to the previous section, the interface between the support S and the shape ω can now
be optimized. Therefore, the vector fields θ in the shape derivatives do not necessarily vanish
on the interface ∂S ∩ ∂ω. In other words, problem (7) is a two-phase optimization problem
because the material properties are usually not the same in the support and in the shape.

It is well known (see e.g. [2]) that computing shape derivatives for an interface between
two phases is a delicate issue and that the resulting formulas are complicated to use in numer-
ical optimization. Typically, because of different mechanical properties A and ρ between ω and
S, there will be jumps of discontinuous quantities on the interface in the shape derivative for-
mula. However, as already underlined in [2, Section 2.2], shape derivatives are much simpler
if we suppose that the equations (2) and (5) are solved for uspt, ufin in some finite dimensional
subspaces. Therefore, in the following we make the following simplifying assumption, which
remains valid in our numerical computations based on finite element methods.

Assumption 2.4. Let Vh andWh be finite dimensional subspaces ofH1
Γ̃D

(ω)d andH1
ΓD

(Ω)d (see (1) for
their definition), respectively. Let uhfin be the solution of the approximate variational formulation of (5)
in Vh and uhspt be the solution of the approximate variational formulation of (2) in Wh. In the following
we work with these discrete solutions, and for the simplicity of notation, we drop the discrete index h.

We now give the shape derivative of J2(ω, S) when both the shape and the support are
deformed by a vector field θ.

Proposition 2.5. Under Assumption 2.4, for any vector field θ ∈ W 1,∞(Rd,Rd), the shape derivative
of J2(ω, S), defined by (6), is given by

J ′2(ω, S)(θ) =

∫
∂ω\∂S

j1θ · n ds+

∫
∂ω∩∂S

j2θ · n ds+

∫
∂S\∂ω

j3θ · n ds,
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where the integrands j1, j2, j3 are given by

j1 = −Ae(ufin) · e(ufin)−Ae(uspt) · e(uspt) + 2ρg · uspt

j2 = −[A]e(uspt) · e(uspt) + 2[ρ]g · uspt −Ae(ufin) · e(ufin) (8)

j3 = −Ae(uspt) · e(uspt) + 2ρg · uspt

and the notation [ξ] denotes the jump of a quantity ξ through the interface ∂ω ∩ ∂S.
We choose an orientation on ∂ω ∩ ∂S such that the normal vector points outwards ω. In this case

[ξ] = ξω − ξS where ξω and ξS are the values of ξ on the two sides of ∂ω ∩ ∂S. For details we refer to
[2].

Proof: We simply sketch the proof which is a variant of that of Proposition 2.5 in [2]. Under
Assumption 2.4, the discrete solutions ufin of (5) in Vh and uspt of (2) in Wh are shape differen-
tiables. The shape derivative of (6) is computed by Céa’s method [15]. Introduce a Lagrangian
defined for (ω, S) ∈ Uad and ˆufin, ˆpfin ∈ H1

Γ̃D
(ω)d, ˆuspt, ˆpspt ∈ H1

ΓD
(Ω)d by

L( ˆufin, ˆuspt, ˆpfin, ˆpspt, ω, S) =

∫
ω
Ae( ˆufin) · e( ˆpfin) dx−

∫
Γ0

ffin · ˆpfin ds

+

∫
ω∪S

Ae( ˆuspt) · e( ˆpspt) dx−
∫
ω∪S

ρg · ˆpspt dx

+

∫
ω∪S

ρg · ˆuspt dx+

∫
Γ0

ffin · ˆufin ds.

The variables in the Lagrangian are denoted with a hat, since this functional is defined for
general variables, which are not the solutions of the state and adjoint equations. As usual, the
Lagrangian is the sum of the objective function and of the weak forms of (5) and (2). Differ-
entiating with respect to ˆpfin and ˆpspt yield the weak forms of (5) and (2). Differentiating with
respect to ˆufin we obtain the adjoint equation

−divAe(pfin) = 0 in ω,
Ae(pfin)n = −ffin on Γ0,

pfin = 0 on Γ̃D,

Ae(pfin)n = 0 on Γ̃N .

