
HAL Id: hal-01769271
https://hal.science/hal-01769271v1

Submitted on 18 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-assisted variable clustering: minimax-optimal
recovery and algorithms

Florentina Bunea, Christophe Giraud, Xi Luo, Martin Royer, Nicolas Verzelen

To cite this version:
Florentina Bunea, Christophe Giraud, Xi Luo, Martin Royer, Nicolas Verzelen. Model-assisted variable
clustering: minimax-optimal recovery and algorithms. Annals of Statistics, 2020, 48 (1), pp.111-137.
�10.1214/18-AOS1794�. �hal-01769271�

https://hal.science/hal-01769271v1
https://hal.archives-ouvertes.fr


Submitted to the Annals of Statistics

MODEL ASSISTED VARIABLE CLUSTERING: MINIMAX-OPTIMAL
RECOVERY AND ALGORITHMS

By Florentina Bunea

Cornell University

By Christophe Giraud
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The problem of variable clustering is that of estimating groups of
similar components of a p-dimensional vector X = (X1, . . . , Xp) from
n independent copies of X. There exists a large number of algorithms
that return data-dependent groups of variables, but their interpreta-
tion is limited to the algorithm that produced them. An alternative
is model-based clustering, in which one begins by defining population
level clusters relative to a model that embeds notions of similarity.
Algorithms tailored to such models yield estimated clusters with a
clear statistical interpretation. We take this view here and introduce
the class of G-block covariance models as a background model for
variable clustering. In such models, two variables in a cluster are
deemed similar if they have similar associations will all other vari-
ables. This can arise, for instance, when groups of variables are noise
corrupted versions of the same latent factor. We quantify the diffi-
culty of clustering data generated from a G-block covariance model
in terms of cluster proximity, measured with respect to two related,
but different, cluster separation metrics. We derive minimax cluster
separation thresholds, which are the metric values below which no
algorithm can recover the model-defined clusters exactly, and show
that they are different for the two metrics. We therefore develop two
algorithms, COD and PECOK, tailored to G-block covariance mod-
els, and study their minimax-optimality with respect to each metric.
Of independent interest is the fact that the analysis of the PECOK
algorithm, which is based on a corrected convex relaxation of the
popular K-means algorithm, provides the first statistical analysis of

such algorithms for variable clustering. Additionally, we contrast our
methods with another popular clustering method, spectral cluster-
ing, specialized to variable clustering, and show that ensuring exact
cluster recovery via this method requires clusters to have a higher
separation, relative to the minimax threshold. Extensive simulation
studies, as well as our data analyses, confirm the applicability of our
approach.
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1. Introduction. The problem of variable clustering is that of grouping similar components
of a p-dimensional vector X = (X1, . . . , Xp). These groups are referred to as clusters. In this work
we investigate the problem of cluster recovery from a sample of n independent copies of X. Variable
clustering has had a long history in a variety of fields, with important examples stemming from
gene expression data [18, 22, 39] or protein profile data [7]. The solutions to this problem are
typically algorithmic and entirely data based. They include applications of K-means, hierarchical
clustering, spectral clustering, or versions of them. The statistical properties of these procedures
have received a very limited amount of investigation. It is not currently known what probabilistic
cluster models on X can be estimated by these popular techniques, or by their modifications. More
generally, model-based variable clustering has received a limited amount of attention. One net
advantage of model-based clustering is that population-level clusters are clearly defined, offering
both interpretability of the clusters and a benchmark against which one can check the quality of a
particular clustering algorithm.

In this work we propose the G-block covariance model as a flexible model for variable clustering
and show that the clusters given by this model are uniquely defined. We then motivate and develop
two algorithms tailored to the model, COD and PECOK, and analyze their respective performance
in terms of exact cluster recovery, for minimally separated clusters, under appropriately defined
cluster separation metrics.

1.1. The G-block covariance model. Our proposed model for variable clustering subsumes that
the covariance matrix Σ of a centered random vector X ∈ Rp follows a block, or near-block, decom-
position, with blocks corresponding to a partition G = {G1, . . . , GK} of {1, . . . , p}. This structure of
the covariance matrix has been observed to hold, empirically, in a number of very recent studies on
the parcelation of the human brain, for instance [17, 19, 24, 38]. We further support these findings
in Section 8, where we apply the clustering methods developed in this paper, tailored to G-block
covariance models, for the clustering of brain regions.

To describe our model, we associate, to a partition G, a membership matrix A ∈ Rp×K defined
by Aak = 1 if a ∈ Gk, and Aak = 0 otherwise.

(A) The exact G-block covariance model. In view of the above discussion, clustering the
variables (X1, . . . , Xp) amounts to find a minimal (i.e. coarsest partition) G∗, such that two variables
belong to the same cluster if they have the same covariance with all other variables. This implies
that the covariance matrix Σ of X decomposes as

(1) Σ = AC∗At + Γ,

where A is relative to G∗, C∗ is a symmetric K × K matrix, and Γ a diagonal matrix. When a
such a decomposition exists with the partition G∗, we say that X ∈ Rp follows an (exact) G∗-block
covariance model.

