HAL
open science

SOME LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS AND INEQUALITIES FOR MULTINOMIAL COEFFICIENTS AND MULTIVARIATE BETA FUNCTIONS

Feng Qi, Da-Wei Niu, Dongkyu Lim, Bai-Ni Guo

To cite this version:

Feng Qi, Da-Wei Niu, Dongkyu Lim, Bai-Ni Guo. SOME LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS AND INEQUALITIES FOR MULTINOMIAL COEFFICIENTS AND MULTIVARIATE BETA FUNCTIONS: Completely monotonic functions and inequalities. 2019. hal01769288v2

HAL Id: hal-01769288
https://hal.science/hal-01769288v2
Preprint submitted on 4 Nov 2019 (v2), last revised 31 Oct 2020 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SOME LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS AND INEQUALITIES FOR MULTINOMIAL COEFFICIENTS AND MULTIVARIATE BETA FUNCTIONS

FENG QI, DA-WEI NIU, DONGKYU LIM, AND BAI-NI GUO

Abstract

In the paper, the authors extend a function arising from the Bernoulli trials in probability and involving the gamma function to its largest ranges, find logarithmically complete monotonicity of these extended functions, and, in light of logarithmically complete monotonicity of these extended functions, derive some inequalities for multinomial coefficients and multivariate beta functions. These results recover, extend, and generalize some known conclusions.

1. Background and motivation

Let us denote by $P_{n, k}(p)$ the probability of achieving exactly k successes in n Bernoulli trials with success probability p. Then

$$
\begin{equation*}
P_{n, k}(p)=\frac{\Gamma(n+1)}{\Gamma(k+1) \Gamma(n-k+1)} p^{k}(1-p)^{n-k}=\binom{n}{k} p^{k}(1-p)^{n-k} \tag{1.1}
\end{equation*}
$$

where $\Gamma(z)$ denotes the classical Euler gamma function which can be defined [1, 19, 20 by

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t, \quad \Re(z)>0
$$

or by

$$
\Gamma(z)=\lim _{n \rightarrow \infty} \frac{n!n^{z}}{\prod_{k=0}^{n}(z+k)}, \quad z \in \mathbb{C} \backslash\{0,-1,-2, \ldots\}
$$

In the technical report [15], Leblanc and Johnson considered a problem: which is more likely to happen: k successes in n trials or $2 k$ successes in $2 n$ trials? They proved that

$$
\begin{equation*}
P_{2 n, 2 k}(p) \leq P_{n, k}(p), \quad 0 \leq k \leq n, \quad p \in(0,1) . \tag{1.2}
\end{equation*}
$$

This means that k successes in n trials is more likely to happen than $2 k$ successes in $2 n$ trials. One year later, the same authors generalized the inequality 1.2 in [16, Corollary 2.4] by

$$
\begin{equation*}
P_{(j+1) n,(j+1) k}(p) \leq P_{j n, j k}(p), \quad j \in \mathbb{N} . \tag{1.3}
\end{equation*}
$$

[^0]About ten years later, Alzer extended the inequality (1.3) in the note [2] by considering the function

$$
\begin{equation*}
G(x)=G_{k, n ; p}(x)=\frac{\Gamma(n x+1)}{\Gamma(k x+1) \Gamma((n-k) x+1)} p^{k x}(1-p)^{(n-k) x} \tag{1.4}
\end{equation*}
$$

and essentially proving that the function $G(x)$ is logarithmically completely monotonic on $(0, \infty)$, where k and n are integers with $0 \leq k \leq n, p \in(0,1)$, and an infinitely differentiable and positive function $F(x)$ is said [4, 5, 23, 24, 30] to be logarithmically completely monotonic on an interval I if and only if $(-1)^{m}[\ln F(x)]^{(m)} \geq 0$ for all $m \in \mathbb{N}$ and $x \in I$. We observe that we can write

$$
G(x)=G_{k, n ; p}(x)=\binom{n x}{k x} p^{k x}(1-p)^{(n-k) x}=\frac{n}{k(n-k)} \frac{p^{k x}(1-p)^{(n-k) x}}{x \mathrm{~B}(k x,(n-k) x)}
$$

where

$$
\mathrm{B}(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} \mathrm{~d} t, \quad \Re(x), \Re(y)>0
$$

denotes the classical Euler beta function and $\mathrm{B}(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$.
Recall from [18, Chapter XIII], [30, Chapter 1], and [31, Chapter IV] that an infinitely differentiable and nonnegative function $f(x)$ is said to be completely monotonic on an interval I if and only if

$$
0 \leq(-1)^{m-1} f^{(m-1)}(x)<\infty, \quad m \in \mathbb{N}, \quad x \in I
$$

The Bernstein-Widder theorem [31, p. 161, Theorem 12b] characterizes that a necessary and sufficient condition for $f(x)$ to be completely monotonic on $(0, \infty)$ is that

$$
f(x)=\int_{0}^{\infty} e^{-x t} \mathrm{~d} \mu(t), \quad x \in(0, \infty)
$$

where $\mu(t)$ is non-decreasing and the above integral converges for $x \in(0, \infty)$. In other words or simply speaking, a function is completely monotonic on $(0, \infty)$ if and only if it is a Laplace transform. Recall from [5, 11, 23, 30, that a logarithmically completely monotonic function must be completely monotonic on the same defined interval, but not conversely. This is why we restate here the main result in [2] in terms of the logarithmically complete monotonicity. For more information on new developments of this topic, please refer to [10, 12, 21, 25, 27, 28, 30] and closely related references therein.

In this paper, we first consider the function

$$
\begin{align*}
& Q(x)=Q_{\alpha, \beta ; p}(x)=\frac{\Gamma((\alpha+\beta) x+1)}{\Gamma(\alpha x+1) \Gamma(\beta x+1)} p^{\alpha x}(1-p)^{\beta x} \tag{1.5}\\
& =\binom{(\alpha+\beta) x}{\alpha x} p^{\alpha x}(1-p)^{\beta x}=\frac{\alpha+\beta}{\alpha \beta} \frac{p^{k x}(1-p)^{(n-k) x}}{x \mathrm{~B}(\alpha x, \beta x)}
\end{align*}
$$

for $x \in(0, \infty)$, where $\alpha, \beta>0$ and $p \in(0,1)$. It is easy to see that the function $Q(x)$ is an extension of $G(x)$ and $P_{n, k}(p)$ and satisfies

$$
Q_{\alpha, \beta ; p}(x)=Q_{\beta, \alpha ; 1-p}(x), \quad Q_{k, n-k ; p}(x)=G_{k, n ; p}(x), \quad Q_{k, n-k ; p}(1)=P_{n, k}(p)
$$

In Section 2, we will verify that the function $Q(x)$ is logarithmically completely monotonic on $(0, \infty)$.

