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BACKGROUND AND MOTIVATION

Let us denote by P n,k (p) the probability of achieving exactly k successes in n Bernoulli trials with success probability p. Then (1.1)

P n,k (p) = Γ(n + 1) Γ(k + 1)Γ(n -k + 1) p k (1 -p) n-k = n k p k (1 -p) n-k ,
where Γ(z) denotes the classical Euler gamma function which can be defined [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF][START_REF]NIST Handbook of Mathematical Functions[END_REF][START_REF] Qi | Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities[END_REF] by In the technical report [START_REF] Leblanc | A Family of Inequalities Related to Binomial Probabilities[END_REF], Leblanc and Johnson considered a problem: which is more likely to happen: k successes in n trials or 2k successes in 2n trials? They proved that (1.2) P 2n,2k (p) ≤ P n,k (p), 0 ≤ k ≤ n, p ∈ (0, 1).

Γ(z) = ∞ 0 t z-1 e -t dt
This means that k successes in n trials is more likely to happen than 2k successes in 2n trials. One year later, the same authors generalized the inequality (1.2) in [START_REF] Leblanc | On a uniformly integrable family of polynomials defined on the unit interval[END_REF]Corollary 2.4] by (1.3) P (j+1)n,(j+1)k (p) ≤ P jn,jk (p), j ∈ N.

About ten years later, Alzer extended the inequality (1.3) in the note [START_REF] Alzer | Complete monotonicity of a function related to the binomial probability[END_REF] by considering the function

(1.4) G(x) = G k,n;p (x) = Γ(nx + 1) Γ(kx + 1)Γ((n -k)x + 1) p kx (1 -p) (n-k)x
and essentially proving that the function G(x) is logarithmically completely monotonic on (0, ∞), where k and n are integers with 0 ≤ k ≤ n, p ∈ (0, 1), and an infinitely differentiable and positive function F (x) is said [START_REF] Atanassov | Some properties of a class of logarithmically completely monotonic functions[END_REF][START_REF] Berg | Integral representation of some functions related to the gamma function[END_REF][START_REF] Qi | A complete monotonicity property of the gamma function[END_REF][START_REF] Qi | Some completely monotonic functions involving the gamma and polygamma functions[END_REF][START_REF] Schilling | Bernstein Functions[END_REF] to be logarithmically completely monotonic on an interval I if and only if (-1) m [ln F (x)] (m) ≥ 0 for all m ≥ 2 and x ∈ I. We observe that we can write

G(x) = G k,n;p (x) = nx kx p kx (1 -p) (n-k)x = n k(n -k) p kx (1 -p) (n-k)x x B(kx, (n -k)x) ,
where

(1.5) x y = Γ(x + 1) Γ(y + 1)Γ(x -y + 1) = 1 (x + 1) B(x -y + 1, y + 1) , x, y ∈ C and B(x, y) = 1 0 t x-1 (1 -t) y-1 dt, (x) 
, (y) > 0 denotes the classical Euler beta function and B(x, y) = Γ(x)Γ(y) Γ(x+y) . Recall from [18, Chapter XIII], [START_REF] Schilling | Bernstein Functions[END_REF]Chapter 1], and [38, Chapter IV] that an infinitely differentiable and nonnegative function f (x) is said to be completely monotonic on an interval I if and only if

0 ≤ (-1) m-1 f (m-1) (x) < ∞, m ≥ 2, x ∈ I.
The Bernstein-Widder theorem [START_REF] Widder | The Laplace Transform[END_REF]p. 161,Theorem 12b] characterizes that a necessary and sufficient condition for f (x) to be completely monotonic on (0, ∞) is that