(i) G-Latent Model. Such a structure arises, for instance, when components of X that belong
to the same group can be decomposed into the sum between a common latent variable and an
uncorrelated random fluctuation. Similarity within group is therefore given by association with the
same unobservable source. Specifically, the exact block-covariance model (1) holds, with a diagonal
matrix Γ, when

(2) Xa = Zk(a) + Ea,

with Cov(Zk(a), Ea) = 0, Cov(Z) = C∗, and the individual fluctuations Ea are uncorrelated, and
thus E has diagonal covariance matrix Γ. camThe index assignment function k : {1, . . . , p} →
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VARIABLE CLUSTERING 3

{1, . . . ,K} is defined by Gk = {a : k(a) = k}. In practice, this model is used to justify the con-
struction of a single variable that represents a cluster, the average of Xa, a ∈ Gk, viewed as an
observable proxy of Zk(a). For example, a popular analysis approach for fMRI data, called region-
of-interest (ROI) analysis [34], requires averaging the observations from multiple voxels (a imaging
unit for a small cubic volume of the brain) within each ROI (or cluster of voxels) to produce new
variables, each representing a larger and interpretable brain area. These new variables are then used
for downstream analyses. From this perspective, model (2) can be used in practice, see, for example
[6], as a building block in a data analysis based on cluster representatives, which in turn requires
accurate cluster estimation. Indeed, data-driven methods for clustering either voxels into regions
or regions into functional systems, especially based on the covariance matrix of X, is becoming
increasingly important, see for example [17, 19, 35, 38]. Accurate data-driven clustering methods
also enable studying the cluster differences across subjects [16] or experimental conditions [21].

(ii) The Ising Block Model. The Ising Block Model has been proposed in [8] for modelling
social interactions, for instance political affinities. Under this model, the joint distribution of X ∈
{−1, 1}p, a p-dimensional vector with binary entries, is given by

(3) f(x) =
1

κα,β
exp

[ β
2p

∑
a∼b

xaxb +
α

2p

∑
a�b

xaxb

]
,

where the quantity κα,β is a normalizing constant, and the notation a ∼ b means that the elements
are in the same group of the partition. The variables Xa may for instance represent the votes of
U.S. senators on a bill [5]. For parameters α > β, the density (3) models the fact that senators
belonging to the same political group tend to share the same vote. By symmetry of the density
f , the covariance matrix Σ of X decomposes as an exact block covariance model Σ = AC∗At + Γ
where Γ is diagonal. When all groups G∗k have identical size, we have C∗ = (ωin − ωout)IK + ωoutJ
and Γ = (1−ωin)I, where the K×K matrix J has all entries equal to 1, and IK denotes the K×K
identity matrix, and the quantities ωin, ωout depend on α, β, p.

(B) The approximate G-block model. In many situations, it is more appealing to group vari-
ables that nearly share the same covariance with all the other variables. In that situation, the
covariance matrix Σ would decompose as

(4) Σ = ACAt + Γ, where Γ has small off-diagonal entries.

Such a situation can arise, for instance when Xa = (1 + δa)Zk(a) + Ea, with δa = o(1) and the
individual fluctuations Ea are uncorrelated, 1 ≤ a ≤ p.

1.2. Our contribution. We assume that the data consist in i.i.d. observations X(1), . . . , X(n) of
a random vector X with mean 0 and covariance matrix Σ. This work is devoted to the development
of computationally feasible methods that yield estimates Ĝ of G∗, such that Ĝ = G∗, with high
probability, when the clusters are minimally separated, and to characterize the minimal value of the
cluster separation from a minimax perspective. The separation between clusters is a key element
in quantifying the difficulty of a clustering task as, intuitively, well separated clusters should be
easier to identify. We consider two related, but different, separation metrics, that can be viewed
as canonical whenever Σ satisfies (4). Although all our results allow, and are proved, for small
departures from the diagonal structure of Γ in (1), our main contribution can be best seen when Γ
is a diagonal matrix. We focus on this case below, for clarity of exposition. The case of Γ being a
perturbation of a diagonal matrix is treated in Section 6.
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When Γ is diagonal, our target partition G∗ can be easily defined. It is the unique minimal (with
respect to partition refinement) partitionG∗ for which there is a decomposition Σ = AC∗At+Γ, with
A associated to G∗. We refer to Section 2 for details. We observe in particular, that maxc 6=a,b |Σac−
Σbc| > 0 if and only if Xa and Xb belong to different clusters in G∗.

This last remark motivates our first metric MCOD based on the following COvariance Difference
(COD) measure

(5) COD(a, b) := max
c 6=a,b

|Σac − Σbc| for any a, b = 1, . . . , p.

We use the notation a
G∗∼ b whenever a and b belong to the same group G∗k, for some k, in the

partition G∗, and similarly a
G∗� b means that there does not exist any group G∗k of the partition

G∗ that contains both a and b. We define the MCOD metric as

(6) MCOD(Σ) := min
a
G∗� b

COD(a, b).