More generally, we can consider the function

$$
\begin{align*}
\mathcal{Q}(x) & =\mathcal{Q}_{a, p ; m}(x)=\frac{\Gamma\left(1+x \sum_{i=1}^{m} a_{i}\right)}{\prod_{i=1}^{m} \Gamma\left(1+x a_{i}\right)} \prod_{i=1}^{m} p_{i}^{x a_{i}} \\
& =\binom{x \sum_{i=1}^{m} a_{i}}{x a_{1}, x a_{2}, \ldots, x a_{m}} \prod_{i=1}^{m} p_{i}^{x a_{i}}=\frac{\sum_{i=1}^{m} a_{i}}{\prod_{i=1}^{m} a_{i}} \frac{\prod_{i=1}^{m} p_{i}^{x a_{i}}}{x^{m-1} \mathrm{~B}\left(x a_{1}, x a_{2}, \ldots, x a_{m}\right)} \tag{1.6}
\end{align*}
$$

for $x \in(0, \infty)$ and $m \in \mathbb{N}$, where $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ with $a_{i}>0$ for $1 \leq i \leq m$, $\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ with $p_{i} \in(0,1)$ for $1 \leq i \leq m$ and $\sum_{i=1}^{m} p_{i}=1$, the notation $\binom{\sum_{i=1}^{m}, a_{i}, \ldots, a_{i}}{a_{1}, a_{2}, \ldots, a_{m}}$ denotes the multinomial coefficient, and

$$
\mathrm{B}\left(a_{1}, a_{2}, \ldots, a_{m}\right)=\frac{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right) \cdots \Gamma\left(a_{m}\right)}{\Gamma\left(a_{1}+a_{2}+\cdots+a_{m}\right)}
$$

is called the multivariate beta function. It is obvious that the function $\mathcal{Q}_{a, p ; m}(x)$ is a generalization and an extension of the functions $Q_{\alpha, \beta ; p}(x), G_{k, n ; p}(x)$, and $P_{n, k}(p)$ defined in (1.1), (1.4), and 1.5) respectively. Concretely speaking,

$$
\begin{gathered}
\mathcal{Q}_{(\alpha, \beta),(p, 1-p) ; 2}(x)=Q_{\alpha, \beta ; p}(x), \quad \mathcal{Q}_{(k, n-k),(p, 1-p) ; 2}(x)=G_{k, n ; p}(x), \\
\mathcal{Q}_{(k, n-k),(p, 1-p) ; 2}(1)=P_{n, k}(p) .
\end{gathered}
$$

In Section 2, we will show that the function $\mathcal{Q}(x)$ is logarithmically completely monotonic on $(0, \infty)$.

In Section 3, in light of logarithmically complete monotonicity of $Q(x)$ and $\mathcal{Q}(x)$, we will offer some inequalities for multinomial coefficients. In Section 4 , we will reformulate combinatorial inequalities obtained in Section 3 in terms of multivariate beta functions, that is, we will present some inequalities for multivariate beta functions. In Section 5 , the last section of this paper, we will recover some known results in [2, 16] from those inequalities obtained in Section 3 for multinomial coefficients.

2. Logarithmically completely monotonic functions

We now start out to prove our first main result in this paper: the function $Q(x)$ is logarithmically completely monotonic on $(0, \infty)$.
Theorem 2.1. For $\alpha, \beta>0$ and $p \in(0,1)$, the function $Q(x)=Q_{\alpha, \beta ; p}(x)$ defined in 1.5) is logarithmically completely monotonic on $(0, \infty)$.
Proof. Straightforward computation yields

$$
\begin{aligned}
\ln Q(x)= & \ln \Gamma((\alpha+\beta) x+1)-\ln \Gamma(\alpha x+1) \\
& -\ln \Gamma(\beta x+1)+\alpha x \ln p+\beta x \ln (1-p), \\
{[\ln Q(x)]^{\prime}=} & (\alpha+\beta) \psi((\alpha+\beta) x+1)-\alpha \psi(\alpha x+1) \\
& -\beta \psi(\beta x+1)+\alpha \ln p+\beta \ln (1-p), \\
{[\ln Q(x)]^{\prime \prime}=} & (\alpha+\beta)^{2} \psi^{\prime}((\alpha+\beta) x+1)-\alpha^{2} \psi^{\prime}(\alpha x+1)-\beta^{2} \psi^{\prime}(\beta x+1) .
\end{aligned}
$$

From

$$
\psi^{\prime}(z)=\int_{0}^{\infty} \frac{t}{1-e^{-t}} e^{-z t} \mathrm{~d} t, \quad \Re(z)>0
$$

in [1] p. 260, 6.4.1], it follows that

$$
\psi^{\prime}(\tau z+1)=\int_{0}^{\infty} \frac{t}{1-e^{-t}} e^{-(\tau z+1) t} \mathrm{~d} t
$$

$$
=\int_{0}^{\infty} \frac{t}{e^{t}-1} e^{-\tau z t} \mathrm{~d} t=\frac{1}{\tau} \int_{0}^{\infty} h\left(\frac{v}{\tau}\right) e^{-v z} \mathrm{~d} v
$$

where $\tau>0$ and $h(t)=\frac{t}{e^{t}-1}$. Accordingly, we have

$$
\begin{equation*}
[\ln Q(x)]^{\prime \prime}=\int_{0}^{\infty}\left[(\alpha+\beta) h\left(\frac{v}{\alpha+\beta}\right)-\alpha h\left(\frac{v}{\alpha}\right)-\beta h\left(\frac{v}{\beta}\right)\right] e^{-x v} \mathrm{~d} v \tag{2.1}
\end{equation*}
$$

