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We compare laboratory experiments, contact dynamics simulations, and continuum
Navier–Stokes simulations with a µ(I) visco-plastic rheology, of the discharge of granular
media from a silo with a lateral orifice. We consider a rectangular silo with an orifice
of height D which spans the silo width W , and we observe two regimes. For small-
enough aperture aspect ratio A = D/W , the Hagen–Beverloo relation is obtained. For
thin-enough silos, A � Ac, we observe a second regime where the outlet velocity varies
with

√
gW . This new regime is also obtained in the continuum simulations when the

friction on side walls is taken into account in a thickness-averaged version of µ(I) +
Navier–Stokes (in the spirit of Hele–Shaw flows). Moreover most of the internal details
of the flow field observed experimentally are reproduced when considering this lateral
friction. These two regimes are recovered experimentally for a cylindrical silo with a
lateral rectangular orifice of height D and arc length W . The dependency of the flow
rate on the particle diameter is found to be reasonably described experimentally using
two geometrical functions that depend respectively on the number of beads through the
two aperture dimensions. This is consistent with 2D discrete simulation results: at the
outlet, the volume fraction and the velocities depend on the particle diameter and this
behaviour is correctly described by those geometrical functions. A similar dependency is
observed in the 2D continuum simulations.

Key words: Dense granular flow, silo discharge, rheology

1. Introduction
Discharge of granular media out of a silo through an aperture is a classical problem with

many practical and industrial applications. The main scaling relation, generally known
as the Hagen–Beverloo relation, predicts that the mass flow rate scales as (D − kd)5/2

where D is the diameter of the aperture, d the grain size and k an empirical parameter.
However detailed understanding of the physical processes leading to such a scaling is still
lacking (Janda et al. 2012; Perge et al. 2012). Numerical simulations that explicitly solve

† Email address for correspondence: pascale.aussillous@univ-amu.fr
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granular media at the scale of the particle, like discrete element methods, can provide
detailed and promising insight into the flow. On the other hand, rheological models able
to describe the flow at the scale of its opening are still under development.

The Hagen–Beverloo scaling implies that, as long as the silo dimensions are sufficiently
larger than the aperture scale, the geometry of the silo and its walls are irrelevant for the
determination of the flow rate. However the conditions for which this statement holds
are still unclear: what are the criteria that bound this behavior and what are the control
parameters that drive the flow beyond the classical regime? The present study aims to
study this departure for a specific case of industrial relevance. Let us consider a non-
classical geometrical configuration of the reservoir containing the granular medium: a
vertical and elongated cylindrical tube of diameter of the order of centimeters with a
lateral opening of similar size. This case is of particular interest to understand conditions
under which solid fuel particles inside a typical Pressurised-Water Nuclear Reactor fuel
rod, whose cladding would have failed under hypothetical accidental conditions, could
disperse out of this rod. The fuel particles are generated from an initially cylindrical
pellet (scale of centimeters) that can be fragmented due to the irradiation process (burn-
up of the fuel) or accidental conditions (large pressure and temperature variations inside
the rod). The size distribution of the fragments can be wide, the smallest size being of
the order of 10 µm. In this study the particles are composed of a population of spherical
beads and are monodisperse in diameter. Therefore, the probability of jamming and arch
formation throughout the silo is as low as possible due to the small contact area between
neighboring particles. The discharge flow is therefore believed to overestimate that of a
more realistic granular material of the same average size. This granular reservoir has two
main peculiarities with regard to more classical hopper geometries. Firstly, for a given
cross-section of the flow, the perimeter over which wall friction occurs is relatively large
(by analogy, one could talk of a small hydraulic diameter) which raises the question of
the possible impact of wall friction on the flow rate. Secondly, the aperture is vertical,
an orientation that necessarily impacts the discharge for a gravity-driven flow. Moreover,
the number of beads through the aperture can vary over a large range and is known to
have a large effect on low values of flow rates.

The impact of the angle of the aperture surface (relative to horizontal) on the discharge
flow rate of a silo (a so-called tilted hopper) has been already studied experimentally. For
beads, Sheldon & Durian (2010), or sand and sugar, Medina et al. (2014); Serrano et al.
(2015) recovered a flow rate scaling as D5/2, as long as clogging did not occur (which is
only slightly affected by a vertical orientation of the aperture). According to the authors,
the success of the Hagen–Beverloo scaling in this configuration indicates that one of the
classical physical interpretations of the relation in terms of free-fall under an arch of
aperture size is questionable.The shape and size of the aperture were varied, but the size
of the aperture was always small compared to the silo width, which does not cover our
range of interest. The wall thickness of the silo can alter the discharge flow rate of tilted
hoppers as soon as it is sufficiently wide, according to Medina et al. (2014); Serrano et al.
(2015). In these studies, the thickness was varied between zero and approximatively half
the aperture size, the latter always being an order of magnitude larger than the typical
grain size. In our case the typical cladding of a nuclear fuel rod is less than 1 mm thick
and the experimental facility has been designed to avoid any impact of wall thickness
on the discharge rate. In those studies, the number of grains in the aperture were varied
solely by varying the aperture size, the grain size remaining constant. Sheldon & Durian
(2010) also underlined the possible influence of the hopper wall as being an interesting
line for future research.

As long as the granular bed height inside the silo is larger than its width, the discharge
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flow rate does not depend on this height, a useful property used historically for time
measurement with sandglasses. This has some similarity to the so-called Janssen effect
that is observed for static packing of granular material confined by vertical walls. During
the discharge, relative motion of the granular material with respect to these walls has to
be considered and Bertho et al. (2003) have shown that the Janssen effect can be recovered
in this configuration. However, Aguirre et al. (2010) have shown that the Janssen effect
(i.e. the pressure level at the outlet) does not influence the granular discharge flow rate.
The frictional interaction of flowing granular material with walls and its possible influence
on the discharge flow rate for our geometry is therefore an open question.

For a small number of grains through the aperture, the flow rate depends on grain size
(the larger the size, the lower the flow rate). The Hagen–Beverloo relation includes this
effect as soon as D/d < k (where k is of order one). One of the classical interpretations of
this d dependency is the existence of an empty annulus that reduces the effective aperture
area for the granular flow. But recent studies of the velocity and density profiles of the
granular flow over horizontal apertures, e.g. Janda et al. (2012), indicate that the number
of grains through the aperture is strongly correlated to the dilatancy of the flow over
the entire flow cross section (and not only over its periphery). There is therefore interest
in generalising this statement for other flow configurations where the Hagen–Beverloo
relation holds, like the case of vertical aperture of interest in our study.

We present an investigation of the discharge flow rate of a granular material of spherical
glass beads of variable size confined in a vertical elongated silo of variable shape and size,
with a lateral aperture also of variable shape and size, while neglecting the effect of the
wall thickness. The methods used are first introduced in section 2. The main scaling
relations that could be deduced from dimensional analysis (see section 3.1) are recovered
by the set of experiments performed (see section 3.2). It is then shown that the influence
of the silo geometry on the flow rate can be simulated thanks to a continuum model
for the granular flow with a rheology described by a µ(I) constitutive law and taking
into account the wall friction (section 3.3 and 3.4). The observed influence of the beads
size on the flow rate is analyzed in terms of dilatancy over the aperture cross-section:
experimental results trends are supported by contact dynamics simulations of the flow
through a vertical aperture (see section 3.5),

2. Methods
2.1. Experiments

Two geometries of silos have been considered, either rectangular or cylindrical as shown
in figure 1(a,b). The typical height H of the silos is larger than 500 mm, that is always one
order of magnitude larger than its lateral extent. The lateral extent of the rectangular silo
and the diameter of the cylindrical silo are fixed to 60 mm and 40 mm respectively. The
aperture on the lateral sidewall has a rectangular shape with a height D and a horizontal
length W . For rectangular silos, W is also the width of the silo. For cylindrical silos, W is
the orifice arc length. The whole set of geometrical data considered in this study is given
in table 1. The back wall of the rectangular silo is made of a copper frame connected to
ground to discharge static electricity. Front, bottom, and lateral walls of the rectangular
silo, as well as cylindrical walls are made of a Plexiglas frame of millimeter width. The
walls have been bevelled along the aperture with an angle δ as represented in figure 1.
A preliminary study has shown that the discharge flow rate was independent from this
angle (and therefore that the friction along the wall thickness was negligible) as long as
δ < 60◦. The value δ = 30◦ has been chosen. The bottom of the aperture is at a vertical
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(a) (b) (c) (d)

Figure 1: Schematic apparatus of the silo. (a) Experimental rectangular silo. (b)
Experimental cylindrical silo. (c) 2D discrete simulation. (d) Continuum simulation. The
red lines in figure c represent the horizontal boundaries of the computational domain.