f (x) = ∞ 0 e -xt dµ(t), x ∈ (0, ∞),
where µ(t) is non-decreasing and the above integral converges for x ∈ (0, ∞). In other words or simply speaking, a function is completely monotonic on (0, ∞) if and only if it is a Laplace transform. Recall from [START_REF] Berg | Integral representation of some functions related to the gamma function[END_REF][START_REF] Guo | A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function[END_REF][START_REF] Qi | A complete monotonicity property of the gamma function[END_REF][START_REF] Schilling | Bernstein Functions[END_REF]] that a logarithmically completely monotonic function must be completely monotonic on the same defined interval, but not conversely. This is why we restate here the main result in [START_REF] Alzer | Complete monotonicity of a function related to the binomial probability[END_REF] in terms of the logarithmically complete monotonicity. For more information on new developments of this topic, please refer to [START_REF] Guo | A completely monotonic function involving the tri-gamma function and with degree one[END_REF][START_REF] Guo | On the degree of the weighted geometric mean as a complete Bernstein function[END_REF][START_REF] Qi | Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions[END_REF][START_REF] Qi | Integral representations and properties of some functions involving the logarithmic function[END_REF][START_REF] Qi | Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions[END_REF][START_REF] Qi | Lévy-Khintchine representations of the weighted geometric mean and the logarithmic mean[END_REF][START_REF] Schilling | Bernstein Functions[END_REF] and closely related references therein.

In this paper, we first consider the function

(1.6) Q(x) = Q α,β;p (x) = Γ((α + β)x + 1) Γ(αx + 1)Γ(βx + 1) p αx (1 -p) βx = (α + β)x αx p αx (1 -p) βx = α + β αβ p kx (1 -p) (n-k)x x B(αx, βx)
for x ∈ (0, ∞), where α, β > 0 and p ∈ (0, 1). It is easy to see that the function Q(x) is an extension of G(x) and P n,k (p) and satisfies

Q α,β;p (x) = Q β,α;1-p (x), Q k,n-k;p (x) = G k,n;p (x), Q k,n-k;p (1) = P n,k (p).
In Section , we will verify that the function Q(x) is logarithmically completely monotonic on (0, ∞).

More generally, we can consider the function

(1.7) Q(x) = Q a,p;m (x) = Γ 1 + x m i=1 a i m i=1 Γ(1 + xa i ) m i=1 p xai i = x m i=1 a i xa 1 , xa 2 , . . . , xa m m i=1 p xai i = m i=1 a i m i=1 a i m i=1 p xai i x m-1 B(xa 1 , xa 2 , . . . , xa m ) for x ∈ (0, ∞) and m ≥ 2, where a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m, p = (p 1 , p 2 , . . . , p m ) with p i ∈ (0, 1) for 1 ≤ i ≤ m and m i=1 p i = 1, the notation m i=1 a i a 1 , a 2 , . . . , a m = m i=1 i =1 a a i
in terms of the notation in (1.5) is called the multinomial coefficient, and

B(a 1 , a 2 , . . . , a m ) = Γ(a 1 )Γ(a 2 ) • • • Γ(a m ) Γ(a 1 + a 2 + • • • + a m )
is called the multivariate beta function. It is obvious that the function Q a,p;m (x) is a generalization and an extension of the functions Q α,β;p (x), G k,n;p (x), and P n,k (p) defined in (1.1), (1.4), and (1.6) respectively. Concretely speaking,

Q (α,β),(p,1-p);2 (x) = Q α,β;p (x), Q (k,n-k),(p,1-p);2 (x) = G k,n;p (x), Q (k,n-k),(p,1-p);2 (1) = P n,k (p).
In Section , we will show that the function Q(x) is logarithmically completely monotonic on (0, ∞).

In Section , in light of logarithmically complete monotonicity of Q(x) and Q(x), we will offer some inequalities for multinomial coefficients. In Section , we will reformulate combinatorial inequalities obtained in Section in terms of multivariate beta functions, that is, we will present some inequalities for multivariate beta functions. In Section 4.3, the last section of this paper, we will recover some known results in [START_REF] Alzer | Complete monotonicity of a function related to the binomial probability[END_REF][START_REF] Leblanc | On a uniformly integrable family of polynomials defined on the unit interval[END_REF] from those inequalities obtained in Section for multinomial coefficients.