By calculus, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\operatorname{th}\left(\frac{1}{t}\right)\right]=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{e^{1 / t}-1}\right)=\frac{e^{1 / t}}{\left(e^{1 / t}-1\right)^{2} t^{2}}>0
$$

and

$$
\begin{gathered}
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(\frac{1}{e^{1 / t}-1}\right)=\frac{e^{1 / t}\left[2 t\left(1-e^{1 / t}\right)+e^{1 / t}+1\right]}{\left(e^{1 / t}-1\right)^{3} t^{4}} \\
\quad=\frac{e^{1 / t}}{\left(e^{1 / t}-1\right)^{3} t^{4}} \sum_{k=2}^{\infty}\left(1-\frac{2}{k+1}\right) \frac{1}{t^{k}}>0
\end{gathered}
$$

on $(0, \infty)$. This means that the function $t h\left(\frac{1}{t}\right)$ is strictly convex on $(0, \infty)$. Recall from [17, p. 650] that
(1) a function $\phi:[0, \infty) \rightarrow \mathbb{R}$ is said to be star-shaped if $\phi(\alpha x) \leq \alpha \phi(x)$ for all $\alpha \in[0,1]$ and $x \geq 0 ;$
(2) a real function ϕ defined on a set $S \subset \mathbb{R}^{n}$ is said to be super-additive if $x, y \in S$ implies $x+y \in S$ and $\phi(x+y) \geq \phi(x)+\phi(y) ;$
(3) if ϕ is a real function defined on $[0, \infty), \phi(0) \leq 0$, and ϕ is convex, then ϕ is star-shaped, but convexity is not a property of all star-shaped functions;
(4) if $\phi:[0, \infty) \rightarrow \mathbb{R}$ is star-shaped, then ϕ is super-additive.

Consequently, since $\lim _{t \rightarrow 0^{+}} \frac{1}{e^{1 / t}-1}=0$, the function $t h\left(\frac{1}{t}\right)$ is star-shaped, and then super-additive, on $(0, \infty)$. As a result, it follows that

$$
\left(\frac{\alpha}{v}+\frac{\beta}{v}\right) h\left(\frac{1}{\alpha / v+\beta / v}\right) \geq \frac{\alpha}{v} h\left(\frac{1}{\alpha / v}\right)+\frac{\beta}{v} h\left(\frac{1}{\beta / v}\right)
$$

which can be simplified as

$$
(\alpha+\beta) h\left(\frac{v}{\alpha+\beta}\right) \geq \alpha h\left(\frac{v}{\alpha}\right)+\beta h\left(\frac{v}{\beta}\right)
$$

Substituting this inequality into 2.1 reveals that the second derivative $[\ln Q(x)]^{\prime \prime}$ is completely monotonic on $(0, \infty)$.

By complete monotonicity of $[\ln Q(x)]^{\prime \prime}$, we see that the first derivative $[\ln Q(x)]^{\prime}$ is strictly increasing on $(0, \infty)$, hence,

$$
\begin{aligned}
{[\ln Q(x)]^{\prime} \leq } & \lim _{x \rightarrow \infty}[(\alpha+\beta) \psi((\alpha+\beta) x+1)-\alpha \psi(\alpha x+1)-\beta \psi(\beta x+1)] \\
& +\alpha \ln p+\beta \ln (1-p) \\
= & \lim _{x \rightarrow \infty}\left[(\alpha+\beta) \psi((\alpha+\beta) x)-\alpha \psi(\alpha x)-\beta \psi(\beta x)-\frac{1}{x}\right] \\
& +\alpha \ln p+\beta \ln (1-p) \\
= & \lim _{x \rightarrow \infty}((\alpha+\beta)[\psi((\alpha+\beta) x)-\ln ((\alpha+\beta) x)]-\alpha[\psi(\alpha x)-\ln (\alpha x)]
\end{aligned}
$$

$$
\begin{aligned}
& -\beta[\psi(\beta x)-\ln (\beta x)]-\frac{1}{x}+(\alpha+\beta) \ln ((\alpha+\beta) x) \\
& -\alpha \ln (\alpha x)-\beta \ln (\beta x))+\alpha \ln p+\beta \ln (1-p) \\
= & (\alpha+\beta) \ln (\alpha+\beta)-\alpha \ln \frac{\alpha}{p}-\beta \ln \frac{\beta}{1-p} \\
= & {\left[p \frac{\alpha}{p}+(1-p) \frac{\beta}{1-p}\right] \ln \left[p \frac{\alpha}{p}+(1-p) \frac{\beta}{1-p}\right] } \\
& -p\left(\frac{\alpha}{p} \ln \frac{\alpha}{p}\right)-(1-p)\left(\frac{\beta}{1-p} \ln \frac{\beta}{1-p}\right) \\
< & 0
\end{aligned}
$$

where we used the facts that the function $x \ln x$ is convex on $(0, \infty)$ and that

$$
\begin{equation*}
\lim _{x \rightarrow \infty}[\ln x-\psi(x)]=0 \tag{2.2}
\end{equation*}
$$

see [13, Theorem 1] and [14]. In conclusion, the function $Q(x)$ is logarithmically completely monotonic on $(0, \infty)$. The proof of Theorem 2.1 is complete.

We now prove our second main result in this paper: the function $\mathcal{Q}(x)$ is logarithmically completely monotonic on $(0, \infty)$.

Theorem 2.2. Let $m \in \mathbb{N}$, $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ with $a_{i}>0$ for $1 \leq i \leq m$, and $\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ with $p_{i} \in(0,1)$ for $1 \leq i \leq m$ and $\sum_{i=1}^{m} p_{i}=1$. Then the function $\mathcal{Q}(x)=\mathcal{Q}_{a, \boldsymbol{p} ; m}(x)$ defined in $\sqrt{1.6}$ is logarithmically completely monotonic on $(0, \infty)$.

