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SOME LOGARITHMICALLY COMPLETELY MONOTONIC

FUNCTIONS AND INEQUALITIES FOR MULTINOMIAL

COEFFICIENTS AND MULTIVARIATE BETA FUNCTIONS

FENG QI, DA-WEI NIU, DONGKYU LIM, AND BAI-NI GUO

Abstract. In the paper, the authors extend a function arising from the
Bernoulli trials in probability and involving the gamma function to its largest

ranges, find logarithmically complete monotonicity of these extended functions,

and, in the light of logarithmically complete monotonicity of these extended
functions, derive some inequalities for multinomial coefficients and multivari-

ate beta functions. These results recover, extend, and generalize some known

conclusions.
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1. Background and motivation

Let us denote by Pn,k(p) the probability of achieving exactly k successes in n
Bernoulli trials with success probability p, that is,

Pn,k(p) =
Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
pk(1− p)n−k =

(
n

k

)
pk(1− p)n−k, (1.1)
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where Γ(z) denotes the classical Euler gamma function which can be defined [1, 14,
15] by

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0

or by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }.

In the technical report [9], Leblanc and Johnson considered a problem: which is
more likely to happen: k successes in n trials or 2k successes in 2n trials? They
proved that

P2n,2k(p) ≤ Pn,k(p), 0 ≤ k ≤ n, p ∈ (0, 1). (1.2)

This means that k successes in n trials is more likely to happen than 2k successes
in 2n trials. One year later, the same authors generalized the inequality (1.2) in
the paper [10] by

P(j+1)n,(j+1)k(p) ≤ Pjn,jk(p), j ∈ N. (1.3)

About ten years later, Alzer extended the inequality (1.3) in the note [2] by
considering the function

G(x) = Gk,n,p(x) =
Γ(nx+ 1)

Γ(kx+ 1)Γ((n− k)x+ 1)
pkx(1− p)(n−k)x (1.4)

and essentially proving that the function G(x) is logarithmically completely mono-
tonic on (0,∞), where k and n are integers with 0 ≤ k ≤ n, p ∈ (0, 1), and
an infinitely differentiable and positive function F (x) is said to be logarithmically
completely monotonic on an interval I if and only if (−1)m[lnF (x)](m) ≥ 0 for all
m ∈ N and x ∈ I. We observe that we can write

G(x) = Gk,n,p(x) =

(
nx

kx

)
pkx(1− p)(n−k)x =

n

k(n− k)

pkx(1− p)(n−k)x

xB(kx, (n− k)x)
,

where

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 d t, <(x),<(y) > 0

denotes the classical Euler beta function and B(x, y) = Γ(x)Γ(y)
Γ(x+y) .

Recall from [12, Chapter XIII], [23, Chapter 1], and [24, Chapter IV] that an
infinitely differentiable and nonnegative function F (x) is said to be completely
monotonic on an interval I if and only if (−1)m−1F (m−1)(x) ≥ 0 for all m ∈ N and
x ∈ I. The famous Bernstein–Widder theorem [24, p. 161, Theorem 12b] states
that a necessary and sufficient condition for f(x) to be completely monotonic on
(0,∞) is that f(x) =

∫∞
0
e−xt dµ(t) for x ∈ (0,∞), where µ is a positive measure on

[0,∞) such that the above integral converges. In other words or simply speaking, a
function is completely monotonic on (0,∞) if and only if it is a Laplace transform.
Recall from [3, 5, 17, 23] that a logarithmically completely monotonic function must
be completely monotonic on the same defined interval, but not conversely. This is
why we restate here the main result in [2] in terms of the logarithmically complete
monotonicity. For more information on new developments of this topic, please refer
to [4, 6, 16, 18, 20, 22, 23] and closely related references therein.



