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We establish the fluctuation-dissipation relation for a turbulent fluid layer (ocean) subject to frictional forcing by a superposed lighter fluid layer (atmosphere) in local models of air-sea dynamics. The fluctuation-dissipation relation reflects the fact that air-sea interaction not only injects energy in the ocean but also dissipates it. Energy injection and dissipation must therefore be related. The competition between the two processes determines the oceanic energy budget in the idealized dynamics considered here. When applying the fluctuation-dissipation relation to a two-dimensional two-layer Navier-Stokes model with turbulent dynamics, in the atmosphere and the ocean, coupled by a quadratic friction law, the friction parameter is estimated within 8% of the true value, while the estimation of the mass ratio between the atmosphere and the ocean fails, as the forcing time-scale is not faster than the characteristic time-scale of the atmospheric dynamics.

Introduction

It was noted by [START_REF] Einstein | Zur theorie der brownschen bewegung[END_REF] that a Brownian particle in a fluid is subject to two processes, friction and fluctuations, which are both due to the surrounding fluid and must therefore be related (see [START_REF] Einstein | Zur theorie der brownschen bewegung[END_REF][START_REF] Einstein | Investigations on the Theory of the Brownian Movement[END_REF], [START_REF] Perrin | Atomes (Les)[END_REF]). The fluctuation-dissipation relation (fdr) establishes the connection between the two processes [START_REF] Barrat | Basic concepts for simple and complex liquids[END_REF]). The fdr is a key subject of non-equilibrium statistical mechanics, it is applied to a large variety of linear and non-linear models and also to configurations where the "Brownian particle" is some "slow" property of a system.

The case considered here: the dynamics of two two-dimensional layers of fluid, in turbulent motion, coupled by frictional forces at their interface, is conceptually similar. When the mass (per unit area) in the lower layer (ocean) is much higher than in the upper layer (atmosphere), the interactions resemble those of a heavy Brownian particle surrounded by light molecules. The atmospheric velocities are higher and vary more rapidly than the oceanic velocities. Based on this observation we extend the theory of a Brownian particle forced by collisions with molecules, to the case of the ocean forced by the atmosphere. The principal difference between the two cases is that the first is conservative and the second forced and dissipative. Energy and momentum is conserved when molecules and Brownian-particles collide, this leads to an equipartition of energy between all the particles involved, molecules and Brownian particles alike (see e.g. [START_REF] Einstein | Zur theorie der brownschen bewegung[END_REF]). When the wind blows over the ocean the total momentum of the air-sea system is conserved but most of the mechanical energy of the fluid flow is dissipated to heat in the friction process (see e.g. [START_REF] Moulin | Momentum transfer between an atmospheric and an oceanic layer at the synoptic and the mesoscale: An idealized numerical study[END_REF]). As a consequence we can not expect equipartition of energy between the ocean and the atmosphere. Equipartition is the corner stone of the fdr for Brownian motion, in the case of a dissipative system something else has to stand in lieu of. The theory of the fluctuation-dissipation relation has been extended and applied to forced dissipative dynamical systems far from equilibrium, for a comprehensive review I refer the reader to [START_REF] Marconi | Fluctuation-dissipation: response theory in statistical physics[END_REF].

The problem presented here is one of non-equilibrium thermodynamics. Not only in the sense that the system evolves from one thermodynamic equilibrium state to another or that it considers the convergence of a perturbed system towards an equilibrium state. The system considered here is constantly forced and ensemble averages are evolving, it is in a statistically non-stationary state.

As in the case of Brownian motion, the fluctuations and the dissipation of the ocean dynamics is due to the same process: in air-sea interaction it is the friction between the ocean and the atmosphere. When the friction law is linear (Rayleigh friction, with a constant coefficient) the friction time does neither depend on the horizontal structure nor the strength of the current. For the ocean layer forced by a varying atmosphere the time evolution of the momentum is governed by the shear between the atmosphere and the ocean and described by the first-order linear ordinary differential-equation:

∂ t u o = S(u a -u o ), (1) 
where u a and u o represent the two-dimensional (horizontal) velocity vectors at a point in the two dimensional (horizontal) domain or the averaged velocity in a given horizontal domain of the atmosphere and the ocean layers, respectively. From the above equation we see the double role of friction between the two layers, it drives the motion in the ocean, through Su a and it dissipates through -Su o . When the forcing is constant in time the ocean velocity converges exponentially to the atmospheric velocity with the characteristic friction time of S -1 . When the forcing is much faster than the friction time, as it is usually the case when the "slow"ocean is forced by a "fast" atmosphere, eq. ( 1) is a Langevin equation (see appendix A, e.g. [START_REF] Barrat | Basic concepts for simple and complex liquids[END_REF]), if the atmospheric dynamics is modelled by a stochastic process. The inverse friction time of an ocean surface layer of depth D=10m subject to a wind forcing with u 10 = 10m/s (atmospheric speed 10m above the sea-surface) is roughly a few days S = c d u 10 ρ air /(ρ water D) ≈ (10day) -1 , where ρ . are the densities of the air and the seawater and c d = 10 -3 is the surface drag coefficient. This time scale is slower than the atmospheric dynamics over a large range of scales. For further information on the dynamics in the planetary boundary layer and the friction over the ocean I refer the reader to [START_REF] Stull | An introduction to boundary layer meteorology[END_REF], for the ocean mixed layer to [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF] and for air-sea interaction to Csanady (2001).