Table 1: Performed runs, the dimension are defined in figure 1.
D W d

Exp. Rect. silo [2.7 , 5.4 , 10 , 15 [ 3.5 , 5 , 10 , 20 [124 , 190 , 375 , 538
20 , 25 , 30 , 35 ] mm 30 , 40 ] mm 762 , 1129 , 1347] µm

Exp. Cyl. silo [5, 10 , 20 , 25 , 30 [5, 10.1, 15.4, 20.9 [124 , 190 , 375 , 538
35 , 40 , 41.5 ] mm 33.9, 62.8] mm 762 , 1129 , 1347 ]µm

Discrete 2D sim. [ 6 , 8 , 10 , 12 - [ 2 , 6] mm
[ 14 , 16 : 18 , 20 ] d

Continuum [ 0.4375 , 0.5 , 0.5625 , 0.625 - L/30, L/90
2D sim. 0.6562 , 0.6875 , 0.75] L

Continuum [ 0.4375 , 0.5 , 0.5625 , 0.5938 [ 0.16 , 0.2 , 0.25 L/30, L/90
pseudo-3D sim. 0.625 , 0.6562 , 0.6875 , 0.75] L 0.5 , 1 , 2 ] L

distance larger than 20 mm from the bottom of the silo (corresponding to at least 15
layers of beads): lower values affect the discharge rate.

The non-cohesive spherical glass beads of density ρ = 2500 kg m−3 (Potter & Ballotini
Inc.) have been sifted between 0.9d and 1.1d, with d the mean diameter. The initial
(before the opening of the aperture) volume fraction of particles in the silo φb has been
estimated from the initial mass (of granular material before filling) and from the initial
height hp within the silo. During the discharge, the grains flowing through the aperture
are collected and their mass is measured with an electronic balance (Mettler Toldeo
6002S) with an accuracy of 0.1 g and a frequency of 20 Hz. We observed a steady-state
discharge regime for all the configurations explored. From the slope of the collected mass
evolution during this regime, one deduces the instantaneous mass flow rate Qi, and the
mean flow rate, Q, as displayed in figure 2a. The data are available as supplementary
material in a text file. A Photron high-speed optical camera FASTCAM APX RS has
been used during rectangular silo discharge with a spatial resolution of 256×1024 pixels2,
a frequency of acquisition of 250 Hz with a SIGMA zoom 24 − 700 mm f2.8. Using the
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Figure 2: Temporal evolution of the instantaneous flow rate. (a) Experiment with
rectangular silo, d = 190 µm, D = 10 mm and W = 3.5 mm. (b) 2D discrete simulation
with d = 2 mm and D = 16 mm. The dashed lines represent the mean flow rate Q.

DPIVsoft software (Meunier & Leweke 2003) we performed PIV of the granular flow
and were able to get streamlines and 2D velocity fields at the front wall of the silo (as
illustrated in figure 7). Using an interface tracking algorithm, the instantaneous profile
of the upper layer of beads in the silo has also been recorded (as illustrated in figure 11).

2.2. Contact Dynamics simulations

Following the work of Zhou et al. (2015) we used the LMGC 90 software implementation
of the contact dynamics method (Radjai & Dubois 2011) to study the discharge of a
silo with a lateral orifice. As discrete simulations in 3D are too demanding given our
computational resources, we only performed 2D simulations, which still take hours or even
days. The two-dimensional silo (figure 1c) consists of a rectangular reservoir, of width
L, filled with a height hp of particles of mean size d. There is a dispersion δd/d = 0.2
in the size of the particles to avoid crystallisation. The wall thickness is imposed to be
equal to the diameter of the biggest particle in the silo, dM , with a circular shape at the
edge of the outlet. The outlet is located at the side, 3.5dM above the bottom, and has
a length D which was varied. The circular particles are treated as perfectly rigid and
inelastic and contact dissipation is modelled in terms of a friction coefficient that we set
to µp = 0.4 between particles, and µw = 0.5 between the particles and the wall. The
number of particles, reported in table 2, was chosen for each simulation to ensure that
the discharge flow rate is independent from the column height with 16D < H < 45D. To
ensure that the lateral walls do not influence the flow significantly, we impose a width of
the silo L = 3D. The granular column is prepared by the random deposition of particles
in the closed silo. The initial volume fraction of particles in the silo φb has been measured
in the central zone of the silo. Simulations are then run with a time step of δt = 5 ·10−4 s
and for a number of time steps Nt reported in table 2. The computational domain is
periodic in the vertical direction to keep a constant number of particles. The horizontal
boundaries of the computational domain are set at a distance 10dM below, and 30dM to
70dM above the silo (see the red lines in figure 1c).

Figure 2b shows a typical temporal evolution of the instantaneous flow rate. The flow
rate is found to rapidly reach a stationary value Q. The output data at the aperture
line are time averaged during this steady-state regime of discharge to deduce the vertical
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Table 2: Parameters used in discrete simulations for given particle sizes (d = 2 mm and
d = 6 mm), where Np is the number of particles and Nt is the number of time steps.

d = 2mm d = 6mm

D/d Np Nt Np Nt

6 5000 30000 4000 30600
8 7500 20000 5400 22000
10 10000 20000 8400 20000
12 11290 16000 12000 20000
14 13500 15000 14000 16000
16 15500 10000 16000 9200
18 20000 5200 18000 8000
20 20000 6000

profiles of velocity and particle volume fraction. Further details may be found in Zhou
et al. (2015).

2.3. Continuum numerical simulations
2.3.1. General equations

We turn to the continuum simulation method in the framework of the µ(I)-rheology,
a non-Newtonian rheology for granular flows proposed by Midi (2004); Jop et al. (2006).
The non-Newtonian incompressible Navier–Stokes system reads:

∇ · u = 0, (2.1)
ρ
(
∂u
∂t + u ·∇u

)
= −∇p+ ∇ · (2ηD) + ρg + fw, (2.2)

where D is the strain-rate tensor (∇u + ∇uT )/2 and fw is a volumetric force (discussed
in section 2.3.3). Following Jop et al. (2005), the µ(I) viscosity is an effective viscosity η
depending both on the shear-rate (the inertial number I being proportional to the second
invariant D2 of the strain rate tensor D2 =

√
DijDij) and the local pressure. It reads:

η =
µ(I)√
2D2

p , with I =
d
√

2D2√
p/ρ

, and µ(I) = µs +
∆µ

I0/I + 1
. (2.3)

We take for the rheological constants µs = 0.4, ∆µ = 0.28 and I0 = 0.4, but we do not
consider the variation of the volume fraction with I given by Jop et al. (2006), as we
suppose the flow incompressible. At the solid boundaries we impose a no-slip condition.
Pressure is zero at the orifice. In the original model pressure is zero at the free surface.
To simplify the implementation of this boundary condition for a moving free surface,
we introduce a second passive fluid of small density and viscosity and impose the zero
pressure condition along the top boundary of the domain.