COMPLETELY MONOTONIC FUNCTIONS AND INEQUALITIES 3

In this paper, we first consider the function

Q(x) = Qα,β,p(x) =
Γ((α+ β)x+ 1)

Γ(αx+ 1)Γ(βx+ 1)
pαx(1− p)βx

=

(
(α+ β)x

αx

)
pαx(1− p)βx =

α+ β

αβ

pkx(1− p)(n−k)x

xB(αx, βx)

(1.5)

for x ∈ (0,∞), where α, β > 0 and p ∈ (0, 1). It is easy to see that the function
Q(x) is an extension of G(x) and Pn,k(p) and satisfies

Qα,β,p(x) = Qβ,α,1−p(x), Qk,n−k,p(x) = Gk,n,p(x), Qk,n−k,p(1) = Pn,k(p).

In Section 2, we will verify that the function Q(x) is logarithmically completely
monotonic on (0,∞).

More generally, we can consider the function

Q(x) = Qa,p;m(x) =
Γ
(
1 + x

∑m
i=1 ai

)∏m
i=1 Γ(1 + aix)

m∏
i=1

paixi

=

(
x
∑m
i=1 ai

a1x, a2x, . . . , amx

) m∏
i=1

paixi =

∑m
i=1 ai∏m
i=1 ai

∏m
i=1 p

aix
i

xm−1 B(a1x, a2x, . . . , amx)
(1.6)

for x ∈ (0,∞) and m ∈ N, where a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m,

p = (p1, p2, . . . , pm) with pi ∈ (0, 1) for 1 ≤ i ≤ m and
∑m
i=1 pi = 1,

( ∑m
i=1 ai

a1,a2,...,am

)
denotes the multinomial coefficient, and

B(a1, a2, . . . , am) =
Γ(a1)Γ(a2) · · ·Γ(am)

Γ(a1 + a2 + · · ·+ am)

is called the multivariate beta function. It is obvious that the function Qa,p;m(x) is
a generalization and an extension of the functions Qα,β,p(x), Gk,n,p(x), and Pn,k(p)
defined in (1.1), (1.4), and (1.5) respectively. Concretely speaking,

Q(α,β),(p,1−p);2(x) = Qα,β,p(x), Q(k,n−k),(p,1−p);2(x) = Gk,n,p(x),

Q(k,n−k),(p,1−p);2(1) = Pn,k(p).

In Section 2, we will show that the function Q(x) is logarithmically completely
monotonic on (0,∞).

In Section 3, in the light of logarithmically complete monotonicity of Q(x) and
Q(x), we will offer some inequalities for multinomial coefficients. In Section 4, we
will reformulate combinatorial inequalities obtained in Section 3 in terms of mul-
tivariate beta functions, that is, we will present some inequalities for multivariate
beta functions. In Section 5, the last section of this paper, we will recover some
known results from inequalities obtained in Section 3 for multinomial coefficients.

2. Logarithmically completely monotonic functions

We now start out to prove our first main result in this paper: the function Q(x)
is logarithmically completely monotonic on (0,∞).

Theorem 2.1. For α, β > 0 and p ∈ (0, 1), the function Q(x) = Qα,β,p(x) defined
in (1.5) is logarithmically completely monotonic on (0,∞).
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Proof. Straightforward computation yields

lnQ(x) = ln Γ((α+ β)x+ 1)− ln Γ(αx+ 1)

− ln Γ(βx+ 1) + αx ln p+ βx ln(1− p),
[lnQ(x)]′ = (α+ β)ψ((α+ β)x+ 1)− αψ(αx+ 1)

− βψ(βx+ 1) + α ln p+ β ln(1− p),
[lnQ(x)]′′ = (α+ β)2ψ′((α+ β)x+ 1)− α2ψ′(αx+ 1)− β2ψ′(βx+ 1).