Proof. Direct calculation gives

$$
\begin{aligned}
\ln \mathcal{Q}(x) & =\ln \Gamma\left(1+x \sum_{i=1}^{m} a_{i}\right)-\sum_{i=1}^{m} \ln \Gamma\left(1+a_{i} x\right)+x \sum_{i=1}^{m} a_{i} \ln p_{i} \\
{[\ln \mathcal{Q}(x)]^{\prime} } & =\left(\sum_{i=1}^{m} a_{i}\right) \psi\left(1+x \sum_{i=1}^{m} a_{i}\right)-\sum_{i=1}^{m} a_{i} \psi\left(1+a_{i} x\right)+\sum_{i=1}^{m} a_{i} \ln p_{i}
\end{aligned}
$$

and

$$
[\ln \mathcal{Q}(x)]^{\prime \prime}=\left(\sum_{i=1}^{m} a_{i}\right)^{2} \psi^{\prime}\left(1+x \sum_{i=1}^{m} a_{i}\right)-\sum_{i=1}^{m} a_{i}^{2} \psi^{\prime}\left(1+a_{i} x\right)
$$

As did in the proof of Theorem (2.1), we can obtain

$$
\begin{equation*}
[\ln \mathcal{Q}(x)]^{\prime \prime}=\int_{0}^{\infty}\left[\left(\sum_{i=1}^{m} a_{i}\right) h\left(\frac{v}{\sum_{i=1}^{m} a_{i}}\right)-\sum_{i=1}^{m} a_{i} h\left(\frac{v}{a_{i}}\right)\right] e^{-x v} \mathrm{~d} v \tag{2.3}
\end{equation*}
$$

Since the function $w h\left(\frac{v}{w}\right)=\frac{v}{e^{v / w}-1}$ is sup-additive on $w \in(0, \infty)$ for any fixed $v>0$, by induction, it follows that

$$
\left(\sum_{i=1}^{m} a_{i}\right) h\left(\frac{v}{\sum_{i=1}^{m} a_{i}}\right) \geq \sum_{i=1}^{m} a_{i} h\left(\frac{v}{a_{i}}\right) .
$$

Combining this with 2.3 yields that the second derivative $[\ln \mathcal{Q}(x)]^{\prime \prime}$ is completely monotonic on $(0, \infty)$.

Complete monotonicity of $[\ln \mathcal{Q}(x)]^{\prime \prime}$ implies that the first derivative $[\ln \mathcal{Q}(x)]^{\prime}$ is strictly increasing on $(0, \infty)$, therefore,

$$
\begin{aligned}
{[\ln \mathcal{Q}(x)]^{\prime} \leq } & \lim _{x \rightarrow \infty}\left[\left(\sum_{i=1}^{m} a_{i}\right) \psi\left(1+x \sum_{i=1}^{m} a_{i}\right)-\sum_{i=1}^{m} a_{i} \psi\left(1+a_{i} x\right)\right]+\sum_{i=1}^{m} a_{i} \ln p_{i} \\
= & \lim _{x \rightarrow \infty}\left[\left(\sum_{i=1}^{m} a_{i}\right) \psi\left(x \sum_{i=1}^{m} a_{i}\right)-\sum_{i=1}^{m} a_{i} \psi\left(a_{i} x\right)-\frac{m-1}{x}\right]+\sum_{i=1}^{m} a_{i} \ln p_{i} \\
= & \lim _{x \rightarrow \infty}\left(\left(\sum_{i=1}^{m} a_{i}\right)\left[\psi\left(x \sum_{i=1}^{m} a_{i}\right)-\ln \left(x \sum_{i=1}^{m} a_{i}\right)\right]\right. \\
& -\sum_{i=1}^{m} a_{i}\left[\psi\left(a_{i} x\right)-\ln \left(a_{i} x\right)\right]+\left(\sum_{i=1}^{m} a_{i}\right) \ln \left(x \sum_{i=1}^{m} a_{i}\right) \\
& \left.-\sum_{i=1}^{m} a_{i} \ln \left(a_{i} x\right)\right)+\sum_{i=1}^{m} a_{i} \ln p_{i} \\
= & \left(\sum_{i=1}^{m} a_{i}\right) \ln \left(\sum_{i=1}^{m} a_{i}\right)-\sum_{i=1}^{m} a_{i} \ln a_{i}+\sum_{i=1}^{m} a_{i} \ln p_{i} \\
= & \left(\sum_{i=1}^{m} p_{i} \frac{a_{i}}{p_{i}}\right) \ln \left(\sum_{i=1}^{m} p_{i} \frac{a_{i}}{p_{i}}\right)-\sum_{i=1}^{m} p_{i} \frac{a_{i}}{p_{i}} \ln \frac{a_{i}}{p_{i}} \\
\leq & 0,
\end{aligned}
$$

where, as did in the proof of Theorem 2.1, we used the limit 2.2 and convexity of the function $x \ln x$ on $(0, \infty)$. The proof of Theorem 2.2 is complete.

3. Three inequalities for multinomial coefficients

In light of logarithmically complete monotonicity of $Q(x)$ and $\mathcal{Q}(x)$, we now offer some inequalities for multinomial coefficients.

Theorem 3.1. For $\ell, m \in \mathbb{N}$, let $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ with $a_{i}>0$ for $1 \leq i \leq m$, $x_{j}>0$ for $1 \leq j \leq \ell$, and $\lambda_{j} \in(0,1)$ with $\sum_{j=1}^{\ell} \lambda_{j}=1$. Then

$$
\left.\begin{array}{rl}
\sum_{j=1}^{\ell} \lambda_{j} x_{j} \sum_{i=1}^{m} a_{i} \\
a_{1} \sum_{j=1}^{\ell} \lambda_{j} x_{j}, a_{2} \sum_{j=1}^{\ell} \lambda_{j} x_{j}, \ldots, a_{m} \sum_{j=1}^{\ell} \lambda_{j} x_{j} \tag{3.1}
\end{array}\right) .
$$

and the equality in (3.1) holds if and only if $x_{1}=x_{2}=\cdots=x_{\ell}$. In particular, when $\ell=m=2$,

$$
\begin{equation*}
\binom{\left(a_{1}+a_{2}\right)\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)}{a_{1}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)} \leq\binom{\left(a_{1}+a_{2}\right) x_{1}}{a_{1} x_{1}}^{\lambda_{1}}\binom{\left(a_{1}+a_{2}\right) x_{2}}{a_{1} x_{2}}^{\lambda_{2}} \tag{3.2}
\end{equation*}
$$

and the equality in 3.2 is valid if and only if $x_{1}=x_{2}$.