COMPLETELY MONOTONIC FUNCTIONS

We now start off to prove our first main result in this paper: the function Q(x) is logarithmically completely monotonic on (0, ∞). Theorem 2.1. For α, β > 0 and p ∈ (0, 1), the function Q(x) = Q α,β;p (x) defined in (1.6) is logarithmically completely monotonic on (0, ∞).

Proof. Straightforward computation yields ln

Q(x) = ln Γ((α + β)x + 1) -ln Γ(αx + 1) -ln Γ(βx + 1) + αx ln p + βx ln(1 -p), [ln Q(x)] = (α + β)ψ((α + β)x + 1) -αψ(αx + 1) -βψ(βx + 1) + α ln p + β ln(1 -p), [ln Q(x)] = (α + β) 2 ψ ((α + β)x + 1) -α 2 ψ (αx + 1) -β 2 ψ (βx + 1). From ψ (z) = ∞ 0 t 1 -e -t e -zt dt, (z) > 0 in [1, p. 260, 6.4.1], it follows that ψ (τ z + 1) = ∞ 0 t 1 -e -t e -(τ z+1)t dt = ∞ 0 t e t -1 e -τ zt dt = 1 τ ∞ 0 h v τ e -vz dv,
where τ > 0 and h(t) = t e t -1 . Accordingly, we have

(2.8) [ln Q(x)] = ∞ 0 (α + β)h v α + β -αh v α -βh v β e -xv dv.
Since the function h(t) is decreasing on (-∞, ∞), we obtain

(α + β)h v α + β = αh v α + β + βh v α + β ≥ αh v α + βh v β .
Substituting this inequality into the equation (2.8) reveals that the second derivative [ln Q(x)] is completely monotonic on (0, ∞). By the complete monotonicity of [ln Q(x)] , we see that the first derivative [ln Q(x)] is strictly increasing on (0, ∞), hence,

[ln Q(x)] ≤ lim x→∞ [(α + β)ψ((α + β)x + 1) -αψ(αx + 1) -βψ(βx + 1)] + α ln p + β ln(1 -p) = lim x→∞ (α + β)ψ((α + β)x) -αψ(αx) -βψ(βx) - 1 x + α ln p + β ln(1 -p) = lim x→∞ (α + β)[ψ((α + β)x) -ln((α + β)x)] -α[ψ(αx) -ln(αx)] -β[ψ(βx) -ln(βx)] - 1 x + (α + β) ln((α + β)x) -α ln(αx) -β ln(βx) + α ln p + β ln(1 -p) = (α + β) ln(α + β) -α ln α p -β ln β 1 -p = p α p + (1 -p) β 1 -p ln p α p + (1 -p) β 1 -p -p α p ln α p -(1 -p) β 1 -p ln β 1 -p < 0,
where we used the facts that the function x ln x is convex on (0, ∞) and that (2.9) lim x→∞ [ln x -ψ(x)] = 0, see [13, Theorem 1] and [START_REF] Guo | Sharp inequalities for polygamma functions[END_REF]. In conclusion, the function Q(x) is logarithmically completely monotonic on (0, ∞). The proof of Theorem 2.1 is complete.

We now prove our second main result in this paper: the function Q(x) is logarithmically completely monotonic on (0, ∞). Theorem 2.2. Let m ≥ 2, a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m, and p = (p 1 , p 2 , . . . , p m ) with p i ∈ (0, 1) for 1 ≤ i ≤ m and

m i=1 p i = 1. Then the function Q(x) = Q a,p;m (x) defined in (1.7) is logarithmically completely monotonic on (0, ∞). Proof. Direct calculation gives ln Q(x) = ln Γ 1 + x m i=1 a i - m i=1 ln Γ(1 + a i x) + x m i=1 a i ln p i , [ln Q(x)] = m i=1 a i ψ 1 + x m i=1 a i - m i=1 a i ψ(1 + a i x) + m i=1 a i ln p i , and 
[ln Q(x)] = m i=1 a i 2 ψ 1 + x m i=1 a i - m i=1 a 2 i ψ (1 + a i x).
As did in the proof of Theorem 2.1, we can obtain