From

ψ′(z) =

∫ ∞
0

t

1− e−t
e−zt d t, <(z) > 0

in [1, p. 260, 6.4.1], it follows that

ψ′(τz + 1) =

∫ ∞
0

t

1− e−t
e−(τz+1)t d t

=

∫ ∞
0

t

et − 1
e−τzt d t =

1

τ

∫ ∞
0

h

(
v

τ

)
e−vz d v,

where τ > 0 and h(t) = t
et−1 . Accordingly, we have

[lnQ(x)]′′ =

∫ ∞
0

[
(α+ β)h

(
v

α+ β

)
− αh

(
v

α

)
− βh

(
v

β

)]
e−xv d v. (2.1)

For w ∈ (0,∞) for A > 1, it is standard to obtain that

d

dw

(
1

A1/w − 1

)
=

A1/w lnA

w2
(
A1/w − 1

)2 ,
d2

dw2

(
1

A1/w − 1

)
=

A1/w lnA

w4
(
A1/w − 1

)3 [(A1/w + 1
)

lnA− 2w
(
A1/w − 1

)]
,

A1/w lnA

w4
(
A1/w − 1

)3HA

(
1

w

)
,

and, by virtue of convexity of the function Au with respect to u ∈ [0,∞) and by
the aid of the left hand side of the Hermite–Hadamard integral inequality

f(a) + f(b)

2
≥ 1

b− a

∫ b

a

f(x) dx ≥ f
(
a+ b

2

)
for any convex function f(x) on [a, b], see [13, p. 53, Section 1.9] or the papers [21,
25] and closely related references therein,

HA(w) = 2

(
Aw + 1

2
lnA− Aw − 1

w

)
= 2

(
Aw + 1

2
− 1

w

∫ w

0

Au du

)
lnA > 0.

Hence, the function 1
A1/w−1

is convex with respect to w ∈ (0,∞). Recall from [11,

p. 650] that

(1) a function φ : [0,∞)→ R is said to be star-shaped if φ(αx) ≤ αφ(x) for all
α ∈ [0, 1] and x ≥ 0;

(2) a real function φ defined on a set S ⊂ Rn is said to be super-additive if
x, y ∈ S implies x+ y ∈ S and φ(x+ y) ≥ φ(x) + φ(y).

In [11, p. 650], it was obtained that
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(1) if φ is a real function defined on [0,∞), φ(0) ≤ 0, and φ is convex, then φ
is star-shaped, but convexity is not a property of all star-shaped functions;

(2) if φ : [0,∞)→ R is star-shaped, then φ is super-additive.

Consequently, since limw→0+
1

A1/w−1
= 0, the function 1

A1/w−1
is star-shaped, and

then super-additive, on (0,∞). Furthermore, the function wh( vw ) = v
ev/w−1

is sup-

additive on w ∈ (0,∞) for any fixed v > 0. As a result, it follows that

(α+ β)h

(
v

α+ β

)
≥ αh

(
v

α

)
+ βh

(
v

β

)
.

Combining this with (2.1) reveals that the second derivative [lnQ(x)]′′ is completely
monotonic on (0,∞).

By complete monotonicity of [lnQ(x)]′′, we see that the first derivative [lnQ(x)]′

is strictly increasing on (0,∞), hence,

[lnQ(x)]′ ≤ lim
x→∞

[(α+ β)ψ((α+ β)x+ 1)− αψ(αx+ 1)− βψ(βx+ 1)]

+ α ln p+ β ln(1− p)

= lim
x→∞

[
(α+ β)ψ((α+ β)x)− αψ(αx)− βψ(βx)− 1

x

]
+ α ln p+ β ln(1− p)

= lim
x→∞

(
(α+ β)[ψ((α+ β)x)− ln((α+ β)x)]− α[ψ(αx)− ln(αx)]

− β[ψ(βx)− ln(βx)]− 1

x
+ (α+ β) ln((α+ β)x)

− α ln(αx)− β ln(βx)

)
+ α ln p+ β ln(1− p)