In the above Langevin equation the first term gives the fluctuating force due to the chaotic dynamics of the atmosphere and the second term the dissipation by friction of the ocean at the interface. The first is random while the second is systematic, but both have the same origin and must therefore be related. This relationship is usually referred to as the fluctuation dissipation relation (fdr) (see e.g. [START_REF] Barrat | Basic concepts for simple and complex liquids[END_REF]) and will be established here for air-sea interaction. The fluctuation dissipation theorem compares the response of a system subject to an external disturbance to the internal fluctuations of the unperturbed system and will be considered elsewhere.

By using eq. ( 1) we neglect the horizontal exchange of momentum for the point considered or through the horizontal boundary of the domain, when the variables present domain averages. The importance of fluxes through the interface with respect to horizontal fluxes through the domain boundary increases linearly with domain size, as the circumference of a domain grows linearly with its size and the surface area quadraticly. We further suppose that in our two-dimensional layer the horizontal friction is small enough so that the dissipation of energy by horizontal friction at small scales can be neglected. This is due to the inverse energy cascade of two-dimensional turbulence, which leads to smaller horizontal energy-dissipation for smaller viscosities [START_REF] Boffetta | Two-dimensional turbulence[END_REF]). If the viscosity is small enough the energy dissipation is dominated by the friction at the atmosphere-ocean interface.

When the energy in the ocean layer is considered, eq. ( 1) multiplied by u o , we see that the covariance between the velocities in both layers u a • u o A determines the energy input over a domain A.

There is, however, an important difference to the classical Langevin equation, as the forcing by the atmospheric velocity at time t o has some dependence on the ocean velocity at previous times t < t o . Mathematically speaking, the process is non-Markovian, when only the ocean dynamics is considered. The correlation is such that the ocean does not reach a statistically stationary state.

To take this important difference into account we consider the atmosphere-ocean system coupled by friction at the sea surface and subject to an external forcing, rather than the ocean subject to an atmospheric forcing. The governing equations (eqs. ( 2), ( 3)) are given in the next section.

We will show that the fdr relates the velocity correlations in and between both layers. We also extend the fdr to a quadratic friction law between the atmosphere and the ocean. In this case the friction time is a function of the shear. We finally use the results from the local models, that have no horizontal extension, to apply the fdr to the case of a fine-resolution two-dimensional Navier-Stokes model for both, the atmosphere and the ocean, with a turbulent dynamics on a large range of horizontal scales. To explore the role of the fdr in air-sea-interaction we here work with a hierarchy of three models: a linear-friction and a quadratic-friction local model and a quadraticfriction two-dimensional Navier-Stokes model.

The foundation of stochastic climate dynamics was laid by [START_REF] Hasselmann | Stochastic climate models part i. theory[END_REF] and [START_REF] Frankignoul | Stochastic climate models, part ii application to seasurface temperature anomalies and thermocline variability[END_REF]. Research on idealized models of the coupled air-sea system has been performed in recent years: [START_REF] Hogg | A quasi-geostrophic coupled model (q-gcm)[END_REF] considered the dynamics of two superposed quasi-geostrophic models (one for the ocean and one for the atmosphere and both giving rise to a turbulent dynamics) interacting through mixed layer models. In their simulations heat exchange is bi-directional but the ocean velocities are not used in determining the exchange of momentum at the air-sea interface. In the here presented work, there is no heat exchange and the momentum exchange is a function of the difference of the velocities between the atmosphere and the ocean.

Using this physically consistent way of calculating the momentum exchange was found to lead to significant changes in the ocean dynamics [START_REF] Duhaut | Wind stress dependence on ocean surface velocity: Implications for mechanical energy input to ocean circulation[END_REF], who used a constant-in-time prescribed wind-stress. It was furthermore demonstrated by by [START_REF] Beena | Effects of fluctuating daily surface fluxes on the timemean oceanic circulation[END_REF] that fast variability in the air-sea forcing has an important effect on the ocean circulation at large scales.

This work was later extended to a coupled climate model with a stochastic term in the air-sea interaction by [START_REF] Williams | Climatic impacts of stochastic fluctuations in air-sea fluxes[END_REF]. In the present work I consider highly idealized models based on stochastic differential equations, which can be solved analytically, are used to analyse simulations of two dimensional models of interacting air-sea dynamics, where the variability is a result of the internal turbulent dynamics, only. I extend the fdr derived for the local sde to the two-dimensional turbulent deterministic model of air-sea interaction.

By considering air-sea dynamics as one system, rather than the sea subject to an atmospheric forcing, has shown, in previous work, to give rise to a new instability mechanism [START_REF] Moulin | A drag-induced barotropic instability in air-sea interaction[END_REF]) and new dynamical behavior [START_REF] Moulin | Momentum transfer between an atmospheric and an oceanic layer at the synoptic and the mesoscale: An idealized numerical study[END_REF]). The present work aims at considering the air-sea-system in the simplest possible model having a dynamics over a large range of space and time scales. The effect of a rotating frame (Coriolis force) which is key to largescale oceanic flow and air-sea interaction is not considered here. The important process of heat fluxes at the interface is not included, it is conceptually similar to the exchange of momentum and the same formalism can be applied. [START_REF] Hasselmann | Stochastic climate models part i. theory[END_REF] and [START_REF] Frankignoul | Stochastic climate models, part ii application to seasurface temperature anomalies and thermocline variability[END_REF] considered heat, rather than momentum exchange). The purpose of the present work is to introduce the tools of non-equilibrium statistical mechanics, as stochastic differential equations and Fokker-Planck equations, in the field of air-sea interaction and to develop the basis of a hierarchy of models for air-sea interaction. Understanding the non-linear interactions of the ocean and the atmosphere through a large variety of processes over an extended range of scales in time and space, asks for a hierarchy of models spanning the wide range from analytically solvable equations to comprehensive climate general circulation models (GCMs).