Therefore, the adjoint state is simply pfin = −ufin. In the same manner it is found that the
adjoint state pspt is equal to −uspt. We now differentiate L with respect to the variables ω and
S in the direction of a vector field θ. Note that the mechanical properties A and the density ρ
may have jumps when passing from ω to S. These jumps are denoted by [A] and [ρ] and will
appear when computing the shape derivative on ∂ω∩∂S. We refer to [2] for a detailed analysis
of moving interfaces corresponding to jumps in the material properties. Therefore we deduce

∂L
∂ω, S

(θ) = −
∫
∂ω
Ae(ufin) · e(ufin)θ · n ds+

∫
∂ω\∂S

−Ae(uspt) · e(uspt)θ · n ds

+

∫
∂ω∩∂S

−[A]e(uspt) · e(uspt)θ · n ds+

∫
∂ω∩∂S

[ρ]g · usptθ · n ds

+

∫
∂ω\∂S

ρg · usptθ · n ds+

∫
∂ω\∂S

ρg · usptθ · n ds

+

∫
ω∩∂S

[ρ]g · usptθ · n ds−
∫
∂S\∂ω

Ae(uspt) · e(uspt)θ · n ds

+

∫
∂S\∂ω

ρg · usptθ · n ds+

∫
∂S\∂ω

ρg · usptθ · n ds

Regrouping the integrals on the different parts of the boundaries ∂ω \ ∂S, ∂S \ ∂ω and ∂S ∩ ∂ω
we obtain the desired result. �
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2.3 Layer by layer model for optimizing the support

We come back to the case where the shape ω is fixed and only the support is optimized. Our
goal is to consider a more detailed modelling of the additive manufacturing process, featuring
a layer by layer model as in [3] and [4]. As before, the build chamber D is a rectangle and its
height in the vertical (and built) direction is denoted by h.

Let 0 = x0 < h1 < ... < hN = h be an equi-distant subdivision of [0, h], corresponding
to the number N of slices in the AM process. For each i = 1, ..., N , define Ωi = {x ∈ (ω ∪
S) such that 0 < xd < hi} as the intermediate domain corresponding to the first i stages in
the AM process. The slice number i, or equivalently the last layer in Ωi, is defined as Ri =
{x ∈ Ωi such that hi−1 < xd < hi}. For each intermediate domain Ωi is associated a state
equation, characterizing the mechanical system. Following [3], in order to minimize the effect
of overhang regions, the loading in Ωi is just gravity. However, for taking each layer into
account only once, gravity forces are restricted to the last layer Ri, assuming somehow that
the previous layers are stable. Such a model was already shown in [3] to produce relevant
numerical results. In other words, the state equation in Ωi is

−div(Ae(ui)) = ρgi in Ωi

ui = 0 on ΓD
Ae(ui)n = 0 on ∂Ωi \ ΓD

(9)

where gi = (0, 0, ...,−1)χRi , where χRi is the characteristic function of the last layer Ri. Note
that the powder is completely neglected in (9). For each intermediate structure Ωi we compute
its compliance ∫

Ωi

Ae(ui) · e(ui) dx =

∫
Ωi

fi · ui dx,

and we minimize their sum, or total compliance,

J3(S) =
N∑
i=1

∫
Ωi

fi · ui dx (10)

with a volume constraint on the support S implemented via a Lagrange multiplier. Working
under Assumption 2.2, the shape derivative of (10) is given by

J ′3(S)(θ) =
N∑
i=1

∫
∂S∩Ωi

(−Ae(ui) · e(ui) + 2fi · ui) θ · nds.

3 Optimization of supports for thermal evacuation

3.1 Heat equation model

In some cases, support structure are not only necessary for avoiding overhangs, but also for
evacuating or regulating the heat inside the structure shape/support in order to reduce ther-
mal residual stresses and deformations. Thus, we suggest another criterion for optimizing
supports, which is based on the minimization of the temperature, supposing that the source
term is given and the heat conductivity properties of the shape and support are known. As
before, the shape to be built is denoted ω and its supports S. We assume that the heat is regu-
lated on the boundary ΓD of the structure, by imposing a Dirichlet condition on ΓD. On other
boundaries of the structure we may consider Fourier type conditions or Neumann conditions,
since the conductivity of the powder is significantly smaller than the conductivity of the fused
structure.
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In the following, we denote by k = kωχω + kSχS the conductivity throughout the structure.
Here kω is the constant conductivity in the shape ω and kS that in the support S. The source
term f is assumed to be supported inside the shape ω. Fourier boundary conditions may be
considered, in view of the fact that the heat may dissipate in the powder region or by radiation
in the upper layer. However, since it is considered that the main source of heat evacuation is
through the baseplate, we simplify our model by considering homogeneous Neumann bound-
ary conditions. Thus, the thermal model reads

−div(k∇T ) = fχω in S ∪ ω
k(x)∇T · n = 0 on ΓN

T = 0 on ΓD

(11)

The shape ω is assumed to be fixed and thermal compliance is minimized for all admissible
supports

min
S∈Uad

F(S) =

∫
ω
fT. (12)

The volume constraint is added using a Lagrange multiplier.