= (α+ β) ln(α+ β)− α ln
α

p
− β ln

β

1− p

=

[
p
α

p
+ (1− p) β

1− p

]
ln

[
p
α

p
+ (1− p) β

1− p

]
− p
(
α

p
ln
α

p

)
− (1− p)

(
β

1− p
ln

β

1− p

)
< 0,

where we used the facts that the function x lnx is convex on (0,∞) and that

lim
x→∞

[lnx− ψ(x)] = 0, (2.2)

see [7, Theorem 1] and [8, 19]. In conclusion, the function Q(x) is logarithmically
completely monotonic on (0,∞). The proof of Theorem 2.1 is complete. �

We now prove our second main result in this paper: the function Q(x) is loga-
rithmically completely monotonic on (0,∞).

Theorem 2.2. Let m ∈ N, a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m, and
p = (p1, p2, . . . , pm) with pi ∈ (0, 1) for 1 ≤ i ≤ m and

∑m
i=1 pi = 1. Then the

function Q(x) = Qa,p;m(x) defined in (1.6) is logarithmically completely monotonic
on (0,∞).
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Proof. Direct calculation gives

lnQ(x) = ln Γ

(
1 + x

m∑
i=1

ai

)
−

m∑
i=1

ln Γ(1 + aix) + x

m∑
i=1

ai ln pi,

[lnQ(x)]′ =

(
m∑
i=1

ai

)
ψ

(
1 + x

m∑
i=1

ai

)
−

m∑
i=1

aiψ(1 + aix) +

m∑
i=1

ai ln pi,

and

[lnQ(x)]′′ =

(
m∑
i=1

ai

)2

ψ′

(
1 + x

m∑
i=1

ai

)
−

m∑
i=1

a2
iψ
′(1 + aix).

As did in the proof of Theorem (2.1), we can obtain

[lnQ(x)]′′ =

∫ ∞
0

[(
m∑
i=1

ai

)
h

(
v∑m
i=1 ai

)
−

m∑
i=1

aih

(
v

ai

)]
e−xv d v. (2.3)

Since the function wh( vw ) = v
ev/w−1

is sup-additive on w ∈ (0,∞) for any fixed

v > 0, by induction, it follows that(
m∑
i=1

ai

)
h

(
v∑m
i=1 ai

)
≥

m∑
i=1

aih

(
v

ai

)
.

Combining this with (2.3) yields that the second derivative [lnQ(x)]′′ is completely
monotonic on (0,∞).

Complete monotonicity of [lnQ(x)]′′ implies that the first derivative [lnQ(x)]′ is
strictly increasing on (0,∞), therefore,

[lnQ(x)]′ ≤ lim
x→∞

[(
m∑
i=1

ai

)
ψ

(
1 + x

m∑
i=1

ai

)
−

m∑
i=1

aiψ(1 + aix)

]
+

m∑
i=1

ai ln pi

= lim
x→∞

[(
m∑
i=1

ai

)
ψ

(
x

m∑
i=1

ai

)
−

m∑
i=1

aiψ(aix)− m− 1

x

]
+

m∑
i=1

ai ln pi

= lim
x→∞

((
m∑
i=1

ai

)[
ψ

(
x

m∑
i=1

ai

)
− ln

(
x

m∑
i=1

ai

)]

−
m∑
i=1

ai[ψ(aix)− ln(aix)] +

(
m∑
i=1

ai

)
ln

(
x

m∑
i=1

ai

)

−
m∑
i=1

ai ln(aix)

)
+

m∑
i=1

ai ln pi

=

(
m∑
i=1

ai

)
ln

(
m∑
i=1

ai

)
−

m∑
i=1

ai ln ai +

m∑
i=1

ai ln pi

=

(
m∑
i=1

pi
ai
pi

)
ln

(
m∑
i=1

pi
ai
pi

)
−

m∑
i=1

pi
ai
pi

ln
ai
pi

≤ 0,

where, as did in the proof of Theorem 2.1, we used the limit (2.2) and convexity of
the function x lnx on (0,∞). The proof of Theorem 2.2 is complete. �
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3. Inequalities for multinomial coefficients

In the light of logarithmically complete monotonicity of Q(x) and Q(x), we now
offer some inequalities for multinomial coefficients.