Local interaction models

A horizontal domain in the ocean exchanges energy with the atmosphere at its surface, but also with the surrounding ocean. As the circumference of a domain grows linearly with its size and the surface area quadraticly, the influence of the interactions at the surface will dominate over the lateral fluxes at the boundary, when the domain is large enough.

a. Linear model

The turbulent friction at the atmosphere-ocean interface is commonly modelled by a quadratic friction law, where the friction force is a constant times the product of the shear speed and the shear velocity (see e.g. [START_REF] Stull | An introduction to boundary layer meteorology[END_REF]). The linear version with a constant eddy-coefficient allows for analytic solutions. It is also sometimes used in numerical simulations of the climate dynamics. The friction coefficient represents an average (in time and space) mimicking the real friction process.

The mass of the atmosphere per unit area is set to unity. The mass of the ocean per unit area is m times the mass of the atmosphere, the total mass per unit area is M = m + 1. The governing equations at each horizontal point, or of an average over a horizontal area, are:

∂ t u a = -Sm(u a -u o ) +F (2) ∂ t u o = S (u a -u o ) , (3) 
where S is the inverse of the friction time in the ocean. When a linear model is used (S=const)

both horizontal directions are un-coupled and the problem can be considered independently for each direction and we can restrict to studying a one dimensional problem. We therefore employ scalar variables in this subsection. The conservation of total momentum (atmosphere plus ocean) sets the inverse friction time for the atmosphere to Sm. We set u s = u au o , which is the shear mode and u t = u a + mu o , which is the total inertia. Their dynamics is described by two decoupled linear equations:

∂ t u s = -SMu s + F (4) ∂ t u t = F. (5) 
When the forcing is periodic in time F(t) = cos(ωt) the dynamics is periodic and time averages

. t of second order moments give (see appendix B):

u 2 a t u 2 o t = ω 2 + S 2 S 2 (6) u 2 o t = u a u o t (7)
When the forcing is delta-correlated-in-time and Gaussian, the statistical properties are completely defined by first and second order moments in the linear model. The dynamics is not statistically stationary and time averages are prohibited, as they depend on the length of the averaging interval. Averages are therefore taken over an ensemble (ω ∈ Ω) of realizations of forcing functions F ω and are denoted by . Ω . Where ω is a realization out of the sample space Ω , which is the set of all possible outcomes. For convenience we suppose that initially (t 0 = 0) the dynamics starts from rest. The shear mode is the solution of a linear Langevin equation leading to an Ornstein-Uhlenbeck process with zero mean and finite second order moment. The total inertia performs a centered Random walk, leading to a linear growth of its second order moment. The solution of the dynamics in the ocean and atmosphere is a linear combination of the shear mode and the total inertia. The solutions are:

u s (t) = t 0 e SM(t -t) F(t )dt (8) u t (t) = t 0 F(t )dt . (9) u a (t) = 1 M (u t + mu s ) = 1 M t 0 F(t )dt + m t 0 e SM(t -t) F(t )dt (10) u o (t) = 1 M (u t -u s ) = 1 M t 0 F(t )dt -t 0 e SM(t -t) F(t )dt . ( 11 
)
Using stochastic calculus (see appendix C) we obtain:

u 2 a Ω = R M 2 2t + 4m SM (1 -e -SMt ) + m 2 SM (1 -e -2SMt ) (12) 
u 2 o Ω = R M 2 2t - 4 SM (1 -e -SMt ) + 1 SM (1 -e -2SMt ) (13) u a u o Ω = R M 2 2t + 2(m -1) SM (1 -e -SMt ) - m SM (1 -e -2SMt) ) . ( 14 
)
The parameter R measures the strength of the delta-correlated fluctuating force, it is:

2R = ∞ -∞ F(0)F(t ) Ω dt . ( 15 
)
These equations are rich in information: expanding the above equations in a Taylor series we see that the initial growth of the square velocity in the atmosphere is linear in time, while it is cubic for the ocean and quadratic for the covariance between the atmospheric and oceanic velocity:

u 2 a Ω = 2Rt + O(t 2 ) (16) u 2 o Ω = 2RS 2 3 t 3 + O(t 4 ) (17) u a u o Ω = RSt 2 + O(t 3 ) (18)
The diffusive growth of the total inertia mode and the boundedness of the shear mode lead to a constant and equal growth rate of the square velocity in the atmosphere, the ocean and the covariance between the atmosphere and ocean velocity, for t (SM) -1 . This resembles equipartition of Brownian motion, here not the average energy is constant and equal but the average increase of square velocity.

The energy balance in the ocean is (using eq. ( 13) and ( 14)):

1 2 ∂ t u 2 o Ω = S u a u o -u 2 o Ω = R(1 -e -SMt ) 2 M 2 . ( 19 
)
Showing again that, after the initial phase of (SM) -1 , the square velocity in the ocean converges to a linear growth rate of 2RM -2 , independent of the friction parameter (S). Equation ( 19) also connects eqs. ( 13) and ( 14) to the time derivative of eq. ( 13).