Proof. Logarithmically complete monotonicity in Theorem 2.2 implies that the function $\mathcal{Q}(x)$ is logarithmically convex on $(0, \infty)$. Hence, we acquire

$$
\mathcal{Q}\left(\sum_{j=1}^{\ell} \lambda_{j} x_{j}\right) \leq \prod_{j=1}^{\ell} \mathcal{Q}^{\lambda_{j}}\left(x_{j}\right)
$$

Making use of the expression

$$
\mathcal{Q}(x)=\binom{x \sum_{i=1}^{m} a_{i}}{x a_{1}, x a_{2}, \ldots, x a_{m}} \prod_{i=1}^{m} p_{i}^{x a_{i}}
$$

arrives at

$$
\left.\begin{array}{rl}
\left(\sum_{j=1}^{\ell} \lambda_{j} x_{j} \sum_{i=1}^{m} a_{i}\right. \\
a_{1} \sum_{j=1}^{\ell} \lambda_{j} x_{j}, a_{2} \sum_{j=1}^{\ell} \lambda_{j} x_{j}, \ldots, & a_{m} \sum_{j=1}^{\ell} \lambda_{j} x_{j}
\end{array}\right) \prod_{i=1}^{m} p_{i}^{a_{i} \sum_{j=1}^{\ell} \lambda_{j} x_{j}} .
$$

which can be rearranged as 3.1.
The inequality 3.2 can also be independently derived from logarithmically complete monotonicity of $Q(x)$. The proof of Theorem 3.1 is complete.

Theorem 3.2. For $\ell, m \in \mathbb{N}$, let $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ with $a_{i}>0$ for $1 \leq i \leq m$ and let $x_{j}>0$ for $1 \leq j \leq \ell$. Then

$$
\begin{equation*}
\prod_{j=1}^{\ell}\binom{x_{j} \sum_{i=1}^{m} a_{i}}{x_{j} a_{1}, x_{j} a_{2}, \ldots, x_{j} a_{m}}<\binom{\sum_{j=1}^{\ell} x_{j} \sum_{i=1}^{m} a_{i}}{a_{1} \sum_{j=1}^{\ell} x_{j}, a_{2} \sum_{j=1}^{\ell} x_{j}, \ldots, a_{m} \sum_{j=1}^{\ell} x_{j}} \tag{3.3}
\end{equation*}
$$

In particular, when $\ell=m=2$,

$$
\begin{equation*}
\binom{\left(a_{1}+a_{2}\right) x_{1}}{a_{1} x_{1}}\binom{\left(a_{1}+a_{2}\right) x_{2}}{a_{1} x_{2}}<\binom{\left(a_{1}+a_{2}\right)\left(x_{1}+x_{2}\right)}{a_{1}\left(x_{1}+x_{2}\right)} \tag{3.4}
\end{equation*}
$$

Proof. In [2, Lemma 3], it was established that, if $g:[0, \infty) \rightarrow(0,1]$ is differentiable and $\frac{g^{\prime}}{g}$ is strictly increasing on $(0, \infty)$, then $g(x) g(y)<g(x+y)$ for $x, y \in(0, \infty)$. From this, we can inductively derive

$$
\prod_{j=1}^{\ell} g\left(x_{j}\right)<g\left(\sum_{j=1}^{\ell} x_{j}\right)
$$

Applying this inequality to the function $\mathcal{Q}(x)$ yields

$$
\begin{aligned}
& \prod_{j=1}^{\ell}\left[\binom{x_{j} \sum_{i=1}^{m} a_{i}}{x_{j} a_{1}, x_{j} a_{2}, \ldots, x_{j} a_{m}} \prod_{i=1}^{m} p_{i}^{a_{i} x_{j}}\right] \\
& \quad<\binom{\sum_{j=1}^{\ell} x_{j} \sum_{i=1}^{m} a_{i}}{a_{1} \sum_{j=1}^{\ell} x_{j}, a_{2} \sum_{j=1}^{\ell} x_{j}, \ldots, a_{m} \sum_{j=1}^{\ell} x_{j}} \prod_{i=1}^{m} p_{i}^{a_{i} \sum_{j=1}^{\ell} x_{j}}
\end{aligned}
$$

which can be rewritten as 3.3 .
The inequality (3.4) can also be independently derived from logarithmically complete monotonicity of $Q(x)$. The proof of Theorem 3.2 is complete.

Theorem 3.3. For $m \in \mathbb{N}$, let $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ with $a_{i}>0$ for $1 \leq i \leq m$. If $0<a \leq c$ and $x>0$, then

$$
\begin{align*}
& \binom{(a+x) \sum_{i=1}^{m} a_{i}}{(a+x) a_{1},(a+x) a_{2}, \ldots,(a+x) a_{m}}\binom{c \sum_{i=1}^{m} a_{i}}{c a_{1}, c a_{2}, \ldots, c a_{m}} \\
& \leq\binom{ a \sum_{i=1}^{m} a_{i}}{a a_{1}, a a_{2}, \ldots, a a_{m}}\binom{(c+x) \sum_{i=1}^{m} a_{i}}{(c+x) a_{1},(c+x) a_{2}, \ldots,(c+x) a_{m}} \tag{3.5}
\end{align*}
$$

and the equality in (3.5) holds if and only if $a=c$. In particular, when $m=2$,

$$
\begin{equation*}
\binom{(a+x)\left(a_{1}+a_{2}\right)}{(a+x) a_{1}}\binom{c\left(a_{1}+a_{2}\right)}{c a_{1}} \leq\binom{ a\left(a_{1}+a_{2}\right)}{a a_{1}}\binom{(c+x)\left(a_{1}+a_{2}\right)}{(c+x) a_{1}} \tag{3.6}
\end{equation*}
$$

and the equality in (3.6 holds if and only if $a=c$.
Proof. For $0<a<c$, define

$$
V(x)=\ln \mathcal{Q}(a+x)+\ln \mathcal{Q}(c)-\ln \mathcal{Q}(a)-\ln \mathcal{Q}(c+x)
$$

