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Dedicated to people facing and battling COVID-19

In the paper, the authors extend a function arising from the Bernoulli trials
in probability and involving the gamma function to its largest ranges, find
logarithmically complete monotonicity of these extended functions, and, in
light of logarithmically complete monotonicity of these extended functions,
derive some inequalities for multinomial coefficients and multivariate beta
functions. These results recover, extend, and generalize some known conclu-
sions.

1. BACKGROUND AND MOTIVATION

Let us denote by Pn,k(p) the probability of achieving exactly k successes in
n Bernoulli trials with success probability p. Then

(1.1) Pn,k(p) =
Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
pk(1− p)n−k =

(
n

k

)
pk(1− p)n−k,
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where Γ(z) denotes the classical Euler gamma function which can be defined [1,
19, 24] by

Γ(z) =

∫ ∞
0

tz−1e−tdt, <(z) > 0

or by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }.

In the technical report [16], Leblanc and Johnson considered a problem: which is
more likely to happen: k successes in n trials or 2k successes in 2n trials? They
proved that

(1.2) P2n,2k(p) ≤ Pn,k(p), 0 ≤ k ≤ n, p ∈ (0, 1).

This means that k successes in n trials is more likely to happen than 2k successes in
2n trials. One year later, the same authors generalized the inequality (1.2) in [17,
Corollary 2.4] by

(1.3) P(j+1)n,(j+1)k(p) ≤ Pjn,jk(p), j ∈ N.

About ten years later, Alzer extended the inequality (1.3) in the note [2] by
considering the function

(1.4) G(x) = Gk,n;p(x) =
Γ(nx+ 1)

Γ(kx+ 1)Γ((n− k)x+ 1)
pkx(1− p)(n−k)x

and essentially proving that the function G(x) is logarithmically completely mono-
tonic on (0,∞), where k and n are integers with 0 ≤ k ≤ n, p ∈ (0, 1), and an in-
finitely differentiable and positive function F (x) is said [4, 5, 27, 29, 37] to be loga-
rithmically completely monotonic on an interval I if and only if (−1)m[lnF (x)](m) ≥
0 for all m ≥ 2 and x ∈ I. We observe that we can write

G(x) = Gk,n;p(x) =

(
nx

kx

)
pkx(1− p)(n−k)x =

n

k(n− k)

pkx(1− p)(n−k)x

xB(kx, (n− k)x)
,

where

(1.5)

(
x

y

)
=

Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
=

1

(x+ 1) B(x− y + 1, y + 1)
, x, y ∈ C

and

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, <(x),<(y) > 0

denotes the classical Euler beta function and B(x, y) = Γ(x)Γ(y)
Γ(x+y) .

Recall from [18, Chapter XIII], [37, Chapter 1], and [38, Chapter IV] that
an infinitely differentiable and nonnegative function f(x) is said to be completely
monotonic on an interval I if and only if

0 ≤ (−1)m−1f (m−1)(x) <∞, m ≥ 2, x ∈ I.
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The Bernstein–Widder theorem [38, p. 161, Theorem 12b] characterizes that a
necessary and sufficient condition for f(x) to be completely monotonic on (0,∞) is
that

f(x) =

∫ ∞
0

e−xtdµ(t), x ∈ (0,∞),

where µ(t) is non-decreasing and the above integral converges for x ∈ (0,∞). In
other words or simply speaking, a function is completely monotonic on (0,∞) if and
only if it is a Laplace transform. Recall from [5, 11, 27, 37] that a logarithmically
completely monotonic function must be completely monotonic on the same defined
interval, but not conversely. This is why we restate here the main result in [2] in
terms of the logarithmically complete monotonicity. For more information on new
developments of this topic, please refer to [10, 12, 25, 30, 34, 35, 37] and closely
related references therein.

In this paper, we first consider the function

(1.6) Q(x) = Qα,β;p(x) =
Γ((α+ β)x+ 1)

Γ(αx+ 1)Γ(βx+ 1)
pαx(1− p)βx

=

(
(α+ β)x

αx

)
pαx(1− p)βx =

α+ β

αβ

pkx(1− p)(n−k)x

xB(αx, βx)

for x ∈ (0,∞), where α, β > 0 and p ∈ (0, 1). It is easy to see that the function
Q(x) is an extension of G(x) and Pn,k(p) and satisfies

Qα,β;p(x) = Qβ,α;1−p(x), Qk,n−k;p(x) = Gk,n;p(x), Qk,n−k;p(1) = Pn,k(p).