Proposition 3.1. Under Assumption 2.2 the shape derivative of the thermal compliance (12) related to
the system (11) is given by

F ′(S)(θ) = −
∫
∂S\∂ω

k|∇T |2θ · nds. (13)

Proof: This is a classical result and we briefly sketch the main idea of the proof. Consider
the Lagrangian defined for S ∈ Uad and T̂ , p̂ ∈ H1

ΓD
(D) by

L(T̂ , p̂, S) =

∫
S∪ω

k∇T̂ · ∇p̂ dx−
∫
ω
fp dx+

∫
ω
fT dx

obtained by summing the variational form of (11) with the functional F(S). The partial deriva-
tive of L with respect to p gives the state equation and the partial derivative with respect to T
yields the adjoint equation. This is a self-adjoint case and the adjoint is simply p = −T . The
partial derivative of Lwith respect to S gives the shape derivative of F given in (13). �

3.2 Spectral model

The asymptotic behavior for long times of the heat equation can be estimated by computing
the first eigenvalue of the spectral problem

−div(k∇T ) = λ1(S)χωT in S ∪ ω
k(x)∇T · n = 0 on ΓN

T = 0 on ΓD.
(14)

Following an idea of [31], in order to optimize the evacuation of the heat, one can maximize
the first eigenvalue of (14)

max
S∈Uad

F(S) = λ1(S).

Recall that the first eigenvalue of (14) is simple and therefore it is shape differentiable (see for
example [22, Chapter 5].

Proposition 3.2. Under Assumption 2.2, the shape derivative of the first eigenvalue of (14) is given by

λ′1(S)(θ) =

∫
∂S\∂ω

k|∇T |2θ · nds (15)

where T is an eigenfunction of the first eigenvalue of (14) normalized such that
∫
ω T

2 dx = 1.
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Proof: To justify this known classical result introduce the Lagrangian defined for S ∈ Uad,
T̂ , p̂ ∈ H1

ΓD
and λ̂ ∈ R by

L(T̂ , p̂, S, λ̂) =

∫
S∪ω

k∇T̂ · ∇p̂ dx− λ̂
∫
ω
T̂ p̂ dx+ λ̂,

obtained by summing the variational form of the state equation (14) and the functional F(S) =
λ(S). The partial derivative of Lwith respect to p̂ gives the state equation, while the derivative
with respect to T̂ gives the adjoint equation. In this case we obtain that the adjoint p̂ is a
multiple of T . The derivative with respect to λ gives∫

ω
Tp dx = 1,

which gives the multiplication factor in the adjoint formula

p = T/

∫
ω
Tp dx.

Finally, the partial derivative of L with respect to S yields the shape derivative formula of the
eigenvalue (15). �

4 Numerical framework

4.1 The Level Set Method

In order to be able to describe complex structures, including possible topology changes, and to
use a fixed computational mesh of the domain D, containing the variable shapes, we use the
level set method [37]. The boundary of a generic shape Ω ⊂ D is defined via a level set function
ψ : D → R such that 

ψ(x) < 0 in Ω,
ψ(x) = 0 on ∂Ω,
ψ(x) > 0 in D \ Ω.

During the optimization process the shape evolves according to a scalar normal velocity V (x).
In other words, its level set function is solution of the following advection or transport equa-
tion, which is a Hamilton-Jacobi equation,

∂ψ

∂t
+ V |∇ψ| = 0. (16)

Our computations rely on the software Advect [12] from the ICSD Toolbox in order to solve
(16). The algorithm of [12] solves a linearization of (16) by the method of characteristics. It has
the advantage of being able to handle unstructured meshes.

A particular level set function associated to the set Ω is its signed distance function dΩ. The
signed distance function allows us to recover geometric properties of the shape Ω by perform-
ing simple computations. For example the unit normal vector to ∂Ω at x is simply∇ψ(x) and to
compute the curvature of ∂Ω at x it is enough to compute the Laplacian ∆ψ at a point x ∈ ∂Ω.
See [35, Chapter 2] for more facts and proofs regarding the geometry of objects defined via
signed distance functions. Therefore it is important to keep the level set ψ equal to the signed
distance function in order to have immediate access to geometric properties of ∂Ω. It is classical
to initialize the level set to a signed distance function at the beginning of the optimization pro-
cess. However, when advecting the shape via the Hamilton-Jacobi equation (16) the resulting
level set is not necessarily a signed distance function anymore. Therefore, at every iteration we
perform a re-distancing procedure in order to keep the level set equal to the signed distance
function to the actual set Ω. This redistancing procedure is done efficiently with the toolbox
MshDist [16] or with the distance function in FreeFem++ [21].
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4.2 Optimization Algorithm

In the optimization procedure we use the following ingredients.