We then deduce that for t (SM) -1 the following variables are related:

(u a -u o ) 2 Ω = R SM (20) u 2 a -u 2 o Ω = R(M + 2) SM 2 (21) u a u o -u 2 o Ω = R SM 2 . ( 22 
)
From the above equations it is clear that by observing the fluctuations in the atmosphere, the ocean and their covariances we can determine S, R and M.

1 2 ∂ t u 2 o Ω = SR M 2     2t + m -2 SM fluctuation -2t + 3 SM dissipation     = R M 2 . ( 23 
)
The first two terms in the parenthesis describe the effect of the atmospheric fluctuations that force the ocean, while the last two terms are due to dissipation. This can be seen by introducing eqs.

(13), ( 14) into eq. ( 19). Both are related through the equal constant growth-rate of the atmospheric and oceanic square velocities and their covariance. One clearly sees that the first and third term, which come from the total-inertia mode in the atmosphere and the ocean, respectively, cancel.

This is due to the fact, that the total inertia mode performs a random walk (Wiener-process) and no shear is associated to it. The second and forth term come from the shear-mode in the atmosphere and the ocean, respectively, it converges to a statistically stationary state, an Ornstein-Uhlenbeck process. The difference between the fluctuating force and the dissipation leads to a constantin-time increase of the square velocity of the ocean. Although eq. ( 23) appears tautological, it exhibits the balance between fluctuation-dissipation and energy growth. This constitutes a form of a (double) fluctuation-dissipation relation, as the dissipation and the fluctuation are related by (i) the equal growth rate of their squares and (ii) by the offset between the two. In the case of Brownian motion there is equipartition of energy between molecules and Brownian particles, which is here replaced by the equal growth rate of the square velocities in the atmosphere, the ocean and their covariance. Their intersect values (second and fourth term in the parenthesis) are related through the mass difference per unit area (m).

b. Quadratic models

When the quadratic friction law is used, parameterizing the momentum exchange by turbulent boundary layers, both horizontal directions are coupled and a single variable can no longer be used. The governing equations in two dimensional vector notation are:

∂ t u a = -Sm|u s |u s + F (24) ∂ t u o = S |u s |u s ( 25 
)
with u s = u a -u o (bold letters design 2D vectors and |u| denotes the absolute value). The forcing F is two-dimensional, delta-correlated-in-time and Gaussian. The forcing in the two components is uncorrelated. Note that the model is local, so all (the four scalar) variables depend on time, only. Spatial dependence is not considered in this section on local models but will be discussed in sections 3 and 4. The stability parameter S = c D L/(Hm) is the product of the atmospheric drag coefficient the horizontal length scale divided by the atmospheric layer thickness and the mass ratio between the ocean and the atmosphere. In the quadratic model the analytic results from the previous subsection are no-longer valid, but the governing equations ( 24) and ( 25) can still be decomposed in a shear part and a total-momentum part, that is eqs. ( 2) and (3) become:

∂ t u s = -SM|u s |u s + F (26) ∂ t u t = F (27) 
with u t = u a + mu o (bold letters design 2D vectors). Note that the two modes remain uncoupled in the quadratic model, as the total inertia is not changed by the quadratic friction-law, it does not depend on the shear and the total inertia does not affect the shear mode. The inverse damping time of the shear mode is SM|u s |.

The equation for the square velocity of the shear mode is:

1 2 ∂ t u 2 s = -SM|u s |u 2 s + F • u s . ( 28 
)
When time averages are taken (the shear mode is stationary) we have:

SM(u 2 s ) 3/2 t = F • u s t = 2R. ( 29 
)
The last equation follows from Stratonovich stochastic calculus [START_REF] Platen | An introduction to numerical methods for stochastic differential equations[END_REF]). When we introduced in eq. ( 29) the normalized third order moment of the shear speed:

µ = (u 2 s ) 3/2 u 2 s 3/2 , (30) 
we obtain that u 2 s 1/2 = (2R/(µ SM)) 1/3 . The factor two appears as the calculations are twodimensional and an independent random-force is applied to both components. We can construct a linear Langevin equation with the same second-order moments by introducing the eddy friction

S eddy S = (u 2 s ) 3/2 u 2 s 3/2 (u 2 s ) 1/2 = µ 2 2R SM 1/3 . ( 31 
)
This means, that the linear eq. ( 4) with S replaced by S eddy has the same first and second-order moments as the non-linear equation ( 26). When we suppose that the components of the velocity vector are Gaussian (the pdf of the square-speed is then chi-squared and Weibull) we obtain:

µ Gaussian = (u 2 s ) 3/2 u 2 s 3/2 = 3 √ π 4 ≈ 1.3293404. ( 32 
)
In the nonlinear case considered here the dynamics deviates from Gaussian and the actual value can be obtained through numerically solving a large ensemble of realizations based on the stochastic differential equations.