In Section , we will verify that the function Q(x) is logarithmically completely
monotonic on (0,∞).

More generally, we can consider the function

(1.7) Q(x) = Qa,p;m(x) =
Γ
(
1 + x

∑m
i=1 ai

)∏m
i=1 Γ(1 + xai)

m∏
i=1

pxaii

=

(
x
∑m
i=1 ai

xa1, xa2, . . . , xam

) m∏
i=1

pxaii =

∑m
i=1 ai∏m
i=1 ai

∏m
i=1 p

xai
i

xm−1 B(xa1, xa2, . . . , xam)

for x ∈ (0,∞) and m ≥ 2, where a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m,
p = (p1, p2, . . . , pm) with pi ∈ (0, 1) for 1 ≤ i ≤ m and

∑m
i=1 pi = 1, the notation( ∑m

i=1 ai
a1, a2, . . . , am

)
=

m∏
i=1

(∑i
`=1 a`
ai

)
in terms of the notation in (1.5) is called the multinomial coefficient, and

B(a1, a2, . . . , am) =
Γ(a1)Γ(a2) · · ·Γ(am)

Γ(a1 + a2 + · · ·+ am)
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is called the multivariate beta function. It is obvious that the function Qa,p;m(x) is
a generalization and an extension of the functions Qα,β;p(x), Gk,n;p(x), and Pn,k(p)
defined in (1.1), (1.4), and (1.6) respectively. Concretely speaking,

Q(α,β),(p,1−p);2(x) = Qα,β;p(x),

Q(k,n−k),(p,1−p);2(x) = Gk,n;p(x),

Q(k,n−k),(p,1−p);2(1) = Pn,k(p).

In Section , we will show that the function Q(x) is logarithmically completely
monotonic on (0,∞).

In Section , in light of logarithmically complete monotonicity of Q(x) and
Q(x), we will offer some inequalities for multinomial coefficients. In Section , we
will reformulate combinatorial inequalities obtained in Section in terms of multi-
variate beta functions, that is, we will present some inequalities for multivariate
beta functions. In Section 4.3, the last section of this paper, we will recover some
known results in [2, 17] from those inequalities obtained in Section for multinomial
coefficients.

2. COMPLETELY MONOTONIC FUNCTIONS

We now start off to prove our first main result in this paper: the function
Q(x) is logarithmically completely monotonic on (0,∞).

Theorem 2.1. For α, β > 0 and p ∈ (0, 1), the function Q(x) = Qα,β;p(x) defined
in (1.6) is logarithmically completely monotonic on (0,∞).

Proof. Straightforward computation yields

lnQ(x) = ln Γ((α+ β)x+ 1)− ln Γ(αx+ 1)

− ln Γ(βx+ 1) + αx ln p+ βx ln(1− p),
[lnQ(x)]′ = (α+ β)ψ((α+ β)x+ 1)− αψ(αx+ 1)

− βψ(βx+ 1) + α ln p+ β ln(1− p),
[lnQ(x)]′′ = (α+ β)2ψ′((α+ β)x+ 1)− α2ψ′(αx+ 1)− β2ψ′(βx+ 1).

From

ψ′(z) =

∫ ∞
0

t

1− e−t
e−ztdt, <(z) > 0

in [1, p. 260, 6.4.1], it follows that

ψ′(τz + 1) =

∫ ∞
0

t

1− e−t
e−(τz+1)tdt

=

∫ ∞
0

t

et − 1
e−τztdt =

1

τ

∫ ∞
0

h

(
v

τ

)
e−vzdv,
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where τ > 0 and h(t) = t
et−1 . Accordingly, we have

(2.8) [lnQ(x)]′′ =

∫ ∞
0

[
(α+ β)h

(
v

α+ β

)
− αh

(
v

α

)
− βh

(
v

β

)]
e−xvdv.

Since the function h(t) is decreasing on (−∞,∞), we obtain

(α+ β)h

(
v

α+ β

)
= αh

(
v

α+ β

)
+ βh

(
v

α+ β

)
≥ αh

(
v

α

)
+ βh

(
v

β

)
.

Substituting this inequality into the equation (2.8) reveals that the second deriva-
tive [lnQ(x)]′′ is completely monotonic on (0,∞).