• Initialization. The initial level set function is chosen with sufficiently rich topology in 2D
(uniformly distributed holes), or as the whole computational domain in 3D.

• Optimization loop. Given the current shape, represented by the level set function, we
compute the corresponding cost functional and its shape derivative. This gives the per-
turbation field V to be used in the Hamilton-Jacobi equation (16) in order to advect the
level set function. If the value of the cost function decreases, the iteration is accepted,
if not, the step size is decreased and the current step is computed again. For accepted
iterations the level set function is reinitialized as a signed distance function.

• Termination. We terminate the algorithm once we observe that the cost functional does
not decrease further, or when a prescribed number of iterations is reached.

As usual, the holes or the exterior of the shape, inside the computational domain, is filled
by an ersatz material which has typically mechanical parameters 10−3 smaller than those of
the structure. In our computations there are thus three phases: the shape, the support and the
ersatz material.

In general, when not stated otherwise, a fixed Lagrange multiplier is used for the volume
constraint. When a prescribed volume constraint is imposed, we use an augmented Lagrangian
approach. It amounts to solve problems of the type

min
c(ω)=0

F(ω)

by minimizing at each iteration k an unconstrained functional

F(ω)− Yk c(ω) +
1

2
Rk c(ω)2,

where the Lagrange multipliers are updated as follows: Yk+1 = Yk − Rk · c(ωk). The penaliza-
tion multiplier R is initialized to the value 0.1 in our computations and is increased using the
formula R ← 1.1R every 5 iterations, as long as the absolute value of the constraint is above a
certain threshold, for example |c(ω)| > 0.01. More details concerning Augmented Lagrangian
methods can be found in [10].

5 Simulations

All our numerical computations are performed with the freeware software FreeFem++ [21].
The figures in this paper were plotted with Matlab, xd3d or Paraview. Although the shape and
its support could have different mechanical properties, here we restrict ourselves to the case of
equal Young’s module (normalized to 1) and Poisson’s ratio, equal to 0.3, with one exception:
in Test Case 3, where different Young moduli are considered in the shape and the support.
However, their densities and thermal conductivities can be different. The build direction for
additive manufacturing is always vertical.

The computational time depends on the dimension, on the size of the discretization and
on the number of optimization iterations. For example, performing 300 iterations for the two
dimensional computations presented in the Test Cases 1 and 2 below takes less than half an
hour. For the three dimensional computations with 150 iterations the computational time is
around three hours for both Test Cases 4 and 5 when dealing with roughly 105 degrees of
freedom. The computations were made on an Intel Xeon 8 core processor, with 32 RAM and on
an Intel i7 quad-core laptop with 16GB of RAM.

11



5.1 Minimizing Compliance with a Fixed Shape

In this subsection the shape ω is fixed and we only optimize the support S for minimal compli-
ance under gravity loads (see Subsection 2.1). In all the following cases we take g = (0,−1) in
dimension two and g = (0, 0,−1) in dimension three.

Test Case 1 (MBB beam). The fixed shape ω is a MBB beam obtained by compliance minimization for a
volume V = 1.2, without any further constraint (see e.g. [3] for details). The fixed shape, the initial and
optimal supports are shown in Figure 2. The objective function (4) is optimized with a fixed Lagrange
multiplier ` = 1. Gravity does not apply to the support S, namely ρS = 0. The supports are obtained
for the density ρω = 2.5 and the optimization procedure has 300 iterations. The computational domain
is of size 3 × 1 corresponding to half of the beam and a symmetry condition on the vertical symmetry
axis is imposed by making the horizontal displacement equal to zero. The computational domain D is
discretized using a 181 × 61 grid with 11041 nodes and P1 finite elements are used for solving (2). In
this simulation the support and the fixed shape have the same mechanical parameters.

The interest of Test Case 1 is that the initial MBB beam has large horizontal parts. These
horizontal parts cannot be produced using additive manufacturing processes, unless they are
supported. Notice that the optimal support S is distributed in such a way that overhang re-
gions are indeed supported. Moreover, the results obtained with our algorithm resemble those
presented in [3], where the additive manufacturing constraints imposed in the optimization
process lead to a self-supporting structure.

Figure 2: Numerical results for Test Case 1 (MBB beam). From top to bottom: fixed shape,
initial and optimal support.