There is, besides the stochastic differential equations approach a second way to study stochastic processes: the Fokker-Planck equation. In this approach the object under consideration is the probability density function (pdf) and its time evolution in phase space. In the linear case the pdf is Gaussian and its evolution completely described by the first and second order moment. In the non-linear case this is no-longer true. In appendix D we derive the Fokker-Planck equation for the present model and determine the stationary solution of the pdf of the shear mode. This allows to determine an analytic solution (using the gamma-function Γ(x)) of the true value of the normalized third order moment in the stationary case:

µ true = 2 3 Γ(2/3) Γ(4/3) 3/2 ≈ 1.2449 (33)
which is less than 7% lower than the Gaussian value.

c. Numerical Results

The linear and non-linear model are integrated numerically (see appendix E), with an ensemble size of 10 6 . Numerical results for the variances of the atmospheric and oceanic velocities and their covariance presented in the fig. 1, show an almost perfect agreement between the analytic model (eqs. 12 -14) and the linear model. They also confirm the validity of the eddy-friction approach, that is, the second-order moments of the non-linear simulations with (M = 101, S = 10 -3 , R = 0.5) are well fitted by linear integrations with an eddy friction coefficient S eddy based on the analytic value given in eq. ( 33) an calculated by eq. ( 31) of S = 2.4849 • 10 -3 . The analytic value is for a stationary pdf and does not apply to the initial adjustment process, this explains the difference between the numerical experiments and the eddy-friction approach in the initial phase. Numerical results reveal that the value is independent of R and S (not shown).

Note that in the linear and the non-linear case we have that: (i) there is a linear growth term in the energy of the atmosphere, the ocean and in the covariance between the atmospheric and oceanic velocity; (ii) the energy transfer between the atmosphere and the ocean and the energy in the ocean does not depend on the friction parameter (S).

Two-dimensional model

We now consider the interaction of two two-dimensional fluid layers in turbulent motion. The square domain has a side-length of l = 10 and is periodic in both horizontal directions. The two layers of different mass are coupled through a quadratic friction law. The governing equations for the two components of the velocity fields are:

∂ t v i + v i ∇v i = Si -ν i ∇ 4 v i + F i (34)
where the two-dimensional field v i (x, y,t) is the local velocity of the atmosphere (i = a) and the ocean (i = o). The friction between the two layers is

Sa = -Sm|v s |v s (35) So = -Sa /m (36)
where the subscript S denotes the shear mode as in the previous section, m = 100 is the mass ratio of the oceanic and atmospheric layer and the stability parameter is S = 10 -3 . Such value is obtained, for example, by an atmospheric friction coefficient of c D = 10 -3 a horizontal length scale of L = 2. • 10 4 m, an atmospheric boundary layer thickness of H = 2. • 10 2 m and a 26m thick ocean mixed layer. A particularity of the quadratic drag law is that the balance between the (advective) non-linearity and the dissipation does not depend on the fluid speed as both are quadratic. The dimensional time scale is given by t = L/|v s |. For a discussion on two-dimensional turbulence subject to quadratic dissipation, I refer the reader to [START_REF] Grianik | The effects of quadratic drag on the inverse cascade of two-dimensional turbulence[END_REF]. The external forcing F i applies only to the atmosphere (F o = 0), it is such that the vorticity of mode k x = 2π80/L is fixed. When the vorticity in the forced mode is changed by the turbulent dynamics, the forcing restores it instantaneously to the prescribed value. Such kind of forcing has no direct influence on all other modes, which can evolve freely. It mimics the effect of the forcing of the flow above the atmospheric surface layer which evolves on a slower time scale. The forcing thus happens on the internal time-scale of the atmospheric dynamics at the forcing scale and not on a fast time scale as in the models discussed above. As the atmosphere evolves on a much faster time-scale than the ocean, the forcing of the latter by the former happens on a faster time-scale than the ocean dynamics. Such a forcing is also not independent of the atmospheric velocity field. Due to the turbulent dynamics in both layers the forcing is not visible in the snapshots of the vorticity, neither in the atmosphere nor in the ocean (Fig. 2). It becomes visible in long-term averages.

The numerical model used is a pseudo-spectral code of the 2D-Navier-Stokes equations for both-layers, with 4096 points in both horizontal directions. Integrating the dynamics over a large range of scales is essential as it allows to reduce the horizontal friction parameter, which leads to a reduced horizontal energy dissipation. This is due to an energy cascade to large scales in 2D turbulence (see [START_REF] Boffetta | Two-dimensional turbulence[END_REF]). A consequence of this is that energy accumulates (condensates) at the largest scales of the system where horizontal dissipation is weak, leading to an increase of energy in the system for a very long time. A difficulty lies in the stiffness of the problem, ocean speeds are almost two orders of magnitude smaller than their atmospheric counterparts (see Figs. 2 and3). The fast atmospheric dynamics at small-scale has to be resolved over a large time-scale that corresponds to the larger oceanic scales. Few numerical simulations of the atmosphere-ocean system coupled at every grid point and at every time scale have been performed so far, exceptions are [START_REF] Moulin | A drag-induced barotropic instability in air-sea interaction[END_REF] and [START_REF] Moulin | Momentum transfer between an atmospheric and an oceanic layer at the synoptic and the mesoscale: An idealized numerical study[END_REF]. For an evaluation of statistical error, O(10) integrations of the same system have to be performed, this exceeds the computer resources available to me at present. The numerical time stepping is performed by a second-order Runge-Kutta scheme with ∆t = 10 • 2 -18 , snapshots are printed every

∆t snap = 10 • 2 -8
. A hyperdiffusive operator is used (see eq. 34) for the horizontal dissipation with ν a = 4. • 10 -9 and ν o = 10 -10 .

Two-dimensional results

The results presented here correspond to a single numerical experiment over a time interval ∆t exp = 75 (see Fig. 3), so strictly speaking the ensemble size is one. When the domain is large enough spatial averages can replace ensemble averages as correlations decrease with spatial distance. In this section the angle brackets . denote spatial averages over the entire periodic domain.