The measure COD(a, b) quantifies the similarity of the covariances that Xa and Xb have, respec-
tively, with all other variables. From this perspective, the size of MCOD(Σ) is a natural measure
for the difficulty of clustering when analyzing clusters with components that are similar in this
sense. Moreover, note that this metric is well defined even if C∗ of model (1) is not semi-positive
definite.

Another cluster separation metric appears naturally when we view model (1) as arising via
model (2), or via small deviations from it. Then, clusters in (1) are driven by the latent factors,
and intuitively they differ when the latent factors differ. Specifically, we define the ”within-between
group” covariance gap

(7) ∆(C∗) := min
j<k

(
C∗kk + C∗jj − 2C∗jk

)
= min

j<k
E
[
(Zj − Zk)2

]
,

where the second equality holds whenever (2) holds. In the latter case, the matrix C∗, which is
the covariance matrix of the latent factors, is necessarily semi-positive definite. Further, we observe
that ∆(C∗) = 0 implies Zj = Zk a.s. Conversely, we prove in Corollary 1 of Section 2 that if
the decomposition (1) holds with ∆(C∗) > 0, then the partition related to A is the partition G∗

described above. An instance of ∆(C∗) > 0 corresponds to having the within group covariances
stronger than those between groups. This suggests the usage of this metric ∆(C∗) for cluster analysis
whenever, in addition to the general model formulation (1), we also expect clusters to have this
property, which has been observed, empirically, to hold in applications. For instance, it is implicit
in the methods developed by [17] for creating a human brain atlas by partitioning appropriate
covariance matrices. We also present a neuroscience-based data example in 8.

Formally, the two metrics are connected via the following chain of inequalities, proved in Lemma
1 of Section 1.1 of the supplemental material [12], and valid as soon as the size of the smallest
cluster is larger than one, Γ and C∗ is semi-positive definite (for the last inequality)

(8) 2λK(C∗) ≤ ∆(C∗) ≤ 2MCOD(Σ) ≤ 2
√

∆(C∗) max
k=1,...,K

√
C∗kk.

The first inequality shows that conditions on ∆(C∗) are weaker than conditions on the minimal
eigenvalue λK(C∗) of C∗. In order to preserve the generality of our model, we do not necessarily
assume that λK(C∗) > 0, as we show that, for model identifiability, it is enough to have the weaker
condition ∆(C∗) > 0, when the two quantities differ.
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The second inequality in (8) shows that ∆(C∗) and MCOD(Σ) can have the same order of
magnitude, whereas the third inequality shows that they can also differ in order, and ∆(C∗) can be
as small as MCOD2(Σ), for small values of these metrics, which is our main focus. This suggests
that different statistical assessments, and possibly different algorithms, should be developed for
estimators of clusters defined by (1), depending on the cluster separation metric. To substantiate
this intuition, we first derive, for each metric, the rate below which no algorithm can recover exactly
the clusters defined by (1). We call this the minimax optimal threshold for cluster separation, and
prove that it is different for the two metrics. We call an algorithm that can be proved to recover
exactly clusters with separation above the minimax threshold a minimax optimal algorithm.

Theorem 1 in Section 3 shows that no algorithm can estimate consistently clusters defined by
(1) if

(9) MCOD(Σ) .

√
log(p)

n
.

Here and throughout this paper the symbol . is used whenever an inequality holds up to multiplica-
tive constants, which are made precise in the statements of the theorems where such inequalities
are proved. Theorem 2 in Section 3 shows that optimal separation distances with respect to the
metric ∆(C∗) are sensitive to the size of the smallest cluster,

m∗ = min
1≤k≤K

|G∗k|,

in that no algorithm can estimate consistently clusters defined by (1) when

(10) ∆(C∗) .

(√
log(p)

nm∗

∨ log(p)

n

)
.

The first term will be dominant whenever the smallest cluster has size m∗ < n/ log(p), which will be
the case in most situations. The second term in (10) becomes dominant whenever m∗ > n/ log(p),
which can also happen when p scales as n, and we have a few balanced clusters.

The PECOK algorithm is tailored to the ∆(C∗) metric, and is shown in Theorem 4 to be near-
minimax optimal. For instance, for balanced clusters, exact recovery is guaranteed when ∆(C∗) &√

K∨log p
m∗n + K∨log(p)

n . This differs by factors in K from the ∆(C∗)-minimax threshold, for general K,

whereas it is of optimal order when K is a constant, or grows as slowly as log p. A similar discrepancy
between minimax lower bounds and the performance of polynomial-time estimators has also been
pinpointed in network clustering via the stochastic block model [15] and in sparse PCA [9]. It has
been conjectured that, when K increases with n, there exists a gap between the statistical boundary,
i.e. the minimal cluster separation for which a statistical method achieves perfect clustering with
high probability, and the polynomial boundary, i.e. the minimal cluster separation for which there
exists a polynomial-time algorithm that achieves perfect clustering. Further investigation of this
computational trade-off is beyond the scope of this paper and we refer to [15] and [9] for more
details.