The Navier–Stokes simulations are performed with the free software Basilisk (Popinet
2013-2016), which is the successor of Gerris (Popinet 2003, 2009) and uses a similar finite-
volume projection method. Two phases are present, a surrounding gas and the granular
fluid. The interface between these two phases is tracked with a Volume-Of-Fluid method.
The viscosity and density of the surrounding gas are small, so that its influence on the
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Figure 3: Continuum simulation: temporal evolution of the dimensionless instantaneous
flow rate Q2D
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√
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D = 0.5L (a) in 2D (b) in pseudo-3D with W = 22.5d. The dashed lines represent the
mean flow rate Q2D/(

√
gL3).

granular flow is minimised. The computational cost is dominated by the solution of two
Poisson–Helmholtz problems: a scalar Poisson equation for the pressure necessary to
enforce incompressibility and a vector Poisson–Helmholtz equation for the time-implicit
discretisation of the viscous term. Note that in contrast with the formulation in Gerris
Lagrée et al. (2011), the full-coupled Poisson–Helmholtz problem for the velocity is solved
(including coupling terms between velocity components). The simulations in this paper
are in 2D. The CPU time of each simulation is always less than one hour on a laptop
computer †. We use a regularisation technique to avoid the divergence of the viscosity
when the shear becomes too small by replacing η by min(η, ηmax) with ηmax = 100 a
constant large enough, as done successfully in Lagrée et al. (2011) and Staron et al. (2012,
2014) where further details on the numerical method can be found.

2.3.2. Pure 2D configuration
We consider a two-dimensional silo of width L, along the x axis, (gravity g is along

negative y axis) initially filled with a height hp = 3.9L of the visco-plastic fluid (see
figure 1d). The mesh is such that the width of the silo L is divided in 64 computation
cells which is a good balance between precision and computational time.

We first performed a series of simulations in the two-dimensional case, imposing
fw = 0. We varied the size of the aperture D and the particle diameters (see table
1). In figure 3a, the instantaneous flow rate obtained for a given run, Q2D

i , is found
to be close to stationary during the discharge as in the experiments. As done in the
experiments, we measure the mean flow rate, Q2D, in the stationary regime (dashed lines
in the figure).

2.3.3. Averaged 2D or pseudo 3D configuration
To take into account the lateral friction on the walls and mimic 3D effects, we average

the momentum equation across the width of the silo in the spirit of Hele—Shaw flows Jop
et al. (2005); Lagrée (2007). For pure Hele–Shaw flows (with a Newtonian viscous fluid),
the velocity is supposed to have a parabolic profile in the transverse z direction. Here we

† The full code used is available and commented here:
http://basilisk.fr/sandbox/M1EMN/Exemples/granular_sandglass_muw.c

http://basilisk.fr/sandbox/M1EMN/Exemples/granular_sandglass_muw.c
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suppose that the shape of the profile is almost flat, which reflects the yield-stress nature
of the granular fluid. Hence the term appearing in front of the non-linear derivative term
associated with the effective chosen profile is unity (see Lagrée 2007, for a discussion of
the classical viscous case and bibliography). The integration of the viscous force across
the cell gives the contribution of the friction stress at the wall, supposed to be a Coulomb
force again: −µwp on each wall. This wall friction acts in the direction of the velocity.
This gives the average additional force from the sidewalls in the momentum equation,

fw = −2
µwp

W

u
|u| . (2.4)

From a Hele–Shaw point-of-view, the momentum 2.2 and incompressibility 2.1 equations
apply to a 2D-averaged velocity field (u, v), with the extra source term in the momentum
equation 2.2 taking into account the wall friction (2.4). We chose the value µw = 0.1
and varied the pseudo-width W , together with the aperture length D, and the particle
diameter d, as shown in table 1. Note that in the simulations 2Lµw/W is the effective
parameter. To compare with experiments and discrete dynamics (where the natural scale
is d), the geometrical parameters of the continuous simulations are scaled by d (see labels
of figures 7 and 11).

In these pseudo-3D simulations, the different fields (velocity, pressure) are interpreted
as width averages. The instantaneous flow rate is again found to be stationary during the
discharge (figure 3b). We measured the mean flow rate Q2D in the stationary regime (see
the dashed lines in the figure) and we defined the equivalent 3D flow rate as Q = WQ2D.

Note that when the friction at the wall fw were too large, the continuum simulations
failed. We varied 2Lµw/W up to about 5.6, but were not able to reach larger values.
Further developments have to be done to overcome this problem, which could be related
to the numerical method. Nonetheless the range of W covered is sufficient to compare
qualitatively the results of the simulations with the experiments.

3. Effect of sidewalls on the silo discharge from a lateral orifice
The aim of this study is to clarify the role of the two dimensions of the outlet, the

height D and the width W as defined in figure 1, in the discharge of a silo from a lateral
aperture. In a first part we have simplified the problem by considering a rectangular silo
where the orifice spans the width of the silo. We first present the experimental results.
We then discuss the role of the sidewalls on the flow rate using continuum simulations.
Finally we extend the result to the cylindrical silo and we discuss the role of the particle
diameter.

3.1. Π-theorem
The mass flow rate out of the silo, Q, depends on the density ρ, the gravity g and the

geometrical parameters: width L, orifice height D, thickness W , the filling height hp and
the grain size d. Standard application of dimensional analysis or Π-theorem gives us the
relation between non-dimensional numbers (eight quantities, three units, which gives five
non-dimensional numbers). The flux must scale like ρ`2

√
g` where ` is any of D,W, hp, d

(and `2
√
` any combination of these lengths), and this flux must also be a function of

the geometric ratios e.g. D/W, d/D, hp/W,L/D (Note that if we use the mass of grains
in the silo, this will give us an extra parameter with dimension, which can be reduced
to a new dimensional number, the packing fraction φb). Classical experiments on silos
show that the flux is independent from the width L (if large enough), from the filling
height hp (if large enough), and from the grain size d (if small enough). We can therefore
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Figure 4: Experimental mass flow rate Q in the rectangular silo versus the height of orifice
D for two sizes of particles d. (a) W = 40 mm, the dashed (resp. full) line represents the
equation Q = c1D

3/2 where c1 = 2.79 g.s−1mm−3/2 (resp. c1 = 2.65 g.s−1mm−3/2) is
obtained using a least-squares fit. (b) W = 3.5 mm, the dashed (resp. full) line represents
the equation Q = c2D where c2 = 0.58 g.s−1mm−1 (resp. c2 = 0.43 g.s−1 mm−1) is
obtained using a least-squares fit.

neglect the corresponding geometric ratios. This then reduces Q/(ρ`2
√
g`) (where ` is

any of D,W ) to a function of the aperture aspect ratio A = D/W only.
If W is large, the problem becomes bidimensional and D/W has no influence anymore.

The velocity then scales like
√
gD, the size of the aperture being scaled by D, and the

flux per transverse unit Q/W is ρD
√
gD. This gives the equivalent for this rectangular

geometry of the Hagen–Berverloo relation (see a translation of the original article of
Hagen in Tighe & Sperl 2007; Beverloo et al. 1961):

Q ∝WρφbD
√
gD. (3.1)

This scaling relation was recovered experimentally for a bottom aperture, spanning the
width of a rectangular silo, by severals authors (Choi et al. 2005; Benyamine et al. 2014).
This behaviour is also observed in our experimental set-up with a side aperture. It can
be seen in figure 4a where the flow rate is plotted as a function of the outlet length D for
two particle diameters and for the larger silo thickness W = 40 mm. For a given particle
diameter the data are well described by equation 3.1, see the full line and the dashed
line in the figure. Therefore, following the Π-theorem, the relevant normalisation for the
flow rate seems to be ρ

√
gW 5, giving for the former relationship

Q

ρφb
√
gW 5

= cD

(
D

W

)3/2

. (3.2)

In the following section this scaling will be compared to the data obtained for the
rectangular silo.