Horizontal transfers of momentum which are absent in the local models discussed above are important in the two dimensional dynamics. We will also consider the case when the variables present averages over horizontal squares, variables are coarse-grained. We therefore define the vector field u s = v s A as spatial averages of the local velocities over a domain A. This coarsegraining is performed over (4096/c) 2 non-overlapping squares with c points of side length. For c = 1, u s = v s as A corresponds to a single grid-point, and u s 2 is the average square velocity; for c=8, u s = v s A has 512 2 values, each of them being an average over 8 2 grid points and u s 2 is the average of the square of the 512 2 average values. The importance of the exchange of momentum in the horizontal as compared to the vertical is likely to be smaller when the coarse graining c is larger, for the simple geometrical reason that the surface area of the domain considered increases quadraticly, whereas the circumference is a linear function of c. To quantify the influence of horizontal momentum exchange I measured the coarse-grained version of the variables.

Numerical results from the integrations for different values of the coarse-graining parameter c are given in tables 1 and 2. In the former the slopes of the best fit regression lines, which are shown in fig. 3, are given together with their standard deviations. In the latter the differences of variances and covariances are given, which are stationary following the theory developed for the linear models. Data from both tables are the basis of the calculation of the friction coefficient and the mass ratio following the theory developed for the local models. These derived results are given in table 3, where they are also compared to the actual values.

In the two-dimensional calculations the parameters S and M are prescribed. When the horizontal exchange of momentum is neglected we can estimate this parameters based on the velocities in the ocean and the atmosphere, using the local models. The estimation of the friction coefficient S can be based on the temporal evolution of the averaged square velocity in the linear model, eq. ( 19), with an eddy-friction, or on the non-linear version of the same equation. The estimation of the variable M is based on eqs. ( 20) and ( 22), or on the non-linear version of the same equations.

S obs = ∂ t u 2 o 2 (u a -u o ) 2 (u a u o -u 2 o ) (37) 
S lin = ∂ t u 2 o 2µ true (u a -u o ) 2 (u a u o -u 2 o ) (38) 
M obs = ((u a -u o ) 2 ) 3/2 (u a -u o ) 2 ) 1/2 (u a u o -u 2 o ) (39) 
M lin = (u a -u o ) 2 (u a u o -u 2 o ) . ( 40 
)
The increase of the ocean variance is perfectly fitted by a straight line (see fig. 3) and the covariance between the atmosphere and the ocean is equal to the ocean variance within the statistical error, as predicted by the fdr (see fig. 3 and tab. 3). Fluctuations of the atmospheric square-velocity are so high that a comparison to the increase of the ocean square-velocity is not possible (see Fig. 3). Indeed, it is possible to find a time interval over which the slope of the regression line of the atmospheric variance equals the one of the ocean.

The estimation of the friction parameter S based on the fdr using the ocean square-velocity and the correlation between the ocean and atmospheric velocity are within 10% of the true value (tab. 3). There is no significant difference between the local values (c = 1) and those of a small coarse-graining (c = 8) as the smallest resolved features span over 10 grid points, smaller scales are well in the dissipation range. For larger coarse graining the estimation of the friction parameter diverges.

The inverse is true for the estimation of the mass ratio M, the estimated value is more than a decade larger than the true value, for the local data, but seems to converge towards the true value for increased coarse-graining.

Discussion and conclusion

We have analytically derived a fdr for a linear local model of air-sea interaction (Rayleigh friction). We showed that the fdr can be extended to the non-linear local model (quadratic drag law). Our results with the local models show that the eddy-friction approach is successful as the non-linear model and the linear model with an eddy-friction coefficient (eq. ( 31)) give similar results and either can be used to analyze the 2D model. Indeed, tab. 3 shows that the estimation of the friction parameter and the mass-ratio are almost identical for both approaches, S obs ≈ S lin and M obs ≈ M lin . This is important as the friction at an interface is often parameterized using a combination of linear and quadratic friction laws, as the drag-coefficient depends on a variety of processes in a non-linear way. The successful estimation of the friction parameter in the 2-dimensional Navier-Stokes model based on the ocean square-velocity and the covariance of atmospheric and oceanic velocities shows that the fdr applies to the ocean dynamics and its forcing by the atmosphere. The estimation of the friction parameter based on eq. ( 31) is slightly lower than the true value (see tab. 3) as part of the energy is dissipated by horizontal friction. This part decreases when finer resolution and lower (hyper) viscosity is used (see e.g. [START_REF] Boffetta | Two-dimensional turbulence[END_REF]). The divergence of S eddy/lin with the coarse graining might be explained by the inverse energy cascade of two-dimensional turbulence. The coarse grained equation neglects the energy input at small scales, not visible in the coarse grained variables, which then cascades to large scales where it becomes visible, leading to an over-estimation of the friction parameter.

In the atmosphere the forcing is created by the dynamics at the forcing scale. Its characteristic time scale τ is not fast with respect to the atmospheric dynamics leading to a resonance between the forcing and the atmospheric dynamics and so the estimations M eddy/lin are more than a decade larger than the true value. Equations ( 6) and ( 7) show that in the case of a periodic forcing the ratio of variances and covariances is governed by the ratio of the forcing frequency to the friction parameter and is independent of M. For the Langevin equation to be valid in the atmosphere and the ocean it is necessary that τSm 1 and τS 1, respectively. This explains, why the approach is more successful to describe the dynamics in the ocean than in the atmosphere. When coarse graining is increased the situation improves as the eddy-turn-over-time of the atmospheric dynamics increases with the coarse-graining scale.