(2.10) [ln Q(x)] = ∞ 0 m i=1 a i h v m i=1 a i - m i=1 a i h v a i e -xv dv.
Since the function h(t) is decreasing on (-∞, ∞), we obtain

m i=1 a i h v m i=1 a i = m i=1 a i h v m i=1 a i ≥ m i=1 a i h v a i .
Combining this with (2.10) yields that the second derivative [ln Q(x)] is completely monotonic on (0, ∞).

Complete monotonicity of [ln Q(x)] implies that the first derivative [ln Q(x)] is strictly increasing on (0, ∞), therefore,

[ln Q(x)] ≤ lim x→∞ m i=1 a i ψ 1 + x m i=1 a i - m i=1 a i ψ(1 + a i x) + m i=1 a i ln p i = lim x→∞ m i=1 a i ψ x m i=1 a i - m i=1 a i ψ(a i x) - m -1 x + m i=1 a i ln p i = lim x→∞ m i=1 a i ψ x m i=1 a i -ln x m i=1 a i - m i=1 a i [ψ(a i x) -ln(a i x)] + m i=1 a i ln x m i=1 a i - m i=1 a i ln(a i x) + m i=1 a i ln p i = m i=1 a i ln m i=1 a i - m i=1 a i ln a i + m i=1 a i ln p i = m i=1 p i a i p i ln m i=1 p i a i p i - m i=1 p i a i p i ln a i p i ≤ 0,
where, as did in the proof of Theorem 2.1, we used the limit (2.9) and convexity of the function x ln x on (0, ∞). The proof of Theorem 2.2 is complete.

THREE INEQUALITIES FOR MULTINOMIAL COEFFICIENTS

In light of logarithmically complete monotonicity of Q(x) and Q(x), we now offer some inequalities for multinomial coefficients. Theorem 3.3. For , m ≥ 2, let a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m, x j > 0 for 1 ≤ j ≤ , and λ j ∈ (0, 1) with j=1 λ j = 1. Then (3.11) j=1 λ j x j m i=1 a i a 1 j=1 λ j x j , a 2 j=1 λ j x j , . . . , a m j=1 λ j x j ≤ j=1 x j m i=1 a i x j a 1 , x j a 2 , . . . , x j a m λj and the equality in (3.11) holds if and only if

x 1 = x 2 = • • • = x . In particular, when = m = 2, (3.12) (a 1 + a 2 )(λ 1 x 1 + λ 2 x 2 ) a 1 (λ 1 x 1 + λ 2 x 2 ) ≤ (a 1 + a 2 )x 1 a 1 x 1 λ1 (a 1 + a 2 )x 2 a 1 x 2 λ2
and the equality in (3.12) is valid if and only if

x 1 = x 2 .
Proof. Logarithmically complete monotonicity in Theorem 2.2 implies that the function Q(x) is logarithmically convex on (0, ∞). Hence, we acquire

Q j=1 λ j x j ≤ j=1 Q λj (x j ).
Making use of the expression The inequality (3.12) can also be independently derived from logarithmically complete monotonicity of Q(x). The proof of Theorem 3.3 is complete. Theorem 3.4. For , m ≥ 2, let a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m and let x j > 0 for 1 ≤ j ≤ . Then (3.13) j=1 x j m i=1 a i x j a 1 , x j a 2 , . . . , x j a m < j=1 x j m i=1 a i a 1 j=1 x j , a 2 j=1 x j , . . . , a m j=1 x j .