3.2. Experimental results for the rectangular silo
Figure 5a represents the dimensionless flow rate QA = Q/(ρφb

√
gW 5) versus the

aperture aspect ratio A = D/W , for various thicknesses W and lengths D of the orifice
and for a given diameter of particle d = 190µm. In this representation the data collapse
as suggested by the Π-theorem.
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the same parameters. (b) Corresponding dimensionless discharge velocity uD/

√
gd as a

function of D/d. The dashed lines represent equation 3.5 with the same parameters.

As expected, for large thicknesses (D/W � 1), QA follows a power law with an
exponent 3/2 corresponding to the Hagen–Beverloo relation (equation 3.2), see the
dashed line in the figure. However, for large values of D/W (i.e. thin-enough silos),
an important experimental result is that the dimensionless flow rate of particles depends
linearly on the aperture aspect ratio (see the dashed-dotted line in figure 5a):

Q

ρφb
√
gW 5

= cW
D

W
. (3.3)

This can also be seen in figure 4b where the flow rate is plotted versus the aperture length
D for the smallest thickness explored W = 3.5 mm and for two particles diameters d.
For a given particle diameter the flow rate indeed exhibits a linear trend Q ∝ D. The
transition between these two regimes occurs around a specific aperture ratio Ac ≈ 2.
According to these two asymptotic regimes, we can thus propose a fitting formula for the
flow rate:

Q

ρφb
√
gW 5

= cD

(
D

W

)3/2 1√
1 + (cD/cW )2D/W

. (3.4)

As illustrated in figure 5a (solid lines), this formula describes well the flow rate depen-
dency on aperture dimensions in any regime, with the fitting parameters cD = 0.51 and
cW = 0.68.

These two regimes can be interpreted in term of the (horizontal) discharge velocity
uD = Q/ρφbWD, which can be expressed using equation 3.4 as

uD = cD
√
gD

1√
1 + (cD/cW )2D/W

. (3.5)

This relation again describes the data very well whatever the silo width as can be seen
in figure 5b (dashed lines). The first regime corresponds to the classical Hagen–Beverloo
relation with a velocity which scales with the aperture length:

(D/W ) < Ac , uD = cD
√
gD. (3.6)
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Figure 6: Continuum simulations results in 2D and in pseudo-3D for various W with
H = 360d, L = 90d and D = 45d: (a) Flow rate Q normalized by

√
gW 5 as a function

of D/W . The dashed line represents equation 3.2 with cD = 0.76, the dashed-dotted line
represents equation 3.3, with cW = 1.49, and the solid line represents equation 3.4, with
the same parameters. (b) Mean horizontal velocity at the orifice u/

√
gd, as a function of

D/d. The dashed lines represent equation 3.5, with the same parameters.

Whereas in the second regime the discharge velocity scales with the aperture width:

(D/W ) > Ac , uD = cW
√
gW. (3.7)

This gives a velocity scaling with the smallest of the two lengths W and D.
Historically the Hagen–Beverloo relation was explained with the concept of a “free-fall

arch” located at the outlet, from which the particles fall freely. Several recent experiments
and numerical simulations question this hypothesis. From an experimental point of view,
Janda et al. (2012); Rubio-Largo et al. (2015) showed that the granular medium remains
dense, with a small dilation, close to the outlet, and that the particles do not undergo a
free fall. These observations were validated using discrete simulation (Rubio-Largo et al.
2015). Moreover Navier–Stokes simulations, assuming a continuum frictional rheology of
the granular media, have been successfully used to recover the Hagen–Beverloo scaling as
in Staron et al. (2012, 2014); Davier & Bertails-Descoubes (2016); Dunatunga & Kamrin
(2015), with very different numerical methods.

The fact that we recover the Hagen–Beverloo relation with a vertical aperture also
tends to refute this concept, as pointed out by Sheldon & Durian (2010). Based on
these observations, we performed a continuum simulation, using our Navier–Stokes solver
with the granular rheology, to test whether we can reproduce at least qualitatively the
experimental behaviour.

3.3. Comparison with continuum numerical simulations
We first performed continuum numerical simulations in the 2D case. To compare with

the experimental results we have plotted in figure 6a the dimensionless flow rate QA =
Q/(

√
gW 5) versus the aperture aspect ratio A = D/W , using the same series of data

but rescaled several times with each width W used for the pseudo-3D simulations. In a
pure bidimensional flow (red circles), the Navier–Stokes simulations recover the Hagen–
Beverloo scaling, equation 3.2 (dashed line). This suggests that the µ(I) fluid rheology
provides consistent results for the discharge of a silo with a side-located aperture.

Then, to mimic the effects of the lateral walls from a Hele–Shaw point-of-view, we
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added the friction term proportional to the pressure and aligned with the velocity,
equation 2.4, and we varied the pseudo-width W (see the different symbols in figure
6a). We first notice that when the aperture ratio is small A = D/W , similar to the
experimental case, the data of the pseudo-3D simulations are superimposed onto the 2D
simulations, and we recover the Hagen–Beverloo scaling, equation 3.2. When increasing
the aperture ratio, we observe a departure from this scaling towards a regime where
QA ∝ A (see the dashed-dotted line). We can see that we do not completely reach this
regime due to the numerical upper limit of achievable values for fw, however the data are
well described by equation 3.4 with cD = 0.76 and cW = 1.49 (solid line).

Following the experimental section, the dimensionless mean horizontal velocity at the
outlet, ū/

√
dg, is plotted versus the dimensionless outlet length D/d in figure 6b. We

observe the same trends as for the experimental data: in the regime controlled by the
outlet length D, the velocity tends toward the Hagen–Beverloo scaling (equation 3.6
and 2D data) whereas when the ratio A increases, the velocity tends toward the regime
controlled by the silo width given by equation 3.7. Again each series of data for a given
W are fairly well described by equation 3.5 (dashed lines).

In the continuum simulation, the width of the silo appears only in the term describing
the sidewall friction, which suggests that the second regime is controlled by this term.
It is interesting to note that in the regime dominated by the lateral friction the flow
rate per unit length at a given D is lower than in the first regime. Even if we cannot
fully reach the second regime (A � 1), we carry on with the analysis and present some
comparisons of the details of the internal fields at the limit of the numerical model.

Figure 7 shows the velocity field and the streamlines of both the experimental and
the numerical runs for increasing silo width. The numerical velocity field (figure 7b) is
qualitatively very similar to the experimental velocity field (figure 7a). In both configu-
rations, the streamlines tend to vertical lines upward from the orifice at a distance which
decreases when W increases. On the same figures, we observe that the flowing zone is
found to be thinner when the lateral friction increases (i.e. when W decreases). The
limit of the stagnant zone for various outlet sizes D is plotted in figure 8 both for the
experiment (a), and the continuum simulation (b), in the regime dominated by the lateral
friction. Interestingly this position does not depend on D in either cases, but depends
strongly on W .