By the complete monotonicity of [lnQ(x)]′′, we see that the first derivative
[lnQ(x)]′ is strictly increasing on (0,∞), hence,

[lnQ(x)]′ ≤ lim
x→∞

[(α+ β)ψ((α+ β)x+ 1)− αψ(αx+ 1)− βψ(βx+ 1)]

+ α ln p+ β ln(1− p)

= lim
x→∞

[
(α+ β)ψ((α+ β)x)− αψ(αx)− βψ(βx)− 1

x

]
+ α ln p+ β ln(1− p)

= lim
x→∞

(
(α+ β)[ψ((α+ β)x)− ln((α+ β)x)]− α[ψ(αx)− ln(αx)]

− β[ψ(βx)− ln(βx)]− 1

x
+ (α+ β) ln((α+ β)x)

− α ln(αx)− β ln(βx)

)
+ α ln p+ β ln(1− p)

= (α+ β) ln(α+ β)− α ln
α

p
− β ln

β

1− p

=

[
p
α

p
+ (1− p) β

1− p

]
ln

[
p
α

p
+ (1− p) β

1− p

]
− p
(
α

p
ln
α

p

)
− (1− p)

(
β

1− p
ln

β

1− p

)
< 0,

where we used the facts that the function x lnx is convex on (0,∞) and that

(2.9) lim
x→∞

[lnx− ψ(x)] = 0,

see [13, Theorem 1] and [14]. In conclusion, the function Q(x) is logarithmically
completely monotonic on (0,∞). The proof of Theorem 2.1 is complete.

We now prove our second main result in this paper: the function Q(x) is
logarithmically completely monotonic on (0,∞).
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Theorem 2.2. Let m ≥ 2, a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m, and
p = (p1, p2, . . . , pm) with pi ∈ (0, 1) for 1 ≤ i ≤ m and

∑m
i=1 pi = 1. Then the

function Q(x) = Qa,p;m(x) defined in (1.7) is logarithmically completely monotonic
on (0,∞).

Proof. Direct calculation gives

lnQ(x) = ln Γ

(
1 + x

m∑
i=1

ai

)
−

m∑
i=1

ln Γ(1 + aix) + x

m∑
i=1

ai ln pi,

[lnQ(x)]′ =

(
m∑
i=1

ai

)
ψ

(
1 + x

m∑
i=1

ai

)
−

m∑
i=1

aiψ(1 + aix) +

m∑
i=1

ai ln pi,

and

[lnQ(x)]′′ =

(
m∑
i=1

ai

)2

ψ′

(
1 + x

m∑
i=1

ai

)
−

m∑
i=1

a2
iψ
′(1 + aix).

As did in the proof of Theorem 2.1, we can obtain

(2.10) [lnQ(x)]′′ =

∫ ∞
0

[(
m∑
i=1

ai

)
h

(
v∑m
i=1 ai

)
−

m∑
i=1

aih

(
v

ai

)]
e−xvdv.

Since the function h(t) is decreasing on (−∞,∞), we obtain(
m∑
i=1

ai

)
h

(
v∑m
i=1 ai

)
=

m∑
i=1

aih

(
v∑m
i=1 ai

)
≥

m∑
i=1

aih

(
v

ai

)
.

Combining this with (2.10) yields that the second derivative [lnQ(x)]′′ is completely
monotonic on (0,∞).

Complete monotonicity of [lnQ(x)]′′ implies that the first derivative [lnQ(x)]′

is strictly increasing on (0,∞), therefore,

[lnQ(x)]′ ≤ lim
x→∞

[(
m∑
i=1

ai

)
ψ

(
1 + x

m∑
i=1

ai

)
−

m∑
i=1

aiψ(1 + aix)

]
+

m∑
i=1

ai ln pi

= lim
x→∞

[(
m∑
i=1

ai

)
ψ

(
x

m∑
i=1

ai

)
−

m∑
i=1

aiψ(aix)− m− 1

x

]
+

m∑
i=1

ai ln pi

= lim
x→∞

{(
m∑
i=1

ai

)[
ψ

(
x

m∑
i=1

ai

)
− ln

(
x

m∑
i=1

ai

)]

−
m∑
i=1

ai[ψ(aix)− ln(aix)] +

(
m∑
i=1

ai

)
ln

(
x

m∑
i=1

ai

)

−
m∑
i=1

ai ln(aix)

}
+

m∑
i=1

ai ln pi
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=

(
m∑
i=1

ai

)
ln

(
m∑
i=1

ai

)
−

m∑
i=1

ai ln ai +

m∑
i=1

ai ln pi

=

(
m∑
i=1

pi
ai
pi

)
ln

(
m∑
i=1

pi
ai
pi

)
−

m∑
i=1

pi
ai
pi

ln
ai
pi

≤ 0,

where, as did in the proof of Theorem 2.1, we used the limit (2.9) and convexity of
the function x lnx on (0,∞). The proof of Theorem 2.2 is complete.