Q(x) = x m i=1 a i xa 1 ,
In particular, when = m = 2,

(3.14) (a 1 + a 2 )x 1 a 1 x 1 (a 1 + a 2 )x 2 a 1 x 2 < (a 1 + a 2 )(x 1 + x 2 ) a 1 (x 1 + x 2 ) .
Proof. In [2, Lemma 3], it was established that, if g : [0, ∞) → (0, 1] is differentiable and g g is strictly increasing on (0, ∞), then g(x)g(y) < g(x + y) for x, y ∈ (0, ∞). From this, we can inductively derive j=1 g(x j ) < g j=1 x j .

Applying this inequality to the function

Q(x) yields j=1 x j m i=1 a i x j a 1 , x j a 2 , . . . , x j a m m i=1 p aixj i < j=1 x j m i=1 a i a 1 j=1 x j , a 2 j=1 x j , . . . , a m j=1 x j m i=1 p ai j=1 xj i
which can be rewritten as (3.13).

The inequality (3.14) can also be independently derived from logarithmically complete monotonicity of Q(x). The proof of Theorem 3.4 is complete. 

(a + x)(a 1 + a 2 ) (a + x)a 1 c(a 1 + a 2 ) ca 1 ≤ a(a 1 + a 2 ) aa 1 (c + x)(a 1 + a 2 ) (c + x)a 1
and the equality in (3.16) holds if and only if a = c.

Proof. For 0 < a < c, define

V (x) = ln Q(a + x) + ln Q(c) -ln Q(a) -ln Q(c + x). Since V (x) = Q (a + x) Q(a + x) - Q (c + x) Q(c + x)
and logarithmically complete monotonicity of

Q(x) implies that Q (x) Q(x) is strictly increasing on (0, ∞), we conclude that V (x) < 0 and V (x) < V (0) = 0. Therefore, ln Q(a + x) + ln Q(c) ≤ ln Q(a) + ln Q(c + x), which is equivalent to ln (a + x) m i=1 a i (a + x)a 1 , (a + x)a 2 , . . . , (a + x)a m m i=1 p ai(a+x) i + ln c m i=1 a i ca 1 , ca 2 , . . . , ca m m i=1 p aic i ≤ ln a m i=1 a i aa 1 , aa 2 , . . . , aa m m i=1 p aia i + ln (c + x) m i=1 a i (c + x)a 1 , (c + x)a 2 , . . . , (c + x)a m m i=1 p ai(c+x) i .
This can be simplified as (3.15).

The inequality (3.16) can also be independently derived from logarithmically complete monotonicity of Q(x). The proof of Theorem 3.5 is complete.

INEQUALITIES FOR MULTIVARIATE BETA FUNCTIONS

For a i > 0 and i ∈ N, the multinomial coefficient and the multivariate beta function have the relation

m i=1 a i a 1 , a 2 , . . . , a m = m i=1 a i m i=1 a i 1 B(a 1 , a 2 , . . . , a m ) .
Therefore, from those inequalities for multinomial coefficients in Section , we can derive some inequalities for the multivariate beta function B(a 1 , a 2 , . . . , a m ). In other words, Theorems (3.3) to (3.5) can be respectively reformulated as the following forms.

First inequality for multivariate beta function

For , m ≥ 2, let a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m, x j > 0 for 1 ≤ j ≤ , and λ j ∈ (0, 1) with j=1 λ j = 1. Then (4.17) B a 1 j=1 λ j x j , a 2 j=1 λ j x j , . . . , a m j=1 λ j x j j=1 B λj (a 1 x j , a 2 x j , . . . , a m x j )