We may explain these behaviours at small W by looking at the Navier–Stokes equa-
tions. Let us consider a steady flow (implying that we neglect inertia). As the friction at
the walls increases when W decreases, the friction term (of magnitude µwp/W ) will be
at most as large as gravity (ρg). The gradients of the stress tensor are of order µsp/L.
This order of magnitude may be rewritten as (µs/µw)(W/L)µwp/W . It is clearly smaller
than µwp/W as (µs/µw) = O(1) and (W/L) � 1. Hence, as the wall friction increases
to balance gravity, the momentum equation can be approximated as:

0 ' 2µwp
W

O

(
µsW

µwL

)
e + ρg − 2µwp

W

u
|u| ,

where e is a unit vector in the main direction of the force resulting from internal friction.
The velocity u is aligned with gravity at first order, the more so as the thickness decreases.
This is noticeable in figure 7(c,d) where for small W the streamlines are clearly more
vertical than for larger W . To quantify this effect, we have plotted the angle of inclination
θ of the central streamline at the orifice relative to the vertical in figure 9. If we note
u0 the horizontal velocity at the center of the outlet, and U0 the norm of the velocity at
this position, we can write sin θ = u0/U0 (note that u0 is proportional to the previously
defined discharge velocity uD, as we will see in section A.2). We observe in figure 9a that
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Figure 7: Velocity field (a,b) and streamlines (c,d) for the experiment (a,c) with D =
20mm, d = 1129µm and W = [3.5, 10, 20, 40]mm, and for the continuum simulation (b,d)
with D = 56.25d and W = [13.5d, 45d, 180d].
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Figure 9: Continuum simulation results: angle of inclination θ of the central streamline
at the orifice relative to vertical for various W (a) versus D/L, (b) versus D/W . The
dashed line represents equation 3.10 with γ1 = 0.56 and γ2 = 0.25.

this angle decreases slightly with D, and strongly with W as expected. More interestingly,
if plotted versus D/W (figure 9b), the data superimpose. In order to study the scaling
relation of sin θ, we then turn to the dependency of the norm of the velocity U0 and
horizontal velocity u0 on W and D. In figure 10 we have represented the norm of the
velocity U0/

√
gd on the central streamline at the orifice versus D/d for various W .

Surprisingly we can see that the norm of the velocity does not significantly depend
on W . The data can be described by

U0 = cU
√
gD, (3.8)

with cU = 1.2. This suggests that the kinetic energy always scales like ρgD whatever
the lateral friction. For the horizontal velocity u0, since the flow rate Q ∝ u0WD, from
equation 3.4, we can write

u0 ∝
√
gD

√
1

1 + (cD/cW )2D/W
. (3.9)

We can thus obtain

sin θ =
√

γ1

1 + γ2D/W
. (3.10)

Moreover we see that the data in figure 9b is well described by this formulation with γ1 =
0.56 and γ2 = 0.25, with the fitting parameter γ2 = 0.25 corresponding to (cD/cW )2 =
0.26.

Finally figure 11 shows the time evolution of the top surface of granular material
for various silo widths for (a) the experiment and (b) the continuum simulation. From
experiments we can see that the surface of particles begins to tilt in the early stage
for a small width W , whereas it remains constant till the last stage for the largest W .
The tilted interface exhibits a slope starting from the wall opposite to the outlet and
reaches a flattened surface, or sometimes even a small bump, on the wall containing the
outlet. The slope of the interface is higher than the angle of repose for W = 3.5 mm,
and smaller than the angle of repose for W = 10 mm. In continuum simulations, we
explored a smaller range of W , the smallest W case W = 13.5d, is comparable to the
case W = 20 mm in the experiments, but we clearly recover the same trend: the larger
the thickness W , the longer the interface remains symmetrical. Note also that the no-slip
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Figure 10: Continuum simulation results: norm of the velocity U0/
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3.8 with cU = 1.2.
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Figure 11: Profiles of the top surface of granular materials for various W at constant
time steps: (a) experiments with D = 25 mm, d = 190 µm, time interval ∆te = 0.5 s,
(b) continuum simulation with D = 56.25d and time interval ∆ts/

√
d/g = 9.5.

conditions imposed at the wall are not exactly the same as in the experiments, where
a sliding velocity is observed. Nevertheless, the same qualitative profiles are obtained.
This behaviour is consistent with the previous observation: for large W , the flow far from
the outlet is symmetrical. For small W , the lateral friction breaks this symmetry and
localises the flow on the side of the outlet, which inclines the surface in this direction.

3.4. Experimental results in the cylindrical silo
The previous results were given for a simplified geometry, with a rectangular silo and an

outlet which spans the width of the silo. Experimentally we also performed measurements
of the flow rate for a cylindrical silo, with an outlet located at its side as schematised
in figure 1b. This situation generates a flow in a fully 3D geometry, and is of practical
interest. To characterise the different roles played by the length D and the width W of
the outlet, we have plotted in figure 12 the dimensionless mass flow rate Q/(ρφb

√
gW 5)

as a function of the aperture aspect ratio D/W , as done in the rectangular configuration.
As suggested by the Π-theorem in section 3.1 the data superimpose in this representa-
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Figure 12: Experimental results in the cylindrical silo: dimensionless mass flow rate
Q/(ρφb

√
gW 5) as a function of the aperture aspect ratio D/W . The dashed line

represents equation 3.2 with cD = 0.49, and the dashed-dotted line represents equation
3.3 with cW = 0.46.

tion. Moreover, we observe the same behaviours as in rectangular silos. For large W , the
flow rate follows the Hagen–Beverloo relation (equation 3.2, dashed line in the figure)
and for small W , the flow rate follows equation 3.3 (dashed-dotted line in the figure)
suggesting that the flow is dominated by the lateral friction. Over the whole range, the
data are well correlated by equation 3.4 (solid line in the figure) with cD = 0.49 and
cW = 0.46. The fitting parameter cw is found to be slightly smaller than that in the
rectangular silo. This suggests that the dissipation is higher in the cylinder, and more
specifically in the regime controlled by the lateral friction where we can assume that the
friction with a smooth lateral wall is smaller than that with an erodible granular media.
Consequently, the transition between the two regimes occurs for a smaller aperture aspect
ratio Ac ≈ 1.

3.5. Dependency of the flow rate on the particle diameter

The previous results are shown for a given small particle diameter d = 190 µm. In
this section we focus on the influence of the particle diameter. We have shown that the
flow rate of discharge of a silo with a lateral outlet depends on the aperture aspect
ratio A = D/W , and exhibits two regimes of flow described by equation 3.2 for small
A and by equation 3.3 for large A. When the particle diameter is varied, these scaling
relations seem to remain valid, as can been seen in figures 4(a,b) where the flow rate is
plotted versus D for two particle diameters, d = 190 µm and d = 1129 µm, in the two
regimes. In each regime the same scaling is found for the two grain sizes, however we
observe a shift of these relations towards smaller flow rates when the particle diameter
increases. This behaviour can be seen in figure 13(a,c) where the dimensionless flow rate
QA = Q/ρφb

√
gW 5 is plotted as a function of D/W for both the rectangular silos and

the cylindrical silo for all the batch of particles we used. The two regimes are recovered
whatever the particle diameter, see the dashed line and the dashed-dotted line. However
there is a significant scattering of the data above the relation fitted for the smallest
particle size d = 190 µm.

To model the dependency of the flow rate on the particle diameter, we follow the work
of Janda et al. (2012). In this framework we suppose that the particle size has to be
accounted for through the number of beads in the aperture via a geometrical function,



Discharge of granular media from silos with a lateral orifice 17
(a) (b)

10−2 10−1 100 101 102

D/W

10−3

10−2

10−1

100

101

Q

ρ
φ

b√
gW

5

d = 124µm

d = 190µm

d = 375µm

d = 538µm

d = 762µm

d = 1129µm

d = 1347µm

0.51x3/2

0.68x

10−1 100 101

D/W

10−1

100

101

Q

ρ
φ

b√
gW

5

d = 190µm

d = 375µm

d = 538µm

d = 762µm

d = 1129µm

d = 1347µm

0.49x3/2

0.46x

(c) (d)

10−2 10−1 100 101 102

D/W

10−3

10−2

10−1

100

101

Q

ρ
φ

b√
gW

5
G

D
G

W

d = 124µm

d = 190µm

d = 375µm

d = 538µm

d = 762µm

d = 1129µm

d = 1347µm

0.51x3/2

0.68x

10−1 100 101

D/W

10−1

100

101

Q

ρ
φ

b√
gW

5
G

D
G

W

d = 190µm

d = 375µm

d = 538µm

d = 762µm

d = 1129µm

d = 1347µm

0.49x3/2

0.46x

Figure 13: Mass flow rate Q as a function of D/W for various d for (a,c) rectangular
silos and (b,d) cylindrical silos, normalized in (a,b) by (ρφb