However, if we consider directly the metric MCOD(Σ), and its corresponding, larger, minimax
threshold, we derive the COD algorithm, which is minimax optimal with respect to MCOD(Σ).
In view of (8), it is also minimax optimal with respect to ∆(C∗), whenever there exist small
clusters, the size of which does not change with n. The description of the two algorithms and
theoretical properties are given in Sections 4 and 5, respectively, for exact block covariance models.
Companions of these results, regarding the performance of the algorithms for approximate block
covariance models are given in Section 6, in Theorem 6 and Theorem 7, respectively.
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Table 1 below gives a snap-shot of our results, which for ease of presentation, correspond to the
case of balanced clusters, with the same number of variables per cluster. We stress that neither our
algorithms, nor our theory, is restricted to this case, but the exposition becomes more transparent
in this situation.

Metric Minimax threshold PECOK COD

d1 =: ∆(C∗)
√

log p
mn

+ log p
n

Always near-minimax optimal
w.r.t. d1.

Minimax optimal w.r.t. d1
when m is constant.

d2 =: MCOD(Σ)
√

log p
n

Minimax optimal w.r.t. d2 when
m > n/ log(p) and K = O(log p).

Always minimax optimal
w.r.t. d2.

Table 1
Algorithm performance relative to minimax thresholds of each metric

In this table m denotes the size of the smallest cluster in the partition. The performance of COD
under d1 follows from the second inequality in (8), whereas the performance of PECOK under d2

follows from the last inequality in (8). The overall message transmitted by Table 1 and our analysis
is that, irrespective of the separation metric, the COD algorithm will be most powerful whenever we
expect to have at least one, possibly more, small clusters, a situation that is typically not handled
well in practice by most of the popular clustering algorithms, see [11] for an in-depth review. The
PECOK algorithm is expected to work best for larger clusters, in particular when there are no
clusters of size one. We defer more comments on the relative numerical performance of the methods
to the discussion Section 9.3.

We emphasize that both our algorithms are generally applicable, and our performance analysis is
only in terms of the most difficult scenarios, when two different clusters are almost indistinguishable
and yet, as our results show, consistently estimable. Our extensive simulation results confirm these
theoretical findings.

We summarize below our key contributions.

(1) An identifiable model for variable clustering and metrics for cluster separation.
We advocate model-based variable clustering, as a way of proposing objectively defined and in-
terpretable clusters. We propose identifiable G-block covariance models for clustering, and prove
cluster identifiability in Proposition 1 of Section 2.
(2) Minimax lower bounds on cluster separation metrics for exact partition recovery.
Two of our main results are Theorem 2 and Theorem 1, presented in Section 3, in which we
establish, respectively, minimax limits on the size of the ∆(C∗)-cluster separation and MCOD(Σ)-
cluster separation below which no algorithm can recover clusters defined by (1) consistently, from
a sample of size n on X. To the best of our knowledge these are the first results of this type in
variable clustering.
(3) Variable clustering procedures with guaranteed exact recovery of minimally sep-
arated clusters. The results of (1) and (2) provide a much needed framework for motivating
variable clustering algorithm development and for clustering algorithm assessments.

In particular, they motivate a correction of a convex relaxation of the K-means algorithm,
leading to our proposed PECOK procedure, based on Semi-Definite Programing (SDP). Theorem
4 shows it to be near-minimax optimal with respect to the ∆(C∗) metric. The PECOK - ∆(C∗)
pairing is natural, as ∆(C∗) measures the difference of the ”within cluster” signal relative to the
”between clusters” signal, which is the idea that underlies K-means type procedures. To the best
of our knowledge, this is the first work that explicitly shows what model-based clusters of variables
can be estimated via K-means style methods, and assesses theoretically the quality of estimation.
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Moreover, our work shows that the results obtained in [8], for the block Ising model, can be
generalized to arbitrary values of K and unbalanced clusters.

The COD procedure is a companion of PECOK for clusters given by model (1), and is minimax
optimal with respect to the MCOD(Σ) cluster separation, as established in Theorem 1. Another
advantage of COD is of computational nature, as SDP-based methods, although convex, can be
computationally involved.
(4) Comparison with corrected spectral variable clustering methods. In Section 5.4, we
connect PECOK with another popular algorithm, spectral clustering. We show that although it
may be less computationally involved than PECOK, good cluster recovery can only be theoretically
guaranteed for very well separated clusters, well above the minimax optimal threshold.

1.3. Organization of the paper. The rest of the paper is organized as follows:
Sections 1.4 and 1.5 contain the notation and distributional assumptions used throughout the

paper.
For clarity of exposition, Sections 2 - 5 contain results established for model (1), when is Γ a

diagonal matrix. Extensions to the case when Γ has small off-diagonal entries are presented in
Section 6.