Theorem 3.1. For `,m ∈ N, let a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m,

xj > 0 for 1 ≤ j ≤ `, and λj ∈ (0, 1) with
∑`
j=1 λj = 1. Then( (∑`

j=1 λjxj
)(∑m

i=1 ai
)

a1

∑`
j=1 λjxj , a2

∑`
j=1 λjxj , . . . , am

∑`
j=1 λjxj

)

≤
∏̀
j=1

(
xj
∑m
i=1 ai

a1xj , a2xj , . . . , amxj

)λj

(3.1)

and the equality in (3.1) holds if and only if x1 = x2 = · · · = x`. In particular,
when ` = m = 2,(

(λ1x1 + λ2x2)(a1 + a2)

a1(λ1x1 + λ2x2)

)
≤
(

(a1 + a2)x1

a1x1

)λ1
(

(a1 + a2)x2

a1x2

)λ2

(3.2)

and the equality in (3.2) is valid if and only if x1 = x2.

Proof. Logarithmically complete monotonicity in Theorem 2.2 implies that the
function Q(x) is logarithmically convex on (0,∞). Hence, we acquire

Q

(∑̀
j=1

λjxj

)
≤
∏̀
j=1

Qλj (xj).

Making use of the expression

Q(x) =

(
x
∑m
i=1 ai

a1x, a2x, . . . , amx

) m∏
i=1

paixi

arrives at( (∑`
j=1 λjxj

)(∑m
i=1 ai

)
a1

∑`
j=1 λjxj , a2

∑`
j=1 λjxj , . . . , am

∑`
j=1 λjxj

) m∏
i=1

p
ai

∑`
j=1 λjxj

i

≤
∏̀
j=1

[(
xj
∑m
i=1 ai

a1xj , a2xj , . . . , amxj

) m∏
i=1

p
aixj

i

]λj

which can be rearranged as (3.1).
The inequality (3.2) can also be independently derived from logarithmically com-

plete monotonicity of Q(x). The proof of Theorem 3.1 is complete. �

Theorem 3.2. For `,m ∈ N, let a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m
and let xj > 0 for 1 ≤ j ≤ `. Then∏̀
j=1

(
xj
∑m
i=1 ai

a1xj , a2xj , . . . , amxj

)
<

( (∑`
j=1 xj

)(∑m
i=1 ai

)
a1

∑`
j=1 xj , a2

∑`
j=1 xj , . . . , am

∑`
j=1 xj

)
. (3.3)

In particular, when ` = m = 2,(
(a1 + a2)x1

a1x1

)(
(a1 + a2)x2

a1x2

)
<

(
(x1 + x2)(a1 + a2)

a1(x1 + x2)

)
. (3.4)
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Proof. In [2, Lemma 3], it was established that, if g : [0,∞)→ (0, 1] is differentiable

and g′

g is strictly increasing on (0,∞), then g(x)g(y) < g(x + y) for x, y ∈ (0,∞).

From this, we can inductively derive∏̀
j=1

g(xj) < g

(∑̀
j=1

xj

)
.