3. THREE INEQUALITIES FOR MULTINOMIAL COEFFICIENTS

In light of logarithmically complete monotonicity of Q(x) and Q(x), we now
offer some inequalities for multinomial coefficients.

Theorem 3.3. For `,m ≥ 2, let a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m,

xj > 0 for 1 ≤ j ≤ `, and λj ∈ (0, 1) with
∑`
j=1 λj = 1. Then

(3.11)

( ∑`
j=1 λjxj

∑m
i=1 ai

a1

∑`
j=1 λjxj , a2

∑`
j=1 λjxj , . . . , am

∑`
j=1 λjxj

)

≤
∏̀
j=1

(
xj
∑m
i=1 ai

xja1, xja2, . . . , xjam

)λj

and the equality in (3.11) holds if and only if x1 = x2 = · · · = x`. In particular,
when ` = m = 2,

(3.12)

(
(a1 + a2)(λ1x1 + λ2x2)

a1(λ1x1 + λ2x2)

)
≤
(

(a1 + a2)x1

a1x1

)λ1
(

(a1 + a2)x2

a1x2

)λ2

and the equality in (3.12) is valid if and only if x1 = x2.

Proof. Logarithmically complete monotonicity in Theorem 2.2 implies that the
function Q(x) is logarithmically convex on (0,∞). Hence, we acquire

Q

(∑̀
j=1

λjxj

)
≤
∏̀
j=1

Qλj (xj).

Making use of the expression

Q(x) =

(
x
∑m
i=1 ai

xa1, xa2, . . . , xam

) m∏
i=1

pxaii
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arrives at( ∑`
j=1 λjxj

∑m
i=1 ai

a1

∑`
j=1 λjxj , a2

∑`
j=1 λjxj , . . . , am

∑`
j=1 λjxj

) m∏
i=1

p
ai

∑`
j=1 λjxj

i

≤
∏̀
j=1

[(
xj
∑m
i=1 ai

xja1, xja2, . . . , xjam

) m∏
i=1

p
aixj

i

]λj

which can be rearranged as (3.11).

The inequality (3.12) can also be independently derived from logarithmically
complete monotonicity of Q(x). The proof of Theorem 3.3 is complete.

Theorem 3.4. For `,m ≥ 2, let a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m
and let xj > 0 for 1 ≤ j ≤ `. Then
(3.13)∏̀

j=1

(
xj
∑m
i=1 ai

xja1, xja2, . . . , xjam

)
<

( ∑`
j=1 xj

∑m
i=1 ai

a1

∑`
j=1 xj , a2

∑`
j=1 xj , . . . , am

∑`
j=1 xj

)
.

In particular, when ` = m = 2,

(3.14)

(
(a1 + a2)x1

a1x1

)(
(a1 + a2)x2

a1x2

)
<

(
(a1 + a2)(x1 + x2)

a1(x1 + x2)

)
.

Proof. In [2, Lemma 3], it was established that, if g : [0,∞)→ (0, 1] is differentiable

and g′

g is strictly increasing on (0,∞), then g(x)g(y) < g(x + y) for x, y ∈ (0,∞).
From this, we can inductively derive

∏̀
j=1

g(xj) < g

(∑̀
j=1

xj

)
.

Applying this inequality to the function Q(x) yields

∏̀
j=1

[(
xj
∑m
i=1 ai

xja1, xja2, . . . , xjam

) m∏
i=1

p
aixj

i

]

<

( ∑`
j=1 xj

∑m
i=1 ai

a1

∑`
j=1 xj , a2

∑`
j=1 xj , . . . , am

∑`
j=1 xj

) m∏
i=1

p
ai

∑`
j=1 xj

i

which can be rewritten as (3.13).

The inequality (3.14) can also be independently derived from logarithmically
complete monotonicity of Q(x). The proof of Theorem 3.4 is complete.

Theorem 3.5. For m ≥ 2, let a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m. If
0 < a ≤ c and x > 0, then
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(3.15)

(
(a+ x)

∑m
i=1 ai

(a+ x)a1, (a+ x)a2, . . . , (a+ x)am

)(
c
∑m
i=1 ai

ca1, ca2, . . . , cam

)
≤
(

a
∑m
i=1 ai

aa1, aa2, . . . , aam

)(
(c+ x)

∑m
i=1 ai

(c+ x)a1, (c+ x)a2, . . . , (c+ x)am

)
and the equality in (3.15) holds if and only if a = c. In particular, when m = 2,

(3.16)

(
(a+ x)(a1 + a2)

(a+ x)a1

)(
c(a1 + a2)

ca1

)
≤
(
a(a1 + a2)

aa1

)(
(c+ x)(a1 + a2)

(c+ x)a1

)
and the equality in (3.16) holds if and only if a = c.