Section 2 shows that we have a uniquely defined target of estimation, the partition G∗.
Section 3 derives the minimax thresholds on the separation metrics ∆(C∗) and MCOD(Σ),

respectively, for estimating G∗ consistently.
Section 4 is devoted to the COD algorithm, and its analysis.
Section 5 is devoted to the PECOK algorithm and its analysis.
Section 5.4 analyses spectral clustering for variable clustering, and compares it with PECOK.
Section 6 contains extensions to approximate G-block covariance models.
Section 7 explores the numerical performance of our methods, and Section 8 presents their

application to the clustering of putative brain areas using a real fMRI data.
Section 9 contains a discussion of our results and overall recommendations regarding the usage of

our methods. Given the space constraints, only some of our proofs are presented in the Appendix,
while a large portion of them are included in the supplemental material [12].

1.4. Notation. We denote by X the n × p matrix with rows corresponding to observations
X(i) ∈ Rp, for i = 1, . . . , n. The sample covariance matrix Σ̂ is defined by

Σ̂ =
1

n
XtX =

1

n

n∑
i=1

X(i)(X(i))t.

Given a vector v and q ≥ 1, |v|q stands for the `q norm. For a generic matrix M : |M |q denotes
its the entry-wise `q norm, ‖M‖op denotes its operator norm, and ‖M‖F refers to the Frobenius
norm. We use M:a, Mb:, to denote the a-th column or, respectively, b-th row of a generic matrix M .
The bracket 〈., .〉 refers to the Frobenius scalar product. Given a matrix M , we denote supp(M)
its support, that is the set of indices (i, j) such that Mij 6= 0. I denotes the identity matrix. We
define the variation semi-norm of a diagonal matrix D as |D|V := maxaDaa − minaDaa. We use
B < 0 to denote a symmetric and positive semidefinite matrix.

Throughout this paper will make use of the notation c1, c2, · · · to denote positive constants inde-
pendent of n, p,K,m. The same letter, for instance c1 may be used in different statements and may
denote different constants, which are made clear within each statement, when there is no possibility
for confusion.
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We use [p] to denote the set {1, . . . , p}. We use the notation a
G∼ b whenever a, b ∈ Gk, for the

same k. Also, m = mink |Gk| stands for the size of the smallest group of the partition G.
The notation & and . is used for whenever the inequalities hold up to multiplicative numerical

constants.

1.5. Distributional assumptions. For a p-dimensional random vector Y , its Orlicz norm is de-
fined by ‖Y ‖ψ2 = supt∈Rp: ‖t‖2=1 inf{s > 0 : E[e(Ztt)/s2 ≤ 2]}. Throughout the paper we will
assume that X follows a sub-Gaussian distribution. Specifically, we use:

Assumption 1. (sub-Gaussian distributions) The exists L > 0 such that random vector Σ−1/2X
satisfies ‖Σ−1/2X‖ψ2 ≤ L, where

Our class of distributions includes, in particular, that of bounded distributions, which may be
of independent interest, as example (ii) illustrates. We will therefore also specialize some of our
results to this case, in which case we will use directly

Assumption 1-bis. (Bounded distributions) There exists M > 0 such that maxi=1,...,p |Xi| ≤M
almost surely.

Gaussian distributions satisfy Assumption 1 with L = 1. A bounded distribution is also sub-
Gaussian, but the corresponding quantity L can be much larger than M , and sharper results can
be obtained if Assumption 1-bis holds.

2. Cluster identifiability in G-block covariance models. To keep the presentation fo-
cused, we consider in sections 2–5 the model (1) with Γ diagonal. We treat the case corresponding
to a diagonally dominant Γ in Section 6 below. In the sequel, it is assumed that p > 2.

We observe that if the decomposition (1) holds for a partition G, it also holds for any sub-
partition of G. It is natural therefore to seek the smallest (coarsest) of such partitions, that is the
partition with the least number of groups for which (1) holds. Since the partition ordering is a
partial order, the smallest partition is not necessarily unique. However, the following lemma shows
that uniqueness is guaranteed for our model class.

Lemma 1. Consider any covariance matrix Σ.

(a) There exists a unique minimal partition G∗ such that Σ = ACAt+Γ for some diagonal matrix
Γ, some membership matrix A associated to G∗ and some matrix C.

(b) The partition G∗ is given by the equivalence classes of the relation

(11) a ≡ b if and only if COD(a, b) := max
c 6=a,b

|Σac − Σbc| = 0.

Proof of Lemma 1. If decomposition Σ = ACAt + Γ holds with A related to a partition G,
then we have COD(a, b) = 0 for any a, b belonging to the same group of G. Hence, each group
Gk of G is included in one of the equivalence class of ≡. As a consequence, G is a finer partition
than G∗ as defined in (b). Hence, G∗ is the (unique) minimal partition such that decomposition
Σ = ACAt + Γ holds.