Applying this inequality to the function Q(x) yields

∏̀
j=1

[(
xj
∑m
i=1 ai

a1xj , a2xj , . . . , amxj

) m∏
i=1

p
aixj

i

]

<

( (∑`
j=1 xj

)(∑m
i=1 ai

)
a1

∑`
j=1 xj , a2

∑`
j=1 xj , . . . , am

∑`
j=1 xj

) m∏
i=1

p
ai

∑`
j=1 xj

i

which can be rewritten as (3.3).
The inequality (3.4) can also be independently derived from logarithmically com-

plete monotonicity of Q(x). The proof of Theorem 3.2 is complete. �

Theorem 3.3. For m ∈ N, let a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m. If
0 < a ≤ c and x > 0, then(

(a+ x)
∑m
i=1 ai

a1(a+ x), a2(a+ x), . . . , am(a+ x)

)(
c
∑m
i=1 ai

a1c, a2c, . . . , amc

)
≤
(

a
∑m
i=1 ai

a1a, a2a, . . . , ama

)(
(c+ x)

∑m
i=1 ai

a1(c+ x), a2(c+ x), . . . , am(c+ x)

)
(3.5)

and the equality in (3.5) holds if and only if a = c. In particular, when m = 2,(
(a+ x)(a1 + a2)

a1(a+ x)

)(
c(a1 + a2)

a1c

)
≤
(
a(a1 + a2)

a1a

)(
(c+ x)(a1 + a2)

a1(c+ x)

)
(3.6)

and the equality in (3.6) holds if and only if a = c.

Proof. For 0 < a < c, define

V (x) = lnQ(a+ x) + lnQ(c)− lnQ(a)− lnQ(c+ x).

Since

V ′(x) =
Q′(a+ x)

Q(a+ x)
− Q

′(c+ x)

Q(c+ x)

and logarithmically complete monotonicity of Q(x) implies that Q
′(x)
Q(x) is strictly

increasing on (0,∞), we conclude that V ′(x) < 0 and V (x) < V (0) = 0. Therefore,

lnQ(a+ x) + lnQ(c) ≤ lnQ(a) + lnQ(c+ x),

which is equivalent to

ln

[(
(a+ x)

∑m
i=1 ai

a1(a+ x), a2(a+ x), . . . , am(a+ x)

) m∏
i=1

p
ai(a+x)
i

]

+ ln

[(
c
∑m
i=1 ai

a1c, a2c, . . . , amc

) m∏
i=1

paici

]
≤ ln

[(
a
∑m
i=1 ai

a1a, a2a, . . . , ama

) m∏
i=1

paiai

]
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+ ln

[(
(c+ x)

∑m
i=1 ai

a1(c+ x), a2(c+ x), . . . , am(c+ x)

) m∏
i=1

p
ai(c+x)
i

]
.

This can be simplified as (3.5).
The inequality (3.6) can also be independently derived from logarithmically com-

plete monotonicity of Q(x). The proof of Theorem 3.3 is complete. �

4. Inequalities for multivariate beta functions

For ai > 0 and i ∈ N, the multinomial coefficient and the multivariate beta
function have the relation( ∑m

i=1 ai
a1, a2, . . . , am

)
=

∑m
i=1 ai∏m
i=1 ai

1

B(a1, a2, . . . , am)
.

Therefore, from those inequalities for multinomial coefficients in Section 3, we can
derive some inequalities for the multivariate beta function B(a1, a2, . . . , am). In
other words, Theorems (3.1) to (3.3) can be respectively reformulated as the fol-
lowing forms.

4.1. First inequality for multivariate beta function. For `,m ∈ N, let a =
(a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m, xj > 0 for 1 ≤ j ≤ `, and λj ∈ (0, 1)

with
∑`
j=1 λj = 1. Then(∑̀

j=1

λjxj

)m−1

B

(
a1

∑̀
j=1

λjxj , a2

∑̀
j=1

λjxj , . . . , am
∑̀
j=1

λjxj

)

≥
∏̀
j=1

[
xm−1
j B(a1xj , a2xj , . . . , amxj)

]λj
(4.1)

and the equality in (4.1) holds if and only if x1 = x2 = · · · = x`. In particular,
when ` = m = 2,

(λ1x1 + λ2x2) B(a1(λ1x1 + λ2x2), a2(λ1x1 + λ2x2))

≥ xλ1
1 xλ2

2 Bλ1(a1x1, a2x1) Bλ2(a1x2, a2x2) (4.2)

and the equality in (4.2) is valid if and only if x1 = x2.
The inequality (4.1) or (4.2) implies that xB(a1x, a2x, . . . , amx) is logarithmi-

cally concave with respect to x ∈ (0,∞). More generally, we claim that the re-
ciprocal 1

xB(a1x,a2x,...,amx) is a logarithmically completely monotonic function of

x ∈ (0,∞).