√
gW 5) and in (c,d) by

ρφb
√
gW 5GD(D/d)GW (W/d) (see equation 3.11) with the fitting parameters βD =

βW = 0.1, αD = 1 and αW = 0.46 (see appendix A). The dashed and dashed-dotted
lines are the same as in figure 5 and 12.

significant when this number is small. We take the two dimensions of the aperture into
account and thus we suppose that the flow rate depends on two geometrical functions
based on the number of beads in the aperture length D/d, and in the aperture width W/d.
The details of this approach and its validation using a 2D discrete numerical simulation
are given in the appendix. This yields the following expression for the flow rate:

Q = C ′lρφbGD

(
D

d

)
GW

(
W

d

)
F

(
D

W

)
WD

√
gD, (3.11)

with GD(D/d) =
[
1− αDe−βD D

d

]
, GW (W/d) =

[
1− αW e−βW W

d

]
and F (D/W ) =√

1/[1 + γ2D/W ].
Figure 13 shows the normalised flow rate using the geometrical functions,

Q/
[
ρφbGD(D/d)GW (W/d)

√
gW 5

]
, as a function of the aperture aspect ratio D/W for

the whole range of particle diameters for (c) rectangular silos and (d) cylindrical silos. In
this representation the data collapse and can be well adjusted by the same asymptotic
relations in two regimes as in figure 5 and 12.

We propose additional analysis in the appendix. The 2D discrete numerical simulation
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shows that the velocity at the outlet may follow the same geometrical relation than the
volume fraction. As the continuum simulation described correctly most of the observa-
tions on the discharge of a silo with a lateral aperture for a given particle diameter we
wonder if the continuum simulation is able to recover partially the dependency on the
particle size of the flow rate. Indeed, the µ(I) rheology contains the information on the
particle diameter in the definition of the inertial number I = d

√
2D2/(

√
p/ρ). Even

though a dependency on the particle diameter is observed in the 2D case, the profiles
present a larger asymmetry than the one predicted by the 2D discrete simulations. This
can be due to the fact that the volume fraction has been assumed to be uniform, whereas
the complete µ(I)-rheology, that includes a φ(I) relation, would predict a dilation of the
granula medium when it is sheared.

4. Conclusion and perspectives
Using experiments, 2D discrete simulations and continuum simulations we have studied

the discharge of a silo with a lateral orifice. Experimentally we have observed two regimes
of flow, either in a rectangular silo with an orifice spanning the thickness W of the
silo, or in a cylindrical silo. The first regime, observed for small aperture aspect ratios
A = D/W , corresponds to the well known Hagen–Beverloo regime with a flow rate
Q ∝ WD3/2. The second regime, observed for large aperture aspect ratios A > Ac,
follows Q ∝W 3/2D. We have proposed an empirical relation which predicts the flow rate
depending on the aperture dimensions and which recovers both regimes. The continuum
simulation, using the frictional µ(I) rheology and solved in 2D with an additional force to
take into account the wall friction in a Hele–Shaw spirit, is found to describe qualitatively
these two regimes and most of the internal details of the flow field observed experimentally
in the rectangular silo, notably the fact that the velocity field is aligned with gravity when
lateral wall friction is large. The dependency on the silo width suggests that the large
A regime is dominated by the lateral friction, and it seems reasonable to think that the
small A regime is controlled by the internal friction.

We have found that the particle diameter matters only when the number of beads
through the smallest orifice dimension is sufficiently small. The flow rate dependency on
this parameter can be reasonably described using two geometrical functions G`(`/d) =
1 − αe−β`/d based respectively on W and on D. A large part of this behaviour is well
reproduced using 2D discrete simulations. Interestingly a dependency on the particle
diameter is also observed in the 2D continuum simulation but it predicts different velocity
profiles which can be due to the fact that in the continuum simulation the volume fraction
does not vary.

In future work these promising observations need to be confirmed by conducting
systematic 3D simulations. Preliminary 3D continuum simulation results indicate that the
Hagen–Beverloo relation is obtained for a silo with bottom aperture. Extra developments
have to be done to include realistic boundary conditions to represent particles-wall
friction as well as the volume fraction variation φ(I).
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J.C. 2012 Evolution of pressure profiles during the discharge of a silo. Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 85.

Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible euler equations in
complex geometries. J. Comput. Phys. 190 (2), 572 – 600.

Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows.
Journal of Computational Physics 228 (16), 5838–5866.

Popinet, S. 2013-2016 Basilisk C reference manual. http://basilisk.fr/Basilisk C.
Radjai, F. & Dubois, F. 2011 Discrete-element modeling of granular materials. Wiley-Iste.
Rubio-Largo, S.M., Janda, A., Maza, D., Zuriguel, I. & Hidalgo, R.C. 2015

Disentangling the free-fall arch paradox in silo discharge. Phys. Rev. Lett. 114, 238002.
Serrano, D.A., Medina, A., Chavarria, G. Ruiz, Pliego, M. & Klapp, J. 2015 Mass flow

rate of granular material flowing from tilted bins. Powder Technol. 286, 438–443.
Sheldon, H. G. & Durian, D. J. 2010 Granular discharge and clogging for tilted hoppers.

Granul. Matter 12, 579–585.
Staron, L., Lagrée, P.-Y. & Popinet, S. 2012 The granular silo as a continuum plastic flow:

The hour-glass vs the clepsydra. Phys. Fluids 24, 103301.
Staron, L., Lagrée, P.-Y. & Popinet, S. 2014 Continuum simulation of the discharge of the

granular silo, a validation test for the µ(I) visco-plastic flow law. Eur. Phys. J. E 37 (5).
Tighe, B.P. & Sperl, M. 2007 Pressure and motion of dry sand: translation of Hagen’s paper

from 1852. Granul. Matter 9, 141 – 144.
Zhou, Y., Ruyer, P. & Aussillous, P. 2015 Discharge flow of a bidisperse granular media

from a silo: discrete particle simulations. Phys. Rev. E 92, 062204.



20 Y. Zhou et al.

Appendix A. Additional analysis
In this section we focus on the influence of the particle diameter. We first present an

analysis of the experimental results based on the work of Janda et al. (2012). We then
discuss the role of the particle diameter on the flow close to the outlet using 2D Contact
Dynamics simulations. Finally, we compare these results to the continuum numerical
simulations.

A.1. Experimental results and discussion
To take the dependency on the particle diameter into account, as observed in figure

13(a,b), we suppose that the observations made experimentally by Janda et al. (2012),
and numerically by Zhou et al. (2015) for a two-dimensional silo with an orifice placed at
the bottom of the silo remain valid in our geometry. We make the following assumptions:

(i) We suppose that the horizontal velocity profile together with the density profile at
the outlet are self-similar when varying the length of the hole R = D/2. The flow rate is
then given by

Q = ρW

¨ R

−R
φ(y)u(y)dy = cρWDφ̄ū, (A 1)

where c is a constant of integration and φ̄ and ū represent the mean density and the
mean horizontal velocity at the outlet respectively. The flow rate is then determined by
these two quantities.

(ii) Following equation 3.5, the mean horizontal velocity tends asymptotically as d
decreases towards

ξv
√
gD

√
1

1 + γ2D/W
= ξv

√
gDF (D/W ) ,

where F (D/W ) =
√

1/[1 + γ2D/W ], which corresponds to the value for infinitely-small
particles.

(iii) The granular medium tends to dilate at the outlet to maintain the flow. However
for a large number of beads in the aperture, we suppose that it tends towards a fraction
of the bulk density asymptotically, ξφφb, with ξφ a constant.