As a consequence, the partition G∗ is well-defined and is identifiable. Next, we discuss the defi-
nitions of MCOD and ∆ metrics. For any partition G, we let MCOD(Σ, G) := min

a
G�b
COD(a, b),

where we recall that the notation a
G� b means that a and b are not in a same group of the partition

G. By definition of G∗, we notice that MCOD(Σ, G∗) > 0 and the next proposition shows that G∗

is characterized by this property.
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Proposition 1. Let G be any partition such that MCOD(Σ, G) > 0 and the decomposition
Σ = ACAt + Γ holds with A associated to G. Then G = G∗.

The proofs of this proposition and the following corollary are given in Section 1 of the supple-
mental material [12]. In what follows, we use the notation MCOD(Σ) for MCOD(Σ, G∗).

In general, without further restrictions on the model parameters, the decomposition Σ = ACAt+
Γ with A relative to G∗ is not unique. If, for instance Σ is the identity matrix I, then G∗ is the
complete partition (with p groups) and the decomposition (1) holds for any (C,Γ) = (λI, (1− λ)I)
with λ ∈ R.

Recall that m∗ := min |G∗k| stands for the size of the smallest cluster. If we assume that m∗ > 1
(no singleton), then Γ is uniquely defined. Besides, the matrix C in (1) is only defined up to a
permutation of its rows and columns. In the sequel, we denote C∗ any of these matrices C. When
the partition contains singletons (m∗ = 1), the matrix decomposition Σ = ACAt + Γ is made
unique (up to a permutation of row and columns of C) by putting the additional constraint that
the entries Γaa corresponding to singletons are equal to 0. Since the definition of ∆(C) is invariant
with respect to permutation of rows and columns, this implies that ∆(C∗) is well-defined for any
covariance matrix Σ.

For arbitrary Σ, ∆(C∗) is not necessarily positive. Nevertheless, if ∆(C∗) > 0, then G∗ is char-
acterized by this property.

Corollary 1. Let G be a partition such that m = mink |Gk| ≥ 2, the decomposition Σ =
ACAt + Γ holds with A associated to G and ∆(C) > 0. Then G = G∗.

As pointed in (7), in the latent model (2), ∆(C∗) is equal to the square of the minimal L2-norm
between two latent variables. So, in this case, the condition ∆(C∗) > 0 simply requires that all
latent variables are distincts.

3. Minimax thresholds on cluster separation for perfect recovery. Before developing
variable clustering procedures, we begin by assessing the limits of the size of each of the two cluster
separation metrics below which no algorithm can be expected to recover the clusters perfectly.
We denote by m∗ = mink |G∗k| the size of the smallest cluster of the target partition G∗ defined
above. For 1 ≤ m ≤ p and η, τ > 0, we consider the following sets of covariance matrices :
M(m, η) := {Σ : MCOD(Σ) > η|Σ|∞, m∗ > m} and D(m, τ) := {Σ : ∆(C∗) > τ |Γ|∞, m∗ > m}.
We use the notation PΣ to refer to the normal distribution with covariance Σ.

Theorem 1. There exists a positive constant c2 such that, for any 1 ≤ m ≤ p/3 and any η
such that

(12) 0 ≤ η < η∗ := c2

√
log(p)

n
,

we have inf
Ĝ

supΣ∈M(m,η) P(Ĝ 6= G∗) ≥ 1/7, where the infimum is taken over all possible estimators.

We also have:

Theorem 2. There exists a positive constant c1 such that, for any 2 ≤ m ≤ p/2 and any τ
such that

(13) 0 ≤ τ < τ∗ := c1

[√
log(p)

n(m− 1)

∨ log(p)

n

]
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then inf
Ĝ

supΣ∈D(m,τ) PΣ

[
Ĝ 6= G∗

]
≥ 1/7, where the infimum is taken over all estimators.

Theorems 2 and 1 show that if either metric falls below the thresholds in (13) or (12), respectively,
the estimated partition Ĝ, irrespective of the method of estimation, cannot achieve perfect recovery
with high-probability uniformly over the setM(m, η) or D(m, τ). The proofs are given in Sections
2.1 and 2.2, respectively, of the supplement [12]. We note that ∆(C∗) minimax threshold takes into
account the size m∗ of the smallest cluster, and therefore the required cluster separation becomes
smaller for large clusters. This is not the case for the second metric. The proof of (12) shows that
even when we have K = 3 clusters, that are very large, of size m∗ = p/3 each, the MCOD(Σ)
threshold does not decrease with m∗.