Presenting the results for coarse-grained variables is not only important from a theoretical point of view, as observations of the natural system or measurements in the laboratory often include some degree of coarse-graining. It is also important to note that the values of eddy coefficients depend on the granularity level.

In our model no statistically stationary state is reached as the horizontal friction processes in the two layers are small, which is a property of high Reynolds number two-dimensional turbulent flows. The adjustment to a statistically stationary state is thus very slow and exceeds the integration time of our experiments. In the real atmosphere-ocean boundary layers, the adjustment time might well be larger than duration of a quasi-stationary forcing (weather system), so that they are not relevant to the dynamics of the atmosphere and ocean boundary layers. That is, the coupled boundary layer dynamics is permanently in the process of adjusting to the forcing imposed by the environment. To explore this non-equilibrium dynamics, the atmosphere-ocean system, rather than the ocean dynamics subject to atmospheric forcing, has to be considered.

We here considered air-sea interaction not only as a source of energy for the ocean but also as a sink. The balance between the two governs the system. These approaches are new in the field and allow for establishing the fdr for air-sea interaction.

It follows that: u R Ω = u O Ω = 0. Second order moments are (note that as processes are Gaussian first and second order moments completely determine the stochastic processes):

u 2 R (t) Ω = t t 0 t t 0 F(t )F(t ) Ω dt dt = 2R(t -t 0 ) (C5) u R (t)u O (t) Ω = t t 0 t t 0 e S(t -t) F(t )F(t ) Ω dt dt = 2R S (1 -e S(t 0 -t) ) (C6) u 2 O (t) Ω = t t 0 t t 0 e S(t +t -2t) F(t )F(t ) Ω dt dt = R S (1 -e 2S(t 0 -t) ). (C7) APPENDIX D

Fokker-Planck equation

The sde approach proceeds by following the path of an ensemble of particles and determine the probability that a particle is at a certain location in phase space at a given time. There is an alternative description of a stochastic process to the sde, which is based on determining the partial differential equation (the Fokker-Planck equation, see e.g. [START_REF] Risken | Fokker-planck equation[END_REF]) that governs the evolution of the pdf. When a solution of the Fokker-Planck equation is found the pdf is known and all statistical quantities, as e.g. moments can be calculated. The difference between the two methods is some how similar to the difference of Lagrangian versus the Eulerian description in fluid dynamics [START_REF] Klimontovich | Nonlinear brownian motion[END_REF].

For a given sde the corresponding Fokker-Planck equation can be easily derived. The total momentum performs a standard diffusion process in the linear (5) and nonlinear (27) model and the corresponding Fokker-Planck equation is the constant coefficient diffusion equation. The shear mode in the linear model, governed by the sde (4), performs an Ornstein-Uhlenbeck process.

The corresponding Fokker-Planck equation describes the evolution of a Gaussian process with a variance that converges to a constant value. As in these cases the process is known to be Gaussian the pdf is determined by the first and second moment and nothing is gained by solving the Fokker-Planck equation instead of calculating the second order moment based on the solution of the sde.

The situation is different for the shear mode in the non-linear model described by the sde (26),

where the functional form of the pdf is not known apriori and all moments have to be calculated individually. Obtaining the pdf by solving the Fokker-Planck allows to obtain all the moments by a simple integration. The Fokker-Planck equation corresponding to the sde ( 26) is (see e.g. Risken (1996)):

P s (u s , v s ,t) = ∇ uv • SMu s u s P s (u s , v s ,t) + R∇ uv P s (u s , v s ,t) (D1) 
where

∇ uv =    ∂ u ∂ v    . (D2)
When we introduce E = u 2 s + v 2 s and suppose that the solution is isotropic in the u s , v s -plane we can write P s (u s , v s ,t) = p(E) and find the stationary isotropic solution to the Fokker-Plank equation (D1):

p(E) = β 2/3 Γ(5/3) exp(-β E 3/2 ) with β = SM 3R (D3)
and the gamma function Γ(x). Straightforward calculations then lead to eq. ( 33).

APPENDIX E

Numerical Integration of the Stochastic Differential Equations

Please see [START_REF] Platen | An introduction to numerical methods for stochastic differential equations[END_REF] for an introduction to the numerical integration of stochastic differential equations. For the linear case analytic solutions are known, which can be used to validate the numerics. The stochastic differential equations for eqs. ( 2) and ( 3) are:

du a = -Sm(u a -u o )dt + FdW (E1) du o = S (u a -u o )dt (E2)
where W is a Wiener process, its derivative dW is white in time. The noise is additive and so the numerical integration of the SDE is straightforward and there is no space for interpretation, as Itô and Stratonovich formalism of the equation agree.

For the time stepping t = n∆t use the Euler-Maruyama Method, which is a first order numerical scheme weak convergence) when additive noise is used (it is equal to the Milstein method in this case, see e.g. [START_REF] Platen | An introduction to numerical methods for stochastic differential equations[END_REF]: 3. Results of the diagnosed parameters compared to the true values are presented: S = 10 -3 is the prescribed stability parameter and M = m + 1, with m = 100 the mass ratio between the ocean and the atmospheric layer. Parameters calculated theoretically are: S obs is obtained through eq. ( 37), S lin is obtained through eq. ( 38),

u a (n + 1) = u a (n)-Sm(u a (n) -u o (n))∆t +Fζ (n) √ ∆t ( 
M obs obtained through eq. ( 39) and M lin is obtained through eq. ( 40). 