Test Case 2 (M-shape). The fixed shape and the initial and optimal support are displayed in Figure 3.
The M-shape consists of two thin vertical bars, connected by a thicker part. The computational domain
has size 3.1× 3 and the mesh has 156× 151 degrees of freedom. We consider ρω = 5 for the fixed shape
and we optimize the objective function (4) with a fixed Lagrange multiplier ` = 150. The convergence
history of the algorithm for 300 iterations can be seen on Figure 4.

The motivation for Test Case 2 comes from the fact the M-shape successfully passes the
geometric constraint of an angle between the boundary normal and the build direction less
than 45◦ degrees, although the overall structure is clearly overhanging. Such a M-shape is hard
to manufacture without support since the lower angle of the M start right in the middle of the
powder bed. Thus it requires some support. Moreover, in order to have the desired stability
as the layers are added, the support should be strong enough to hold the start surface and the
subsequent layers, until they join with the other parts of the structure. With our model, optimal
supports distribute as expected in order to provide enough resistance for the part of the shape
which starts to be fabricated from the powder bed.
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Figure 3: Numerical results for Test Case 2. From left to right, fixed M-shape, initial and final
supports.

Figure 4: Convergence history of the cost function, the volume and the compliance for Test
Case 2 (M-shape).

Test Case 3 (MBB beam with different phases). In order to illustrate the behavior of the algorithm
when different mechanical parameters are present in the shape and the support, the same configuration
as in Test Case 1 is considered, but the support has now different material properties from the shape. In
this case the mesh has 301 × 101 nodes. The Young modulus of the shape is set to be equal to 1, while
the Young modulus of the support has the value 0.5 and 0.9 in the two computations presented. Results
can be visualized on Figure 5.

The goal of Test Case 3 is to test the influence of a different stiffness of the support with
respect to the shape. As expected, supports tend to be more massive when its Young modulus
is smaller.

Test Case 4 (3D chair). The fixed shape and the optimal support are displayed on Figure 6. The
computational domain is the union of the rectangular boxes [0, 6]×[0, 2]×[0, 6] and [0, 2]×[0, 2]×[6, 12].
The domain is meshed using 343201 nodes. The initial support fills the whole domain outside the shape.
The density is ρω = 5, the volume of the chair structure represents 5% of the computational domain
and the Lagrange multiplier is chosen so that the final volume of the support is 5% of the volume of the
computational domain. The optimization procedure has 150 iterations.

Figure 5: Test Case 3: optimal supports obtained when varying the Young modulus of the
support: 0.5 (top), 0.9 (bottom), while it is 1 for the shape.
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Figure 6: Test Case 4 (3D chair): fixed shape (left) and two views of the optimal supports.

Test Case 4 is inspired from [6]. The 3D chair shape was obtained by compliance minimiza-
tion (see [6] for details).

Test Case 5 (3D beam). The fixed shape and the optimal support are displayed on Figure 7. Due to the
symmetry we work on a quarter of the box containing the shape. The computational domain is [0, 3] ×
[0, 0.5]× [0, 1] which is discretized using finite elements. The discretization contains 104181 nodes and
576000 tetrahedra. The density is ρω = 5 in the fixed shape and we adapt the Lagrange multiplier
in order that the final support occupies 4% of the computational box. The optimization procedure has
150 iterations. The MBB beam was obtained by compliance minimization and occupies 10% of the
computational domain.

Figure 7: Test Case 5 (3D beam): fixed shape (left) and its optimal support (right).

5.2 Thermal evacuation

In the following, results obtained for the optimization of supports for heat evacuation are pre-
sented. The theoretical aspects concerning the objective functions and shape derivatives used
can be found in Subsection 3. The heat equation (11) with a constant source term f in the fixed
shape ω is considered and the support structure S is optimized such that the thermal compli-
ance is minimized. In practice, this would correspond to an optimal evacuation or regulation of
the heat produced by the additive manufacturing process. In the following test cases a Dirich-
let condition T = 0 is imposed on some parts of the boundary of the computational domain.
It is expected that supports will connect the shape ω to these parts of the boundary. Since the
conductivity of the powder is orders of magnitude smaller than the conductivity of the shape
or the support, Neumann boundary conditions are imposed on ∂(S ∪ ω). Here, only simple
test cases in dimension two are performed. More complex situations can be handled with no
additional difficulties: for example, different thermal conductivities in the structure and the
support, non-constant source terms, etc.

In this subsection, the fixed shape ω is a cantilever, obtained by compliance minimization
with volume 0.8 in a 2× 1 rectangular box with a vertical point load at the middle of the right
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Figure 8: Test Case 6: initial and optimal supports for thermal evacuation.

Figure 9: Test Case 7: Optimal supports for thermal evacuation with different boundary condi-
tions: bottom, top-bottom, top-bottom-right and left-right.

side and a clamped left side. In all the test cases of this subsection the optimization procedure
has 300 iterations.