4. COD for variable clustering.

4.1. COD Procedure. We begin with a procedure that can be viewed as natural for model (1).
It is based on the following intuition. Two indices a and b belong to the same cluster of G∗, if and
only if COD(a, b) = 0, with COD defined in (11). Equivalently, a and b belong to the same cluster
when

sCOD(a, b) =: max
c 6=a,b

|cov(Xa −Xb, Xc)|√
var(Xb −Xa)var(Xc)

= max
c 6=a,b

|cor(Xa −Xb, Xc)| = 0,

where sCOD stands for scaled COvariance Differences. In the following we work with this quantity,
as it is scale invariant. It is natural to place a and b in the same cluster when the estimator
ŝCOD(a, b) is below a certain threshold, where

(14) ŝCOD(a, b) := max
c6=a,b

|ĉor(Xa −Xb, Xc)| = max
c 6=a,b

∣∣∣∣∣∣∣∣
Σ̂ac − Σ̂bc√(

Σ̂aa + Σ̂bb − 2Σ̂ab

)
Σ̂cc

∣∣∣∣∣∣∣∣ .
We estimate the partition Ĝ according to the simple COD algorithm explained below. The algo-

rithm does not require as input the specification of the number K of groups, which is automatically
estimated by our procedure. Step 3(c) of the algorithm is called the “or” rule, and can be replaced
with the “and” rule below, without changing the theoretical properties of our algorithm,

Ĝl =
{
j ∈ S : ŝCOD(al, j) ∨ ŝCOD(bl, j) ≤ α

}
.

The numerical performance of these two rules are also very close through simulation studies, same
as we reported on a related COD procedure on correlations [13]. Due to these small differences, we
will focus on the “or” rule for the sake of space. The algorithmic complexity for computing Σ̂ is
O(p2n) and the complexity of COD is O(p3), so the overall complexity of our estimation procedure
is O

(
p2(p ∨ n)

)
. The procedure is also valid when Γ has very small off-diagonal entries, and the

results are presented in Section 6.
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VARIABLE CLUSTERING 11

The COD Algorithm

• Input: Σ̂ and α > 0
• Initialization: S = {1, . . . , p} and l = 0
• Repeat: while S 6= ∅

1. l← l + 1

2. If |S| = 1 Then Ĝl = S

3. If |S| > 1 Then

(a) (al, bl) = argmin
a,b∈S, a 6=b

ŝCOD(a, b)

(b) If ŝCOD(al, bl) > α Then Ĝl = {al}

(c) If ŝCOD(al, bl) ≤ α Then

Ĝl =
{
j ∈ S : ŝCOD(al, j) ∧ ŝCOD(bl, j) ≤ α

}
4. S ← S \ Ĝl

• Output: the partition Ĝ = (Ĝl)l=1,...,k

4.2. Perfect cluster recovery with COD for minimax optimal MCOD(Σ) cluster separation.
Theorem 3 shows that the partition Ĝ produced by the COD algorithm has the property that
Ĝ = G∗, with high probability, as soon as the separation MCOD(Σ) between clusters exceeds its
minimax optimal threshold established in Theorem 1 of the previous section.

Theorem 3. Under the distributional Assumption 1, there exists numerical constants c1, c2 > 0
such that, if

α ≥ c1L
2

√
log(p)

n

and MCOD(Σ) > 3α|Σ|∞, then we have exact cluster recovery with probability 1− c2/p.

We recall that for Gaussian data, the constant L = 1. The proof is given in Section 3.1 of the
supplement [12].

4.3. A Data-driven Calibration procedure for COD. The performance of the COD algorithm
depends on the value of the threshold parameter α. Whereas Theorem 3 ensures that a good value
for α is the order of

√
log p/n, its optimal value depends on the actual distribution (at least through

the subGaussian norm) and is unknown to the statistician. We propose below a new, fully data
dependent, criterion for selecting α, and the corresponding partition Ĝ, from a set of candidate
partitions G. This criterion is based on data splitting: the estimators are built from a training
sample, and then the selection involves an independent test sample (Hold-Out sample). The main
task is to design a meaningful selection criterion. Let us consider two independent sample sets
indexed by i = 1, 2, each of size n/2. The sample (1) will be a training dataset, and we denote by
Ĝ(1) a collection of partitions computed from sample (1), for instance via the COD algorithm with

a varying threshold α. For any a < b, we set ∆̂
(i)
ab =

[
Ĉor

(i)
(Xa −Xb, Xc)

]
c 6=a,b

; i = 1, 2. Since

∆ab := [Cor(Xa −Xb, Xc)]c 6=a,b equals zero if and only if a
G∼ b, we want to select a partition G

such that ∆̂
(2)
ab 1

a
G�b

is a good predictor of ∆ab. To implement this principle, it remains to evaluate
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∆ab independently of ∆̂
(2)
ab . For this evaluation, we propose to re-use the training sample (1) which

has already been used to build the family of partitions Ĝ(1). More precisely, we select Ĝ ∈ Ĝ(1) by
minimizing

Ĝ ∈ argmin
G∈Ĝ(1)

CV (G) with CV (G) =
∑
a<b

[
|∆̂(2)

ab 1
a
G�b
− ∆̂

(1)
ab |

2
∞

]
.

An unusual feature of the above criterion is that the training sample (1) is involved both in the
training stage and in the test stage.

The following proposition assesses the performance of Ĝ. We need the following additional as-
sumption.