Since

$$
V^{\prime}(x)=\frac{\mathcal{Q}^{\prime}(a+x)}{\mathcal{Q}(a+x)}-\frac{\mathcal{Q}^{\prime}(c+x)}{\mathcal{Q}(c+x)}
$$

and logarithmically complete monotonicity of $\mathcal{Q}(x)$ implies that $\frac{\mathcal{Q}^{\prime}(x)}{\mathcal{Q}(x)}$ is strictly increasing on $(0, \infty)$, we conclude that $V^{\prime}(x)<0$ and $V(x)<V(0)=0$. Therefore,

$$
\ln \mathcal{Q}(a+x)+\ln \mathcal{Q}(c) \leq \ln \mathcal{Q}(a)+\ln \mathcal{Q}(c+x)
$$

which is equivalent to

$$
\begin{aligned}
& \ln \left[\binom{(a+x) \sum_{i=1}^{m} a_{i}}{(a+x) a_{1},(a+x) a_{2}, \ldots,(a+x) a_{m}} \prod_{i=1}^{m} p_{i}^{a_{i}(a+x)}\right] \\
& \quad+\ln \left[\binom{c \sum_{i=1}^{m} a_{i}}{c a_{1}, c a_{2}, \ldots, c a_{m}} \prod_{i=1}^{m} p_{i}^{a_{i} c}\right] \leq \ln \left[\binom{a \sum_{i=1}^{m} a_{i}}{a a_{1}, a a_{2}, \ldots, a a_{m}} \prod_{i=1}^{m} p_{i}^{a_{i} a}\right] \\
& \quad+\ln \left[\binom{(c+x) \sum_{i=1}^{m} a_{i}}{(c+x) a_{1},(c+x) a_{2}, \ldots,(c+x) a_{m}} \prod_{i=1}^{m} p_{i}^{a_{i}(c+x)}\right] .
\end{aligned}
$$

This can be simplified as 3.5.
The inequality (3.6) can also be independently derived from logarithmically complete monotonicity of $Q(x)$. The proof of Theorem 3.3 is complete.

4. Three inequalities for multivariate beta functions

For $a_{i}>0$ and $i \in \mathbb{N}$, the multinomial coefficient and the multivariate beta function have the relation

$$
\binom{\sum_{i=1}^{m} a_{i}}{a_{1}, a_{2}, \ldots, a_{m}}=\frac{\sum_{i=1}^{m} a_{i}}{\prod_{i=1}^{m} a_{i}} \frac{1}{\mathrm{~B}\left(a_{1}, a_{2}, \ldots, a_{m}\right)}
$$

Therefore, from those inequalities for multinomial coefficients in Section 3, we can derive some inequalities for the multivariate beta function $\mathrm{B}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$. In other words, Theorems (3.1) to (3.3) can be respectively reformulated as the following forms.
4.1. First inequality for multivariate beta function. For $\ell, m \in \mathbb{N}$, let $\boldsymbol{a}=$ $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ with $a_{i}>0$ for $1 \leq i \leq m, x_{j}>0$ for $1 \leq j \leq \ell$, and $\lambda_{j} \in(0,1)$ with $\sum_{j=1}^{\ell} \lambda_{j}=1$. Then

$$
\begin{equation*}
\frac{\mathrm{B}\left(a_{1} \sum_{j=1}^{\ell} \lambda_{j} x_{j}, a_{2} \sum_{j=1}^{\ell} \lambda_{j} x_{j}, \ldots, a_{m} \sum_{j=1}^{\ell} \lambda_{j} x_{j}\right)}{\prod_{j=1}^{\ell} \mathrm{B}^{\lambda_{j}}\left(a_{1} x_{j}, a_{2} x_{j}, \ldots, a_{m} x_{j}\right)} \geq\left(\frac{\prod_{j=1}^{\ell} x_{j}^{\lambda_{j}}}{\sum_{j=1}^{\ell} \lambda_{j} x_{j}}\right)^{m-1} \tag{4.1}
\end{equation*}
$$

and the equality in 4.1 holds if and only if $x_{1}=x_{2}=\cdots=x_{\ell}$. In particular, when $\ell=m=2$,

$$
\begin{equation*}
\frac{\mathrm{B}\left(a_{1}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right), a_{2}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)\right)}{\mathrm{B}^{\lambda_{1}}\left(a_{1} x_{1}, a_{2} x_{1}\right) \mathrm{B}^{\lambda_{2}}\left(a_{1} x_{2}, a_{2} x_{2}\right)} \geq \frac{x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}}}{\lambda_{1} x_{1}+\lambda_{2} x_{2}} \tag{4.2}
\end{equation*}
$$

and the equality in $\sqrt[4.2]{ }$ is valid if and only if $x_{1}=x_{2}$.
The inequality 4.1) or (4.2) implies that the function $x^{m-1} \mathrm{~B}\left(x a_{1}, x a_{2}, \ldots, x a_{m}\right)$ for $m \in \mathbb{N}$ is logarithmically concave with respect to $x \in(0, \infty)$. More generally, we claim that the reciprocal $\frac{1}{x^{m-1} \mathrm{~B}\left(x a_{1}, x a_{2}, \ldots, x a_{m}\right)}$ for $m \in \mathbb{N}$ is a logarithmically completely monotonic function of $x \in(0, \infty)$.
4.2. Second inequality for multivariate beta function. For $\ell, m \in \mathbb{N}$, let $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ with $a_{i}>0$ for $1 \leq i \leq m$ and let $x_{j}>0$ for $1 \leq j \leq \ell$. Then

$$
\frac{\prod_{j=1}^{\ell} \mathrm{B}\left(a_{1} x_{j}, a_{2} x_{j}, \ldots, a_{m} x_{j}\right)}{\mathrm{B}\left(a_{1} \sum_{j=1}^{\ell} x_{j}, a_{2} \sum_{j=1}^{\ell} x_{j}, \ldots, a_{m} \sum_{j=1}^{\ell} x_{j}\right)}>\left(\frac{\sum_{i=1}^{m} a_{i}}{\prod_{i=1}^{m} a_{i}}\right)^{\ell-1}\left(\frac{\sum_{j=1}^{\ell} x_{j}}{\prod_{j=1}^{\ell} x_{j}}\right)^{m-1}
$$

In particular, when $\ell=m=2$,

$$
\frac{\mathrm{B}\left(a_{1} x_{1}, a_{2} x_{1}\right) \mathrm{B}\left(a_{1} x_{2}, a_{2} x_{2}\right)}{\mathrm{B}\left(a_{1}\left(x_{1}+x_{2}\right), a_{2}\left(x_{1}+x_{2}\right)\right)}>\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)
$$