  E3) u o (n + 1) = u o (n)+ S (u a (n)u o (n))∆t. (E4)The time-step is ∆t and ζ (n) is a normally distributed centered random variable withζ (n)ζ (m) = δ n,m .In the nonlinear case (noise is still additive) the stochastic differential equations are:du a = -Sm ūs (u au o )dt + F u dW u (E5) dv a = -Sm ūs (v av o )dt + F v dW v (E6) du o = S ūs (u au o )dt (E7) dv o = S ūs (v av o )dt (E8)where W u and W v are two independent Wiener processes and ūs = (u au o ) 2 + (v av o ) 2 .

FIG. 1 .

 1 FIG. 1. The figures represent a comparison of the analytic (dotted line), the linear (cubes) and the nonlinear model (full line) for the velocity variance in the atmosphere (black) and the ocean (green) and the covariance of the atmosphere and the ocean (red). Right figure is a zoom. The parameters in the linear model are (M = 101, S = 2.485 • 10 -3 , R = 0.5) and in the non-linear model are (M = 101, S = 10 -3 , R = 0.5). The dotted lines mostly disappear behind the corresponding (same color) full lines.

  FIG. 2. Vorticity in the atmosphere (top, color-bar ranges from [-850,850]) and the ocean (bottom, color-bar ranges from [-4,4]) over a square with side-length one (total domain spans 10 × 10).

  FIG. 3. The figures represent results from the 2D simulations (thin lines) and the corresponding linear regression (thick lines, the values of the fit and the uncertainties are given in tab. 3): the atmospheric variance ( u 2 a , black, left) and the covariance between the atmosphere and the ocean ( u a u o , red, right) and the oceanic variance ( u 2 o , green, right). For the ocean case the thick line superposes the thin line.

TABLE 1 .

 1 Numerical results from the integration of the 2D model. The best fit and the corresponding standard error of the growth of the second-order moments of the atmosphere the ocean and the correlation between the two is given (obtained through xmgrace software). For c = 1 the values correspond to the data and fit shown in fig.3.32 c u a u o -u 2 o (u a -u o ) 2 ( (u a -u o ) 2 (u a u o -u 2 o ) (u a -u o ) 2 3

	c	∂ t u 2 a	∂ t u a u o	∂ t u 2 o
	1	6.78e-04 ± 2.41e-04	2.92e-05 ± 8.2e-06	3.839e-05 ± 1.29e-07
	8	6.71e-04 ± 2.37e-04	2.95e-05 ± 8.2e-06	3.842e-05 ± 1.26e-07
	64	6.63e-04 ± 1.79e-04	3.06e-05 ± 7.7e-06	3.580e-05 ± 8.2e-08
	256	4.66e-04 ± 1.74e-04	2.47e-05 ± 5.5e-06	2.053e-05 ± 1.2e-07
	1024	2.8e-05 ± 3.3e-05	2.13e-06 ± 8.4e-07	2.085e-06 ± 4.1e-08

TABLE 2 .

 2 Numerical results from the integration of the 2D model. Results are differences of second order moments, which are stationary following the theory developed for the local models.
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APPENDIX A

Langevin equation

For a modern discussion of the Langevin equation we refer to [START_REF] Barrat | Basic concepts for simple and complex liquids[END_REF]. We define the ensemble average a(t) Ω over realizations ω ∈ Ω and the time average:

When the process is stationary a(t) Ω = a we can suppose ergodicity (not proven), that is time averages and ensemble averages agree a(t) t = a(t) Ω .

The Langevin equation is :

Where F ω is the realization of a random noise (the subscript ω is omitted in the sequel). The solution:

If F(t) Ω = 0 then u Ω = e -St u(0). We suppose that F(t) is stationary and delta correlated in time 2Rδ (tt ) = F(t )F(t ) Ω where the delta-function has the properties: δ (tt ) = 0 if t = t and ∞ -∞ δ (t)dt = 1. We have:

In the long term behavior, initial conditions are forgotten, that is, exponentials drop and

This result is known as the fluctuation-dissipation relation (fdr) (see [START_REF] Barrat | Basic concepts for simple and complex liquids[END_REF] page 230), as the energy in the system relates dissipation and the strength of the forcing.

APPENDIX B

Periodic Forcing

From eqs. 4 and 5 it follows that

which leads to:

23 expressing u a and u o in terms of u t and u s (the first equality of eqs. 10 and 11) leads to:

from which eqs. ( 6) and ( 7) follow.

APPENDIX C

Stochastic calculus

Below are the equations for a random-walk u R and a Ornstein-Uhlenbeck process u O , the solution of a Langevin equation.

Solutions are:

The first order numerical scheme is:

Where ζ u (n) and ζ v (n) are two independent normally distributed centered random variables

All random variables are generated by a Mersenne twister. Table 3. Results of the diagnosed parameters compared to the true values are presented: S = 10 -3 is the prescribed stability parameter and M = m + 1, with m = 100 the mass ratio between the ocean and the atmospheric layer. Parameters calculated theoretically are: S obs is obtained through eq. ( 37), S lin is obtained through eq. ( 38), M obs obtained through eq. ( 39) and M lin is obtained through eq. ( 40). . . . 34
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