(iv) We suppose that both the mean density and the mean velocity depend on the
number of beads in the aperture via a geometrical function. To take the two dimensions
of the aperture into account, we suppose that the flow rate depends on two geometrical
functions based on the number of beads in the aperture length D/d, and in the aperture
width W/d. We assume that this geometrical function can be fitted by an exponential
saturation

Q = C ′lρφbGD

(
D

d

)
GW

(
W

d

)
F

(
D

W

)
WD

√
gD, (A 2)

with GD(D/d) =
[
1− αDe−βD D

d

]
and GW (W/d) =

[
1− αW e−βW W

d

]
.

To test these hypotheses, we isolated each geometrical function by plotting the di-
mensionless flow rate Q/(ρφbWDF

(
D
W

)√
gD) as a function of the number of beads in

the typical length `/d for the two regimes (i) ` = D and (ii) ` = W . In figures 14
(a) and (c) all the data for the rectangular silo are plotted and no clear trend can be
observed. However, when considering each regime separately, as done in figures 14 (b)
and (d), i.e. by selecting the experiments corresponding to the first regime ` = D (and
the second regime ` = W ), taking D < 1.8W (respectively D > 2.2W ), and considering
a large number of beads in the second direction of the orifice W > 10d (respectively
D > 20d), the remaining data superimpose and can be well adjusted by an exponential
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Figure 14: Experimental results obtained with rectangular silos: dimensionless flow rate
Q/(ρφbWDF

(
D
W

)√
gD) versus (a,b) D/d and (c,d) W/d. Selected experimental runs :

(a,c) all the runs, (b) D < 1.8W and W > 10d, (d) D > 2.2W and D > 20d. The full
lines represent the geometrical functions GD(D/d) =

[
1− αDe−βD D

d

]
and GW (W/d) =[

1− αW e−βW W
d

]
with αD = 1, βD = 0.1, αW = 0.46 and βW = 0.1 respectively.

saturation with the fitting parameters αD = 1, βD = 0.1, αW = 0.46 and βW = 0.1 (see
the black lines in the figures). These parameters are of the same order of magnitude as
that of the literature for both geometrical functions. It is interesting to note that the
same β is recovered in the two directions. The same procedure has been followed for the
cylindrical silo. Again, we find that both geometrical functions can be well adjusted by
an exponential saturation, with the fitting parameters αD = 0.59, βD = 0.08, αW = 0.61,
and βW = 0.08, in agreement with the literature.

As shown in figure 13(c,d) it seems that the geometrical functions built on the two
dimensions of the aperture correctly describe the dependency of the flow rate on the
particle diameter. To further test some of the assumptions, we performed a 2D discrete
simulation of the discharge flow of a silo from a lateral orifice that allows to study the
effective velocity and volume fraction profiles.

A.2. Discrete simulations in 2D
Discrete particle simulations are described in section 2.2. In this two-dimensional

configuration, following the same methodology as for the bottom orifice done



22 Y. Zhou et al.
(a) (b) (c)

−10 −5 0 5 10
y/d

0.0

0.2

0.4

0.6

0.8
φ

−10 −5 0 5 10
y/d

0.0

1.5

3.0

4.5

6.0

u
/√

g
d

−10 −5 0 5 10
y/d

0.0

0.8

1.6

2.4

v
/√

g
d

(d) (e) (f)

−1.0 −0.5 0.0 0.5 1.0
y/R

0.0

0.4

0.8

1.2

φ
/φ

−1.0 −0.5 0.0 0.5 1.0
y/R

0.0

0.4

0.8

1.2
u
/u

D = 6d

D = 8d

D = 10d

D = 12d

D = 14d

D = 16d

D = 18d

−1.0 −0.5 0.0 0.5 1.0
y/R

0.0

0.4

0.8

1.2

v
/v

Figure 15: (Color online)(a-f) Flow of particles of diameter of d = 2 mm for different
outlet diameters. Vertical profiles of (a) the volume fraction, φ, (b) the horizontal velocity,
u, and (b) the vertical velocity, v, versus the vertical position, y. Vertical profiles of (d) the
volume fraction normalised by the mean volume fraction, φ̄, (e) the horizontal velocity
made dimensionless by the mean horizontal velocity, ū, and (f) the vertical velocity
made dimensionless by the mean vertical velocity, v̄, versus the position normalised by
the outlet radius (R = D/2). The full lines represent in (d) Eq. A 3 with νφ = 0.21 and
in (e) Eq. A 4 with νv = 0.38 respectively.

experimentally by Janda et al. (2012), and with a 2D discrete simulations by Zhou
et al. (2015), we are able to test most of the hypotheses (i) to (iv) made in the previous
section, for the Hagen–Beverloo regime.

(i) We have first assumed that at the lateral outlet, the horizontal velocity profile
together with the density profile are self-similar when varying the length of the hole
R = D/2. Figure 15(a-c) show the vertical profile of the volume fraction, φ, of the
horizontal velocity, u, and of the vertical velocity, v, for various aperture lengths, D, for
a given particle diameter d = 2 mm. The vertical axis, y, is oriented upward and its origin
is located at the middle of the outlet. Similar to the case of an aperture placed at the
bottom of the silo, the volume fraction profile is found to be self-similar when normalised
by the mean volume fraction, φ̄ as shown in figure 15(d). The self-similar profile is slightly
dissymmetrical, the top of the profile exhibiting a slightly higher dilatancy at the edge
than at the bottom. Nevertheless, it can be well fitted by

φ(y) = φ̄ γ(νφ)
[
1−

( y
R

)2
]νφ

, (A 3)

where γ(ν) = (2/
√
π)Γ (ν + 3/2)/Γ (ν + 1). The fitting parameter, νφ = 0.21 ± 0.01,

obtained using the least squares method, is similar to that obtained for a bottom aperture
νφ = 0.19 ± 0.01 by Zhou et al. (2015). In the same way, once normalised by the mean
horizontal velocity, ū, the horizontal velocity profile is found to be self-similar and well
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Figure 16: (a) Mean volume fraction at the outlet, φ̄, (b) mean horizontal velocity, ū, and
(c) mean vertical velocity, v̄, versus the diameter apertures D, for two particle diameters.
(d) Mean volume fraction at the outlet, φ̄, normalised by the bulk volume fraction, φb, (e)
mean horizontal velocity, ū, made dimensionless by

√
gd and (f) mean vertical velocity,

v̄, made dimensionless by
√
gd, versus the number of beads in the apertures D/d, for two

particle diameters. The full line represent in (d) Eq. A 5 with ξφ = 0.87, αφ = 0.44, and
β = 0.15, in (e) Eq. A 6 with ξu = 1.2, αu = 0.98 and β = 0.15 and in (f) Eq. A 7 with
ξv = 0.45, αv = 0.78 and β = 0.15, respectively.

adjusted by

u(y) = ū γ(νv)
[
1−

( y
R

)2
]νv

, (A 4)

with the fitting parameter, νv = 0.38 ± 0.01 obtained using the least squares method.
This parameter is identical to that obtained for the vertical velocity by Zhou et al. (2015)
in the silo with a bottom aperture. Finally, the horizontal velocity profile is also found
to be self-similar. The self-similar profile is clearly non-symmetric, exhibiting mainly a
linear profile on the main part of outlet with a maximum close to the top where the
velocity decreases toward the edge. The first hypothesis is hence fullfilled and the flow
rate is given by Q = cρDφ̄ū, where c is a constant.