≥ j=1 x λj j j=1 λ j x j m-1
and the equality in (4.17) holds if and only if

x 1 = x 2 = • • • = x . In particular, when = m = 2, (4.18) B(a 1 (λ 1 x 1 + λ 2 x 2 ), a 2 (λ 1 x 1 + λ 2 x 2 )) B λ1 (a 1 x 1 , a 2 x 1 ) B λ2 (a 1 x 2 , a 2 x 2 ) ≥ x λ1 1 x λ2 2 λ 1 x 1 + λ 2 x 2
and the equality in (4.18) is valid if and only if

x 1 = x 2 .
The inequality (4.17 

Second inequality for multivariate beta function

For , m ≥ 2, let a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m and let x j > 0 for 1 ≤ j ≤ . Then j=1 B(a 1 x j , a 2 x j , . . . , a m x j ) B a 1 j=1 x j , a 2 j=1 x j , . . . , a m j=1 

x j > m i=1 a i m i=1 a i -1 j=1 x j j=1 x j m-1 . In particular, when = m = 2, B(a 1 x 1 , a 2 x 1 ) B(a 1 x 2 , a 2 x 2 ) B(a 1 (x 1 + x 2 ), a 2 (x 1 + x 2 )) > 1 a 1 + 1 a 2 1 x 1 + 1 x 2 .

Third inequality for multivariate beta function

c c + x B(a 1 c, a 2 c) B(a 1 (c + x), a 2 (c + x)) ≥ a a + x B(a 1 a, a 2 a) B(a 1 (a + x), a 2 (a + x))
and the equality in (4.20) holds if and only if a = c.

The inequality (4.19) implies that the function

t t + x m-1 B(a 1 t, a 2 t, . . . , a m t) B(a 1 (t + x), a 2 (t + x), . . . , a m (t + x))
for m ≥ 2 and x, a i > 0 is strictly increasing with respect to t ∈ (0, ∞). Remark 4.1. For more information on inequalities for the beta function B(x, y) and their applications, please refer to [START_REF] Alzer | Sharp inequalities for the beta function[END_REF][START_REF] Cerone | Special functions: approximations and bounds[END_REF][START_REF] Cerone | Special Functions Approximations and Bounds via Integral Representation[END_REF][START_REF] Dragomir | Inequalities for beta and gamma functions via some classical and new integral inequalities[END_REF][START_REF] Grenié | Inequalities for the beta function[END_REF][START_REF] Qi | Some properties of the Fuss-Catalan numbers[END_REF][START_REF] Qiu | Some properties of the gamma and psi functions, with applications[END_REF] and closely related references therein.

RECOVERING FOUR KNOWN RESULTS

From Theorems 3.3 to 3.5, we can recover inequalities and monotonicity for binomial coefficients in the papers [START_REF] Alzer | Complete monotonicity of a function related to the binomial probability[END_REF][START_REF] Leblanc | On a uniformly integrable family of polynomials defined on the unit interval[END_REF].

First recovery

Taking 

a 1 = k ∈ N and a 2 = n -k ∈ N in (3.12) results in (5.21) (λ 1 x 1 + λ 2 x 2 )n (λ 1 x 1 + λ 2 x 2 )k ≤ x 1 n x 1 k λ1 x 2 n x 2 k

Second recovery

Setting

a 1 = k ∈ N and a 2 = n -k ∈ N in (3.14) gives nx 1 kx 1 nx 2 kx 2 < n(x 1 + x 2 ) k(x 1 + x 2 ) , x 1 , x 2 > 0 which is a recovery of [2, Corollary 2].

Third recovery

Letting 

Fourth recovery

For a 1 , a 2 , x > 0 and 0 < a < c, the inequality (3.16) means that the function Remark 5.3. This paper is a revised version of the preprint [START_REF] Qi | Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions[END_REF] whose first version was announced almost at the same time as the preprint [START_REF] Ouimet | Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex[END_REF] which has been formally published as [START_REF] Ouimet | Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex[END_REF]. This paper is a companion of the papers [START_REF] Qi | A logarithmically completely monotonic function involving the q-gamma function[END_REF][START_REF] Qi | Complete monotonicity for a new ratio of finite many gamma functions[END_REF][START_REF] Qi | From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions[END_REF][START_REF] Qi | A ratio of many gamma functions and its properties with applications[END_REF][START_REF] Qi | Monotonicity properties for a ratio of finite many gamma functions[END_REF].
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  C \ {0, -1, -2, . . . }.

xa 2 ,a i a 1

 21 j=1 λ j x j , a 2 j=1 λ j x j , . . . , a m j=1 λ j x x j a 1 , x j a 2 , . . . , x j a rearranged as(3.11).