4.3. Third inequality for multivariate beta function. For $m \in \mathbb{N}$, let $\boldsymbol{a}=$ $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ with $a_{i}>0$ for $1 \leq i \leq m$. If $0<a \leq c$ and $x>0$, then

$$
\begin{align*}
& \left(\frac{c}{c+x}\right)^{m-1} \frac{\mathrm{~B}\left(c a_{1}, c a_{2}, \ldots, c a_{m}\right)}{\mathrm{B}\left((c+x) a_{1},(c+x) a_{2}, \ldots,(c+x) a_{m}\right)} \\
& \quad \geq\left(\frac{a}{a+x}\right)^{m-1} \frac{\mathrm{~B}\left(a a_{1}, a a_{2}, \ldots, a a_{m}\right)}{\mathrm{B}\left((a+x) a_{1},(a+x) a_{2}, \ldots,(a+x) a_{m}\right)} \tag{4.3}
\end{align*}
$$

and the equality in 4.3 holds if and only if $a=c$. In particular, when $m=2$,

$$
\begin{equation*}
\frac{c}{c+x} \frac{\mathrm{~B}\left(a_{1} c, a_{2} c\right)}{\mathrm{B}\left(a_{1}(c+x), a_{2}(c+x)\right)} \geq \frac{a}{a+x} \frac{\mathrm{~B}\left(a_{1} a, a_{2} a\right)}{\mathrm{B}\left(a_{1}(a+x), a_{2}(a+x)\right)} \tag{4.4}
\end{equation*}
$$

and the equality in (4.4 holds if and only if $a=c$.
The inequality 4.3) implies that the function

$$
\left(\frac{t}{t+x}\right)^{m-1} \frac{\mathrm{~B}\left(a_{1} t, a_{2} t, \ldots, a_{m} t\right)}{\mathrm{B}\left(a_{1}(t+x), a_{2}(t+x), \ldots, a_{m}(t+x)\right)}
$$

for $m \in \mathbb{N}$ and $x, a_{i}>0$ is strictly increasing with respect to $t \in(0, \infty)$.
Remark 4.1. For more information on inequalities for the beta function $\mathrm{B}(x, y)$ and their applications, please refer to [3, 6, 7, 8, 9, 22, 29] and closely related references therein.

5. Recovering four known Results

From Theorems 3.1 to 3.3 , we can recover inequalities and monotonicity for binomial coefficients in the papers [2, 16].
5.1. First recovery. Taking $a_{1}=k \in \mathbb{N}$ and $a_{2}=n-k \in \mathbb{N}$ in (3.2) results in

$$
\begin{equation*}
\binom{\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) n}{\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) k} \leq\binom{ x_{1} n}{x_{1} k}^{\lambda_{1}}\binom{x_{2} n}{x_{2} k}^{\lambda_{2}}, \quad x_{1}, x_{2}, \lambda_{1}, \lambda_{2}>0, \quad \lambda_{1}+\lambda_{2}=1 \tag{5.1}
\end{equation*}
$$

and the equality in (5.1) holds if and only if $x_{1}=x_{2}>0$. This recovers [2, Corollary 1]. When further letting $\lambda_{1}=\lambda_{2}=\frac{1}{2}$ and setting $x_{1}=j-1$ and $x_{2}=j+1$ in 5.1), we recover a combinatorial inequality in [16, p. 4, Section 4].
5.2. Second recovery. Setting $a_{1}=k \in \mathbb{N}$ and $a_{2}=n-k \in \mathbb{N}$ in 3.4 gives

$$
\binom{n x_{1}}{k x_{1}}\binom{n x_{2}}{k x_{2}}<\binom{n\left(x_{1}+x_{2}\right)}{k\left(x_{1}+x_{2}\right)}, \quad x_{1}, x_{2}>0
$$

which is a recovery of [2, Corollary 2].
5.3. Third recovery. Letting $a_{1}=k \in \mathbb{N}$ and $a_{2}=n-k \in \mathbb{N}$ in (3.6) deduces

$$
\begin{equation*}
\binom{(a+x) n}{(a+x) k}\binom{c n}{c k} \leq\binom{ a n}{a k}\binom{(x+c) n}{(x+c) k} \tag{5.2}
\end{equation*}
$$

for $0<a \leq c$ and $x>0$ and the equality is valid if and only if $a=c>0$. The inequality $(5.2$ is a recovery of [2, Corollary 3$]$.
5.4. Fourth recovery. For $a_{1}, a_{2}, x>0$ and $0<a<c$, the inequality 3.6 means that the function

$$
F_{a, c ; a_{1}, a_{2}}(x)=\binom{(a+x)\left(a_{1}+a_{2}\right)}{(a+x) a_{1}} /\binom{(c+x)\left(a_{1}+a_{2}\right)}{(c+x) a_{1}}
$$

is decreasing in $x>0$ and

$$
\lim _{x \rightarrow \infty} F_{a, c ; a_{1}, a_{2}}(x)=\left(\frac{a_{1}}{a_{1}+a_{2}}\right)^{a_{1}}\left(\frac{a_{2}}{a_{1}+a_{2}}\right)^{a_{2}}
$$

This generalizes [16, Lemma 2.2] which reads that the sequence $T_{n, k}(j)=\frac{\binom{(j-1) n}{(j-1) k}}{\binom{n}{j k}}$ for integers $0 \leq k \leq n$ is decreasing in $j \geq 1$ and

$$
\lim _{j \rightarrow \infty} T_{n, k}(j)=\left(\frac{k}{n}\right)^{k}\left(\frac{n-k}{n}\right)^{n-k}
$$

Remark 5.1. This paper is a revised version of the preprint [26].
Acknowledgements. The third author was supported by the National Research Foundation of Korea (Grant No. 2018R1D1A1B07041846).