Test Case 6. A cantilever shape is considered in a 2 × 1 rectangular box with Dirichlet condition on
the baseplate (bottom of the domain). The conductivity in the fixed shape and the support is set to 0.5
and the constant source term f is equal to 2 in the fixed shape. The optimization is done using an
augmented Lagrangian method: the final support has volume 0.35. The initialization and the result of
the optimization can be seen in Figure 8.

In industrial practice only connections to the baseplate (lower boundary) of the build cham-
ber can be considered as solid contact, which could efficiently evacuate the heat. Nevertheless,
we try other Dirichlet boundaries for the sake of comparison and since the role of supports foe
heat evacuation is still in debate.

Test Case 7. In Figure 9 a slightly enlarged box of size 2.2 × 1.2 is considered around the cantilever
and it is placed such that it is not in contact with any of the boundaries. In this case the behavior of the
algorithm with respect to different boundary conditions is investigated. As expected, supports optimized
in order to reduce the temperature tend to connect to the parts of the boundary which are regulated
through the Dirichlet boundary condition.

Test Case 8. In order to optimize the behavior of the structure concerning the heat evacuation, the max-
imization of the fundamental eigenvalue of the system given in (14) is considered. The conductivities are
set to 0.5. Dirichlet boundary conditions are imposed on the lower boundary of the domain. The opti-
mization is done using an augmented Lagrangian method: the final support has volume 0.35. The initial
support is the same as the one in Test Case 6 and is shown in Figure 8. The result of the optimization is
presented in Figure 10.

The optimal support of Test Case 8 is quite similar to that of Test Case 6 which indicates
some kind of robustness of this design to the chosen model.
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Figure 10: Test Case 8: Maximization of the first eigenvalue for the heat equation.

5.3 Mixing elastic and thermal constraints

We now consider an objective function which takes into account both mechanical and thermal
constraints: the average of the elastic and thermal compliances. In order to perform the opti-
mization, one simply needs to solve both the elastic system (2) and the thermal system (11) and
combine the corresponding shape derivatives.

Test Case 9. The fixed shape is a MBB beam (same as in Test Case 1). The parameters are as follows.
The mesh consists of a 301 × 101 grid which is triangulated, representing half the beam, by symmetry.
The source is 2.5 in the beam and the conductivity is k = 0.5χω + χS . The mechanical parameters are
the same as in other computations in the previous subsection: Young modulus is 1 and the Poisson ratio
is 0.3. A fixed Lagrange multiplier ` = 1 is used and the optimization procedure has 300 iterations. The
optimal supports obtained are shown in Figure 11.

Figure 11: Test Case 9: Optimal supports with respect to the average of mechanical and thermal
compliances.

5.4 Simultaneous optimization of the shape and the support

Following the theoretical results stated in Section 2.2, the optimization of the shape and the
support at the same time is illustrated below. The difficulty here is to be able to represent nu-
merically both the shape and the support and to evolve through the Hamilton-Jacobi equation
the corresponding parts of ∂ω and ∂S following the derivatives given in equations (8). In or-
der to represent both the fixed shape ω and the support S and to distinguish easily between
boundaries ∂ω \ ∂S, ∂S \ ∂ω and ∂ω ∩ ∂S, two level set functions are used, following classical
ideas from [40], [41]. These techniques were already used when dealing with the optimization
of structures made of multiple materials in [2]. In our case two level sets ψ1, ψ2 : D → R are
needed. The mechanical shape ω and the support S are represented with the aid of the level-set
functions ψ1, ψ2 as follows

x ∈ ω ⇔ ψ1(x) ≤ 0
x ∈ S ⇔ ψ1(x) > 0 and ψ2(x) ≤ 0

x ∈ D \ (ω ∪ S) ⇔ ψ1(x) > 0 and ψ2(x) > 0.
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Figure 12: Test Case 10: Simultaneous optimization of a MBB beam and its supports together
with the initialization of the two level sets used to represent S and ω.