4.2. Second inequality for multivariate beta function. For `,m ∈ N, let
a = (a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m and let xj > 0 for 1 ≤ j ≤ `. Then∏`

j=1 B(a1xj , a2xj , . . . , amxj)

B
(
a1

∑`
j=1 xj , a2

∑`
j=1 xj , . . . , am

∑`
j=1 xj

) > (∑m
i=1 ai∏m
i=1 ai

)`−1
(∑`

j=1 xj∏`
j=1 xj

)m−1

.

In particular, when ` = m = 2,

B(a1x1, a2x1) B(a1x2, a2x2)

B(a1(x1 + x2), a2(x1 + x2))
>

(
1

a1
+

1

a2

)(
1

x1
+

1

x2

)
.
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4.3. Third inequality for multivariate beta function. For m ∈ N, let a =
(a1, a2, . . . , am) with ai > 0 for 1 ≤ i ≤ m. If 0 < a ≤ c and x > 0, then

(
c

c+ x

)m−1
B(a1c, a2c, . . . , amc)

B(a1(c+ x), a2(c+ x), . . . , am(c+ x))

≥
(

a

a+ x

)m−1
B(a1a, a2a, . . . , ama)

B(a1(a+ x), a2(a+ x), . . . , am(a+ x))
(4.3)

and the equality in (4.3) holds if and only if a = c. In particular, when m = 2,

c

c+ x

B(a1c, a2c)

B(a1(c+ x), a2(c+ x))
≥ a

a+ x

B(a1a, a2a)

B(a1(a+ x), a2(a+ x))
(4.4)

and the equality in (4.4) holds if and only if a = c.
The inequality (4.3) implies that the function(

t

t+ x

)m−1
B(a1t, a2t, . . . , amt)

B(a1(t+ x), a2(t+ x), . . . , am(t+ x))

for m ∈ N and x, ai > 0 is strictly increasing on (0,∞).

5. Recoveries of known results

From Theorems 3.1 to 3.3, we can recover three combinatorial inequalities in [2].

5.1. First recovery. Taking a1 = k ∈ N and a2 = n− k ∈ N in (3.2) results in(
(λ1x1 + λ2x2)n

(λ1x1 + λ2x2)k

)
≤
(
x1n

x1k

)λ1
(
x2n

x2k

)λ2

, x1, x2, λ1, λ2 > 0, λ1 + λ2 = 1 (5.1)

and the equality in (5.1) holds if and only if x1 = x2 > 0. This recovers [2,
Corollary 1]. When further letting λ1 = λ2 = 1

2 and setting x1 = j − 1 and
x2 = j + 1 in (5.1), we recover a combinatorial inequality in [10, p. 4, Section 4].

5.2. Second recovery. Setting a1 = k ∈ N and a2 = n− k ∈ N in (3.4) gives(
nx1

kx1

)(
nx2

kx2

)
<

(
n(x1 + x2)

k(x1 + x2)

)
, x1, x2 > 0

which is a recovery of [2, Corollary 2].

5.3. Third recovery. Letting a1 = k ∈ N and a2 = n− k ∈ N in (3.6) deduces(
(a+ x)n

(a+ x)k

)(
cn

ck

)
≤
(
an

ak

)(
(x+ c)n

(x+ c)k

)
(5.2)

for 0 < a ≤ c and x > 0 and the equality is valid if and only if a = c > 0. The
inequality (5.2) is a recovery of [2, Corollary 3].
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