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Dover Publications, New York and Washington, 1972.
[2] H. Alzer, Complete monotonicity of a function related to the binomial probability, J. Math. Anal. Appl. 459 (2018), no. 1, 10-15; Available online at https://doi.org/10.1016/j.jmaa. 2017.10 .077
[3] H. Alzer, Sharp inequalities for the beta function, Indag. Math. (N.S.) 12 (2001), no. 1, 15-21; Available online at http://dx.doi.org/10.1016/S0019-3577(01)80002-1.
[4] R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci. 41 (1988), no. 2, 21-23.
[5] C. Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (2004), no. 4, 433-439; Available online at http://dx.doi.org/10.1007/ s00009-004-0022-6
[6] P. Cerone, Special functions: approximations and bounds, Appl. Anal. Discrete Math. 1 (2007), no. 1, 72-91; Available online at http://dx.doi.org/10.2298/AADM0701072C
[7] P. Cerone, Special Functions Approximations and Bounds via Integral Representation. In: Advances in Inequalities for Special Functions. Pietro Cerone and Sever S. Dragomir eds. Advances in Mathematical Inequalities. Nova Science Publishers, New York, USA, pp. 1-35, 2008.
[8] S. S. Dragomir, R. P. Agarwal, and N. S. Barnett, Inequalities for beta and gamma functions via some classical and new integral inequalities, J. Inequal. Appl. 5 (2000), no. 2, 103-165; Available online at https://doi.org/10.1155/S1025583400000084
[9] L. Grenié and G. Molteni, Inequalities for the beta function, Math. Inequal. Appl. 18 (2015), no. 4, 1427-1442; Available online at https://doi.org/10.7153/mia-18-111.
[10] B.-N. Guo and F. Qi, A completely monotonic function involving the tri-gamma function and with degree one, Appl. Math. Comput. 218 (2012), no. 19, 9890-9897; Available online at http://dx.doi.org/10.1016/j.amc.2012.03.075
[11] B.-N. Guo and F. Qi, A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72 (2010), no. 2, 21-30.
[12] B.-N. Guo and F. Qi, On the degree of the weighted geometric mean as a complete Bernstein function, Afr. Mat. 26 (2015), no. 7, 1253-1262; Available online at http://dx.doi.org/10. 1007/s13370-014-0279-2
[13] B.-N. Guo and F. Qi, Two new proofs of the complete monotonicity of a function involving the psi function, Bull. Korean Math. Soc. 47 (2010), no. 1, 103-111; Available online at http://dx.doi.org/10.4134/bkms.2010.47.1.103
[14] B.-N. Guo, F. Qi, J.-L. Zhao, and Q.-M. Luo, Sharp inequalities for polygamma functions, Math. Slovaca 65 (2015), no. 1, 103-120; Available online at http://dx.doi.org/10.1515/ ms-2015-0010
[15] A. Leblanc and B. C. Johnson, A Family of Inequalities Related to Binomial Probabilities, Tech. Report, Department of Statistics, University of Manitoba, 2006-03.
[16] A. Leblanc and B. C. Johnson, On a uniformly integrable family of polynomials defined on the unit interval, J. Inequal. Pure Appl. Math. 8 (2007), no. 3, Article 67, 5 pp. Available online at https://www.emis.de/journals/JIPAM/article878.html
[17] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization and its Applications, 2nd Ed., Springer Verlag, New York-Dordrecht-Heidelberg-London, 2011; Available online at http://dx.doi.org/10.1007/978-0-387-68276-1
[18] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993; Available online at http: //dx.doi.org/10.1007/978-94-017-1043-5
[19] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010; Available online at http://dlmf.nist.gov/
[20] F. Qi, Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities, Filomat 27 (2013), no. 4, 601-604; Available online at http://dx.doi. org/10.2298/FIL1304601Q
[21] F. Qi, Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions, Math. Inequal. Appl. 18 (2015), no. 2, 493-518; Available online at http://dx.doi.org/10.7153/mia-18-37
[22] F. Qi and P. Cerone, Some properties of the Fuss-Catalan numbers, Mathematics 6 (2018), no. 12, Article 277, 12 pages; Available online at https://doi.org/10.3390/math6120277
[23] F. Qi and C.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2004), 603-607; Available online at http://dx.doi.org/10.1016/j.jmaa. 2004.04.026
[24] F. Qi, B.-N. Guo, and C.-P. Chen, Some completely monotonic functions involving the gamma and polygamma functions, J. Aust. Math. Soc. 80 (2006), 81-88; Available online at http: //dx.doi.org/10.1017/S1446788700011393
[25] F. Qi and W.-H. Li, Integral representations and properties of some functions involving the logarithmic function, Filomat 30 (2016), no. 7, 1659-1674; Available online at https: //doi.org/10.2298/FIL1607659Q
[26] F. Qi, D.-W. Niu, D. Lim, and B.-N. Guo, Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions, HAL archives (2018), available online at https://hal.archives-ouvertes.fr/hal-01769288
[27] F. Qi and S.-H. Wang, Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions, Glob. J. Math. Anal. 2 (2014), no. 3, 91-97; Available online at http://dx.doi. org/10.14419/gjma.v2i3.2919.
[28] F. Qi, X.-J. Zhang, and W.-H. Li, Lévy-Khintchine representations of the weighted geometric mean and the logarithmic mean, Mediterr. J. Math. 11 (2014), no. 2, 315-327; Available online at http://dx.doi.org/10.1007/s00009-013-0311-z
[29] S.-L. Qiu and M. Vuorinen, Some properties of the gamma and psi functions, with applications, Math. Comp. 74 (2005), no. 250, 723-742; Available online at https://doi.org/10. 1090/S0025-5718-04-01675-8
[30] R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions-Theory and Applications, 2nd ed., de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, Germany, 2012; Available online at http://dx.doi.org/10.1515/9783110269338.
[31] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.
Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, Henan, China; College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043 , Inner Mongolia, China; School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China

Email address: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com
$U R L$: https://qifeng618.wordpress.com
Department of Science, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China

Email address: nnddww@gmail.com
$U R L$: http://orcid.org/0000-0003-4033-7911
Department of Mathematics Education, Andong National University, Andong 36729, Republic of Korea

Email address: dgrim84@gmail.com, dklim@andong.ac.kr
$U R L$: http://orcid.org/0000-0002-0928-8480
School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454010, Henan, China

Email address: bai.ni.guo@gmail.com, bai.ni.guo@hotmail.com
URL: http://www.researcherid.com/rid/C-8032-2013

[^0]: 2010 Mathematics Subject Classification. Primary 26A48; Secondary 05A20, 26D07, 33B15, 44A10, 60C05.
 Key words and phrases. logarithmically complete monotonicity; completely monotonic function; extension; gamma function; inequality; multinomial coefficient; multivariate beta function; Bernoulli trial; binomial probability.
 This paper was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LATEX.