Proof. For 0 < a < c, define

V (x) = lnQ(a+ x) + lnQ(c)− lnQ(a)− lnQ(c+ x).

Since

V ′(x) =
Q′(a+ x)

Q(a+ x)
− Q

′(c+ x)

Q(c+ x)

and logarithmically complete monotonicity of Q(x) implies that Q
′(x)
Q(x) is strictly

increasing on (0,∞), we conclude that V ′(x) < 0 and V (x) < V (0) = 0. Therefore,

lnQ(a+ x) + lnQ(c) ≤ lnQ(a) + lnQ(c+ x),

which is equivalent to

ln

[(
(a+ x)

∑m
i=1 ai

(a+ x)a1, (a+ x)a2, . . . , (a+ x)am

) m∏
i=1

p
ai(a+x)
i

]

+ ln

[(
c
∑m
i=1 ai

ca1, ca2, . . . , cam

) m∏
i=1

paici

]
≤ ln

[(
a
∑m
i=1 ai

aa1, aa2, . . . , aam

) m∏
i=1

paiai

]

+ ln

[(
(c+ x)

∑m
i=1 ai

(c+ x)a1, (c+ x)a2, . . . , (c+ x)am

) m∏
i=1

p
ai(c+x)
i

]
.

This can be simplified as (3.15).

The inequality (3.16) can also be independently derived from logarithmically
complete monotonicity of Q(x). The proof of Theorem 3.5 is complete.

4. INEQUALITIES FOR MULTIVARIATE BETA FUNCTIONS

For ai > 0 and i ∈ N, the multinomial coefficient and the multivariate beta
function have the relation( ∑m

i=1 ai
a1, a2, . . . , am

)
=

∑m
i=1 ai∏m
i=1 ai

1

B(a1, a2, . . . , am)
.
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Therefore, from those inequalities for multinomial coefficients in Section , we can
derive some inequalities for the multivariate beta function B(a1, a2, . . . , am). In
other words, Theorems (3.3) to (3.5) can be respectively reformulated as the fol-
lowing forms.

4.1 First inequality for multivariate beta function

For `,m ≥ 2, let a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m, xj > 0 for

1 ≤ j ≤ `, and λj ∈ (0, 1) with
∑`
j=1 λj = 1. Then

(4.17)
B
(
a1

∑`
j=1 λjxj , a2

∑`
j=1 λjxj , . . . , am

∑`
j=1 λjxj

)
∏`
j=1 Bλj (a1xj , a2xj , . . . , amxj)

≥

( ∏`
j=1 x

λj

j∑`
j=1 λjxj

)m−1

and the equality in (4.17) holds if and only if x1 = x2 = · · · = x`. In particular,
when ` = m = 2,

(4.18)
B(a1(λ1x1 + λ2x2), a2(λ1x1 + λ2x2))

Bλ1(a1x1, a2x1) Bλ2(a1x2, a2x2)
≥ xλ1

1 xλ2
2

λ1x1 + λ2x2

and the equality in (4.18) is valid if and only if x1 = x2.

The inequality (4.17) or (4.18) implies that xm−1 B(xa1, xa2, . . . , xam) for
m ≥ 2 is logarithmically concave with respect to x ∈ (0,∞). More generally,
we claim that the reciprocal 1

xm−1 B(xa1,xa2,...,xam) for m ≥ 2 is a logarithmically

completely monotonic function of x ∈ (0,∞).

4.2 Second inequality for multivariate beta function

For `,m ≥ 2, let a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m and let xj > 0 for
1 ≤ j ≤ `. Then∏`

j=1 B(a1xj , a2xj , . . . , amxj)

B
(
a1

∑`
j=1 xj , a2

∑`
j=1 xj , . . . , am

∑`
j=1 xj

) > (∑m
i=1 ai∏m
i=1 ai

)`−1
(∑`

j=1 xj∏`
j=1 xj

)m−1

.

In particular, when ` = m = 2,

B(a1x1, a2x1) B(a1x2, a2x2)

B(a1(x1 + x2), a2(x1 + x2))
>

(
1

a1
+

1

a2

)(
1

x1
+

1

x2

)
.