To test the hypotheses (ii) - (iv), we plotted the mean volume fraction, φ̄ and the
mean horizontal and vertical velocities, ū and v̄, as a function of the aperture length, D,
for two particles diameters, d = 2 mm (◦) and d = 6 mm (4), as seen in figure 16 (a-c).
Clearly, all the variables depend on the particle diameters. In figure 16 (d-f), the same
variables are plotted, normalised by the assumed asymptotic behaviour, as a function of
the number of beads in the aperture. The data collapse on single curves, as observed for
the silo with a bottom aperture, which are well adjusted by an exponential saturation as
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Figure 17: Flow rate made dimensionless by
√
gd3 versus the number of beads in the

aperture D/d for the 2D case, (a) discrete simulation, (b) continuum simulation. The
full lines represent Eq. A 8 with (a) C ′l = 1.08 and (b) C ′l = 0.78.

expected,

φ̄ = ξφφb

[
1− αφe−βDd

]
= ξφφbGφ

(
D

d

)
, (A 5)

ū = ξu
√
gD
[
1− αue−βDd

]
= ξu

√
gDGu

(
D

d

)
, (A 6)

v̄ = ξv
√
gD
[
1− αve−βDd

]
= ξv

√
gDGv

(
D

d

)
, (A 7)

with the fitting parameters β = 0.15, ξφ = 0.87, αφ = 0.44, ξu = 1.2, αu = 0.98, ξv =
0.45, αv = 0.78, obtained using the least-squares method. Once again, these parameters
closely match those obtained by Zhou et al. (2015) for the bottom configuration. The
same β, fitted on the volume fraction, is found to correctly adjust the mean velocity
variations. This suggests that the same phenomenon is involved in the variation at the
outlet of the volume fraction and of the velocities with respect to the particle size. These
equations also suggest that in the Hagen–Beverloo regime, the angle of inclination of the
streamline at the outlet, defined as tan(θ) = ū/v̄ has low dependency on the outlet size
D through a geometrical function Gu/Gv. Finally the flow rate is given by

Q = C ′lρφb
√
gDGφ

(
D

d

)
Gu

(
D

d

)
≈ C ′lρφb

√
gDG

(
D

d

)
, (A 8)

where C ′l = ξφξvγ(νv)γ(νφ)
´ 1

0
(1−t2)dt = 1.08, and G =

[
1− αe−βDd

]
with α = αφ+αu.

In the range of number of beads in the aperture (D/d > 6), the approximation of G ≈
GuGφ leads to less than 5% of error. This equation adjusts the data well with the fitting
parameter C ′l = 1.08, as seen in figure 17, and is similar to equation A 2 considering
W =∞.

Using 2D discrete simulations we have shown that the dependence of the flow rate
on the particle size can be modeled using a geometrical function which depends only on
the number of beads in the aperture. This geometrical function is seen to influence both
the volume fraction at the outlet, bigger particles leading to a dilation, and the velocity,
bigger particles leading to slower flow. It would be interesting in future work to conduct
3D discrete simulations to see if we recover the same geometrical function for the number
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Figure 18: 2D continuum simulation (a,d) horizontal velocity (b,e) vertical velocity and
(c,f) norm of the velocity, (a,b,c) normalised by

√
gd versus y/d and (d,e,f) normalised

by the mean value versus y/R, the full lines in (d,f) represent Eq. A 4 with νv = 0.31.

of beads in the silo width, in the regime dominated by the lateral friction, as suggested
by the experimental results.

A.3. Continuum simulation
We have seen in section 3 that the continuum simulation described correctly most of the

observations on the discharge of a silo with a lateral aperture, for various D and various
W but for a given particle diameter. However the µ(I) rheology contains the information
on the particle diameter in the definition of the inertial number I = d

√
2D2/(

√
p/ρ).

In this section we wonder if the continuum simulation is able to recover partially the
dependency on the particle size of the flow rate. Indeed, even if this simulation considers
a constant volume fraction, the 2D discrete simulations have shown that the velocity at
the outlet may follow the same geometrical relation than the volume fraction.

Figure 18 presents the vertical profile at the outlet of the horizontal velocity, the
vertical velocity and the norm of the velocity, for a given particle diameter in the 2D
case. Interestingly, when normalised by the mean value, these profiles are again found
to be self-similar. However, contrary to the discrete simulations, the horizontal velocity
profile exhibits a strong asymmetry between the top and the bottom of the outlet. As
a consequence, the ajustement by the equation A 4 with the fitting parameter νu =
0.31± 0.01 obtained using least squares method is not satisfactory. However the vertical
velocity profile ressembles the discrete simulation result. Interestingly, the profile of the
norm of the velocity is found to remain symmetrical and is well adjusted by equation Eq.
A 4 with νv = 0.31.

Figures 19(a,b,c) show the mean value of the horizontal and vertical velocities and of
the norm of the velocity, normalised by

√
gL versus the dimensionless outlet diameterD/d

for two particles diameters d = L/30 and d = L/90. Clearly these mean velocities depend
on the outlet size D, but also on the particle diameter d. Following the discrete simulation
study we have plotted in figure 19(d,e,f) these velocities made dimensionless with

√
gD
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Figure 19: 2D continuum simulation (a,d) horizontal velocity, (b,e) vertical velocity, and
(c,f) norm of the velocity normalised in (a,b,c) by

√
gL versus D/L and normalised in

(d,e,f) by
√
gD versus D/d for two particles diameters. The full lines in (d,e,f) represent

equation A 6 with the fitting parameters β = 0.05, ξu = 0.78, αu = 0.25, ξv = 0.68,
αv = 0.31, ξU = 1.06 and αU = 0.28 obtained using the least squares method.

versus D/d. The data corresponding to the mean horizontal velocity (respectively to the
mean norm) are reasonably well adjusted by equation A 6 with the fitting parameters
β = 0.05, ξu = 0.78 and αu = 0.25 (respectively ξU = 1.06 and αU = 0.28). The value of
β is sensibly lower than the value obtained experimentally or in the discrete simulation.
However the same tendency than observed in the discrete simulation is recovered. This is
not the case for the mean vertical velocity for which the data do not follow the asymptotic
behaviour in

√
gD. However this velocity is not involved in the flow rate and the equation

A 8 using the fitting parameters predicts well the flow rate, see the full line in figure 17b.
Finally we have done the same analysis in the pseudo-3D continuum simulation, in

the regime controlled by the sidewall friction. Figure 20a presents the profile of the
horizontal velocity at the outlet for various D. In this regime, the profiles present the
same asymmetric shape than in the Hagen–Beverloo profile, nevertheless the velocity
does not seem to depend on D anymore. Figure 20b shows the mean horizontal velocity,
normalised by

√
gW versus W/d for data corresponding to the second regime, D/W > 3.

Clearly we do not observe the geometrical function as suggested by the experimental
results. This is not surprising as the flow is not solved throughout the silo width, thus
the I number is not expected to play any role in this direction.

To conclude this section, we found that a dependency on the particle diameter is
observed in the 2D continuum simulation, that the velocity profiles are self-similar when
varying the outlet length, and that the mean horizontal velocity tends asymptotically
towards

√
gD, contrary to the mean vertical velocity. This behaviour is well described

by a geometrical function given by equation A 6. However the profiles present a larger
asymmetry than the one predicted by the 2D discrete simulations. This can be due to
the fact that the volume fraction has been assumed to be uniform, whereas the complete
µ(I)-rheology, that includes a φ(I) relation, would predict a dilation of a granula media
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Figure 20: Pseudo-3D continuum simulation. (a) Horizontal velocity normalized by
√
gd

versus y/d at the outlet for different D and W = 13.5d (b) mean horizontal velocity
normalised by

√
gW for D/W > 3.

when it is sheared. The dependency on the particle diameter for the regime controlled
by the sidewalls is not correctly described by the pseudo-3D continuum simulation which
does not solve the flow in the silo width direction.


	Introduction
	Methods
	Experiments
	Contact Dynamics simulations
	Continuum numerical simulations

	Effect of sidewalls on the silo discharge from a lateral orifice
	-theorem
	Experimental results for the rectangular silo
	Comparison with continuum numerical simulations
	Experimental results in the cylindrical silo 
	Dependency of the flow rate on the particle diameter

	Conclusion and perspectives
	Appendix A
	Experimental results and discussion
	Discrete simulations in 2D
	Continuum simulation