This helps decide how to implement the shape derivatives formulas found in (8). The vector
field θ, giving a descent direction, is chosen as follows

x ∈ ∂ω \ ∂S ⇔ ψ1(x) = 0 and ψ2(x) > 0 ⇒ θ(x) = −j1(x)n
x ∈ ∂ω ∩ ∂S ⇔ ψ1(x) = 0 and ψ2(x) ≤ 0 ⇒ θ(x) = −j2(x)n
x ∈ ∂S \ ∂ω ⇔ ψ1(x) = 0 and ψ2(x) > 0 ⇒ θ(x) = −j3(x)n,

where the expressions of j1, j2 and j3 can be found in (8) and n is the normal vector to the con-
sidered surfaces. On ∂ω∩∂S the normal vector n is chosen pointing outwards ω. In view of the
shape derivative formulas (8) the choice of a vector field perturbation θ gives a corresponding
descent direction for the functional we wish to optimize. The volume constraints on ω and S
are implemented via Lagrange multipliers. In order to allow different behaviors concerning
the shape or the support, two different Lagrange multipliers `ω, `S are used and the functional
to be optimized is the following:

J2(ω, S) + `ωVol(ω) + `SVol(S) =

∫
Γ0

ffin ·ufin ds+

∫
ω∪S

ρg ·uspt dx+ `ωVol(ω) + `SVol(S). (17)

The initialization for the two level sets ψ1, ψ2 needs also particular care. In order to have
rich enough structures for the shape and the support one should place the holes such that the
boundaries of S and ω do not coincide so that the shape derivatives corresponding to all parts
∂ω \ S, ∂ω ∩ ∂S and ∂S \ ∂ω are all active. An example of initialization is given in Figure 12.

Test Case 10. We minimize (17) simultaneously with respect to S and ω. In Figure 12 the initial
configuration of the two level sets, as well as the result of the optimization algorithm are displayed. The
MBB-beam is optimized under a standard center load with sliding boundary conditions at the lower
corners and the support is optimized under the gravity loads of the beam. The Lagrange multipliers are
`ω = 1.4 for the beam and `S = 0.5 for the support. The vertical load for the mechanical properties of
the final shape is equal to ffin = 2.5ed and the density of the shape used in (2) is ρω = 2.5 (ρS = 0). The
optimization procedure took 200 iterations.

5.5 Towards an optimized orientation

In practice when given a shape ω to be printed, before searching for a support strategy one
needs to find the proper orientation of the shape which ensures that the need for supports is
minimal. In the following, our algorithm is applied to a fixed cantilever shape under different
orientations. The capabilities of FreeFem++ [21] are used in order to rotate the level set and
construct a new mesh containing it so that the quality of the level set function is preserved
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Figure 13: Convergence history of the volume and compliance when optimizing the supports
for the horizontal orientation of the cantilever presented in Figure 14. The volume constraint is
implemented using an augmented Lagrangian approach.

under rotation. We perform the exact rotation of the mesh using the command movemesh with
the vector-field

Φ = (x cosα− y sinα, x sinα+ y cosα),

corresponding to an exact rotation of angle α. In this way, a new rectangular mesh containing
the rotated shape is constructed and the level set is interpolated on this new mesh. Further-
more, the mesh is truncated so that the unnecessary parts of the mesh which lie above the
rotated shape are not considered in the computation. Finally, the width of the mesh coincides
with the width of the rotated shape.

Optimized supports for a cantilever shape under different orientations are presented below.
The minimal compliance model presented in Section 2 is used in order to optimize the supports
in this case. The results given in Figure 14 correspond to rotation angles 0◦, 30◦, 45◦, 60◦ and
90◦. More precisely, the compliance of the structure ω ∪ S, given by (3), is optimized with a
fixed volume constraint, implemented as an augmented Lagrangian. The convergence curves
for the volume, compliance and the cost function are shown in Figure 13, noticing that we have
the desired convergence of the volume. Various computations are performed for all angles,
multiples of 7.5◦, between 0◦ and 90◦ for different volume constraints and the final compliance
of the structure for each angle is represented in Figure 15. For comparison, the compliance of
the structure without supports is also presented. Of course, compliance is greatly diminished
when adding supports. The behavior of compliance with respect to the support volume is also
indicated by three different curves. Again, compliance is decreased by adding more supports.
It is striking to check that, without support, the minimal compliance is obtained for the vertical
orientation of the cantilever, while, with support, it is the horizontal orientation which yields
the smallest compliance (whatever the tested volume of support).

Figure 14: Optimal supports for different orientations 0◦, 30◦, 45◦, 60◦ and 90◦ of the fixed
shape. The support has fixed volume in all computations. The cantilever shapes have the
same size, but the pictures are rescaled to have a fixed height.
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Figure 15: Final compliance of the structure ω ∪ S with respect to the orientation angle for the
rotated cantilevers in Figure 14. Different curves correspond to different volume constraints
for the support.