4.3 Third inequality for multivariate beta function

For m ≥ 2, let a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m. If 0 < a ≤ c and
x > 0, then
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(4.19)

(
c

c+ x

)m−1
B(ca1, ca2, . . . , cam)

B((c+ x)a1, (c+ x)a2, . . . , (c+ x)am)

≥
(

a

a+ x

)m−1
B(aa1, aa2, . . . , aam)

B((a+ x)a1, (a+ x)a2, . . . , (a+ x)am)

and the equality in (4.19) holds if and only if a = c. In particular, when m = 2,

(4.20)
c

c+ x

B(a1c, a2c)

B(a1(c+ x), a2(c+ x))
≥ a

a+ x

B(a1a, a2a)

B(a1(a+ x), a2(a+ x))

and the equality in (4.20) holds if and only if a = c.

The inequality (4.19) implies that the function(
t

t+ x

)m−1
B(a1t, a2t, . . . , amt)

B(a1(t+ x), a2(t+ x), . . . , am(t+ x))

for m ≥ 2 and x, ai > 0 is strictly increasing with respect to t ∈ (0,∞).

Remark 4.1. For more information on inequalities for the beta function B(x, y)
and their applications, please refer to [3, 6, 7, 8, 9, 26, 36] and closely related
references therein.

5. RECOVERING FOUR KNOWN RESULTS

From Theorems 3.3 to 3.5, we can recover inequalities and monotonicity for
binomial coefficients in the papers [2, 17].

5.4 First recovery

Taking a1 = k ∈ N and a2 = n− k ∈ N in (3.12) results in

(5.21)

(
(λ1x1 + λ2x2)n

(λ1x1 + λ2x2)k

)
≤
(
x1n

x1k

)λ1
(
x2n

x2k

)λ2

and the equality in (5.21) holds if and only if x1 = x2 > 0, where x1, x2, λ1, λ2 > 0
and λ1 + λ2 = 1. This recovers [2, Corollary 1]. When further letting λ1 = λ2 = 1

2
and setting x1 = j−1 and x2 = j+1 in (5.21), we recover a combinatorial inequality
in [17, p. 4, Section 4].

5.5 Second recovery

Setting a1 = k ∈ N and a2 = n− k ∈ N in (3.14) gives(
nx1

kx1

)(
nx2

kx2

)
<

(
n(x1 + x2)

k(x1 + x2)

)
, x1, x2 > 0

which is a recovery of [2, Corollary 2].
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5.6 Third recovery

Letting a1 = k ∈ N and a2 = n− k ∈ N in (3.16) deduces

(5.22)

(
(a+ x)n

(a+ x)k

)(
cn

ck

)
≤
(
an

ak

)(
(x+ c)n

(x+ c)k

)
for 0 < a ≤ c and x > 0 and the equality is valid if and only if a = c > 0. The
inequality (5.22) is a recovery of [2, Corollary 3].

5.7 Fourth recovery

For a1, a2, x > 0 and 0 < a < c, the inequality (3.16) means that the function

Fa,c;a1,a2(x) =

(
(a+ x)(a1 + a2)

(a+ x)a1

)/(
(c+ x)(a1 + a2)

(c+ x)a1

)
is decreasing in x > 0 and

lim
x→∞

Fa,c;a1,a2(x) =

(
a1

a1 + a2

)a1( a2

a1 + a2

)a2
.

This generalizes [17, Lemma 2.2] which reads that the sequence Tn,k(j) =
((j−1)n
(j−1)k)
( n
jk)

for integers 0 ≤ k ≤ n is decreasing in j ≥ 1 and

lim
j→∞

Tn,k(j) =

(
k

n

)k(
n− k
n

)n−k
.

Remark 5.2. Because the restrictions ak < 1 and
∑n
k=1 ak = 1 appeared in [20,

Theorem 2.1] are removed off in our Theorem 2.2, the conditions in our Theo-
rem 2.2 are more relaxed than corresponding ones in [20, Theorem 2.1]. Because
logarithmically complete monotonicity is stronger than complete monotonicity, just
like that logarithmic convexity is stronger than convexity, our main conclusion in
Theorem 2.2 is stronger than corresponding one in [20, Theorem 2.1].

Remark 5.3. This paper is a revised version of the preprint [33] whose first version
was announced almost at the same time as the preprint [21] which has been formally
published as [20]. This paper is a companion of the papers [22, 23, 28, 31, 32].
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