Theorem 3 . 5 .

 35 For m ≥ 2, let a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m. If 0 < a ≤ c and x > 0, then(3.15) (a + x) m i=1 a i (a + x)a 1 , (a + x)a 2 , . . . , (a + x)a m c m i=1 a i ca 1 , ca 2 , . . . , ca m ≤ a m i=1 a i aa 1 , aa 2 , . . . , aa m (c + x) m i=1 a i (c + x)a 1 , (c + x)a 2 , . . . , (c + x)a mand the equality in (3.15) holds if and only if a = c. In particular, when m = 2,(3.16) 

  ) or(4.18) implies that x m-1 B(xa 1 , xa 2 , . . . , xa m ) for m ≥ 2 is logarithmically concave with respect to x ∈ (0, ∞). More generally, we claim that the reciprocal 1 x m-1 B(xa1,xa2,...,xam) for m ≥ 2 is a logarithmically completely monotonic function of x ∈ (0, ∞).

For m ≥ 2 , 1 B 1 B

 211 let a = (a 1 , a 2 , . . . , a m ) with a i > 0 for 1 ≤ i ≤ m. If 0 < a ≤ c and x (ca 1 , ca 2 , . . . , ca m ) B((c + x)a 1 , (c + x)a 2 , . . . , (c + x)a m ) (aa 1 , aa 2 , . . . , aa m ) B((a + x)a 1 , (a + x)a 2 , . . . , (a + x)a m ) and the equality in (4.19) holds if and only if a = c. In particular, when m = 2, (4.20)

λ2 1 2and setting x 1 =

 11 and the equality in(5.21) holds if and only if x 1 = x 2 > 0, where x 1 , x 2 , λ 1 , λ 2 > 0 and λ 1 + λ 2 = 1. This recovers [2,Corollary 1]. When further letting λ 1 = λ 2 = j -1 and x 2 = j +1 in (5.21), we recover a combinatorial inequality in[START_REF] Leblanc | On a uniformly integrable family of polynomials defined on the unit interval[END_REF] p. 4, Section 4].

a 1 =

 1 k ∈ N and a 2 = n -k ∈ N in (3c)n (x + c)k for 0 < a ≤ c and x > 0 and the equality is valid if and only if a = c > 0. The inequality (5.22) is a recovery of [2, Corollary 3].

F 1 a 1 + a 2 a1 a 2 a 1 + a 2 a2..Remark 5 . 2 .

 1121252 a,c;a1,a2 (x) = (a + x)(a 1 + a 2 ) (a + x)a 1(c + x)(a 1 + a 2 ) (c + x)a 1 is decreasing in x > 0 and lim x→∞ F a,c;a1,a2 (x) = aThis generalizes [17, Lemma 2.2] which reads that the sequence T n,k (j) = ( (j-1)n (j-1)k ) ( n jk ) for integers 0 ≤ k ≤ n is decreasing in j ≥ 1 Because the restrictions a k < 1 and n k=1 a k = 1 appeared in [20, Theorem 2.1] are removed off in our Theorem 2.2, the conditions in our Theorem 2.2 are more relaxed than corresponding ones in[START_REF] Ouimet | Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex[END_REF] Theorem 2.1]. Because logarithmically complete monotonicity is stronger than complete monotonicity, just like that logarithmic convexity is stronger than convexity, our main conclusion in Theorem 2.2 is stronger than corresponding one in[START_REF] Ouimet | Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex[END_REF] Theorem 2.1].
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