5.6 Layer by layer model

In the following, results concerning the minimization of the functional (10), which models the
layer by layer AM process, are presented. Given the computational domain D and the number
of slices, meshes are constructed for D and for each region Di = D ∩ {xd ≤ hi} (see Section
2.3 for the definition of hi). In order to compute the objective function modeling the layer by
layer process (10), N partial differential equations of the type (9) need to be solved. Ideally, the
mesh chosen in the whole computational domain D will have meshes Di as sub-meshes which
will be computed only once, before starting the optimization algorithm in FreeFem++. Each of
the solutions ui is then interpolated on D by extending it with zero on the region {xd > hi}.
The extensions of u from Di to D are denoted by ũi. Finally, the vector field giving the descent
direction for the level set optimization algorithm, is be given by

θ = −
N∑
i=1

(−Ae(ũi) · e(ũi) + 2fi · ũi)n,

where n is the normal vector to ∂S.

Test Case 11. In dimension two the MBB beam structure is used (same as in Test Case 1) and the
objective function (10) is minimized for 10 and 50 slices. Shape optimization problems tend to have
multiple local minima, therefore the solution found by the optimization algorithm depends on the initial
choice. The results of the optimization algorithm for two different initializations are shown in Figure 16.
The computation is made for a fixed volume constraint and comparing the final costs given by (10) it can
be noticed that structures corresponding to the vertical alignment of holes in the initial condition give a
slightly lower cost function. The mechanical parameters and the fixed beam are the same as in Test Case
1. The optimization algorithm takes 150 iterations.

A strong resemblance between our results and the self supporting structures obtained in
[3],[4] can be observed.

Test Case 12. In dimension three the layer by layer algorithm is applied to the chair structure used
before in the Test Case 4 for 5, 10 and 20 slices. The mechanical and optimization parameters are the
same. The results obtained are shown in Figure 17. As the number of slices increases, it can be noticed
that the structure of supports modifies slightly so that there is a more uniform supporting of overhang
surfaces.
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Figure 16: Test Case 11: Optimization of the supports for a MBB beam for 10 (middle line) and
50 slices (bottom line), for different initial conditions at fixed volume (top line). The optimized
designs on the left, giving rise to vertical bar structures, have a lower value of the cost function.

Figure 17: Test Case 12: Optimization of the supports for the 3D chair structure for 5, 10 and 20
slices.

The computational cost for the layer by layer model is important since we need to solve the
state equation for each slice. In general, for N slices, the computational cost is multiplied by
N , since most of the time in the optimization algorithm is spent solving the elasticity systems.
Two dimensional computations for 50 slices take about 3 hours, while the three dimensional
computations for 20 slices took 2 days of computational time.

6 Conclusion

This paper introduces several models and algorithms for the optimization of supports in ad-
ditive manufacturing. Our mathematical models are based on the mechanical and thermal
properties regarding the combined structure shape/support. They allow to successfully detect
and support overhang regions without using any geometrical information. It is also possi-
ble to devise algorithms which can optimize simultaneously the shape and its support, in a
multiphase optimization framework. The numerical computations made here used the free-
ware software FreeFem++ [21], in reasonable computational times, without parallelization. We
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believe that our algorithms, coupled with more optimized solvers for solving the partial dif-
ferential equations involved, could be easily implemented and used for industrial purposes.
The parallel algorithm is a work in progress and it could significantly improve computation
times in dimension three. In future works we plan to handle the optimization of the orien-
tation of the shape, combined with that of the supports. We also want to incorporate other
manufacturability constraints, including accessibility issues related to the removal of supports.
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(Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, 2007.

[2] G. Allaire, C. Dapogny, G. Delgado, and G. Michailidis. Multi-phase structural optimiza-
tion via a level set method. ESAIM Control Optim. Calc. Var., 20(2):576–611, 2014.

[3] G. Allaire, C. Dapogny, R. Estevez, A. Faure, and G. Michailidis. Structural optimization
under overhang constraints imposed by additive manufacturing technologies. J. Comput.
Phys., 351:295–328, 2017.

[4] G. Allaire, C. Dapogny, A. Faure, and G. Michailidis. Shape optimization of a layer
by layer mechanical constraint for additive manufacturing. C. R. Math. Acad. Sci. Paris,
355(6):699–717, 2017.

[5] G. Allaire and L. Jakabcin. Taking into account thermal residual stresses in topology opti-
mization of structures built by additive manufacturing. 2017. preprint hal-01666081.

[6] G. Allaire and F. Jouve. A level-set method for vibration and multiple loads structural
optimization, 2005.

[7] G. Allaire, F. Jouve, and A.-M. Toader. Structural optimization using sensitivity analysis
and a level-set method. J. Comput. Phys., 194(1):363–393, 2004.

[8] C. Barlier and A. Bernard. Fabrication additive - Du Prototypage Rapide à l’impression 3D.
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