(P1) If Cor(Xa −Xb, Xc) = 0 then E Ĉor(Xa −Xb, Xc) = 0.
In general, the sample correlation is not an unbiased estimator of the population level correlation.
Still, (P1) is satisfied when the data are normally distributed or in a latent model (2) when the
noise variables Ea have a symmetric distribution. The next proposition provides guaranties for the
CV criterion averaged over the Hold-Out sample E(2)[CV (G)]. The proof is given in Section 3.2 of
the supplement [12].

Proposition 2. Assume that the distributional Assumption 1 and (P1) hold. Then, there exists
a constant c1 > 0 such that, when MCOD(Σ) > c1|Σ|∞L2

√
log(p)/n, we have

(15) E(2)[CV (G∗)] ≤ min
G∈Ĝ(1)

E(2)[CV (G)],

both with probability larger than 1− 4/p and in expectation with respect to P(1).

Under the condition MCOD(Σ) > c1|Σ|∞L2
√

log(p)/n, Theorem 3 ensures that G∗ belongs to

Ĝ(1) with high probability, whereas (15) suggests that the CV criterion is minimized at G∗.

If we consider a CV algorithm based on ĈOD(a, b) instead of ŝCOD(a, b), then we can obtain a
counterpart of Proposition 2 without requiring the additional assumption (P1). Still, we favor the

procedure based on ŝCOD(a, b) mainly for its scale-invariance property.

5. Penalized convex K-means: PECOK.

5.1. PECOK Algorithm. Motivated by the fact that the COD algorithm is minimax optimal
with respect to the MCOD(Σ) metric, but not necessarily with respect to the ∆(C∗) metric (unless
the size of the smallest cluster is constant), we propose below an alternative procedure, that adapts
to this metric. Our second method is a natural extension of one of the most popular clustering
strategies. When we view the G-block covariance model as arising via the latent factor represen-
tation in (i) in the Introduction, the canonical clustering approach would be via the K-means
algorithm [29], which is NP-hard [4]. Following Peng and Wei [32], we consider a convex relaxation
of it, which is computationally feasible in polynomial time. We argue below that, for estimating
clusters given by (1), one needs to further tailor it to our model. The statistical analysis of the
modified procedure is the first to establish consistency of variable clustering via K-means type
procedures, to the best of our knowledge.

The estimator offered by the standard K-means algorithm, with the number K of groups of G∗

known, is

(16) Ĝ ∈ argmin
G

crit(X, G) with crit(X, G) =

p∑
a=1

min
k=1,...,K

‖X:a − X̄Gk
‖2,
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VARIABLE CLUSTERING 13

and X̄Gk
= |Gk|−1

∑
a∈Gk

X:a.
For a partition G, let us introduce the corresponding partnership matrix B by

(17) Bab =

{
1
|Gk| if a and b are in the same group Gk,

0 if a and b are in a different groups.

we observe that Bab > 0 if and only if a
G∼ b. In particular, there is a one-to-one correspondence

between partitions G and their corresponding partnership matrices. It is shown in Peng and Wei [32]
that the collection of such matrices B is described by the collection O of orthogonal projectors
fulfilling tr(B) = K, B1 = 1 and Bab ≥ 0 for all a, b.

Theorem 2.2 in Peng and Wei [32] shows that solving the K-means problem is equivalent to
finding the global maximum

(18) B̄ = argmax
B∈O

〈Σ̂, B〉 ,

and then recovering Ĝ from B̄.
The set of orthogonal projectors is not convex, so, following Peng and Wei [32], we consider

a convex relaxation C of O obtained by relaxing the condition ”B orthogonal projector”, by ”B
positive semi-definite”, leading to

(19) C :=

B ∈ Rp×p :

• B < 0 (symmetric and positive semidefinite)
•
∑

aBab = 1, ∀b
• Bab ≥ 0, ∀a, b
• tr(B) = K

 .

Thus, the (uncorrected) convex relaxation of K-means is equivalent with finding

(20) B̃ = argmax
B∈C

〈Σ̂, B〉.

To assess the relevance of this estimator, we first study its behavior at the population level,
when Σ̂ is replaced by Σ in (20). Indeed, if the minimizer of our criterion does not recover the
true partition at the population level, we cannot expect it to be consistent, even in a large sample
asymptotic context (fixed p, n goes to infinity). We recall that |Γ|V := maxa Γaa −mina Γaa.

Proposition 3. Assume that ∆(C∗) > 2|Γ|V /m∗. Then, B∗ = argmaxB∈O〈Σ, B〉. If ∆(C∗) >
7|Γ|V /m∗, then B∗ = argmaxB∈C〈Σ, B〉.

For ∆(C∗) large enough, the population version of convexified K-means recovers B∗. The next
proposition illustrates that the condition ∆(C∗) > 2|Γ|V /m∗ for population K-means is in fact
necessary.

Proposition 4. Consider the model (1) with

C∗ =

[
α 0 0
0 β β − τ
0 β − τ β

]
, Γ =

[
γ+ 0 0
0 γ− 0
0 0 γ−

]
, and |G∗1| = |G∗2| = |G∗3| = m∗ .

The population maximizer BΣ = argmaxB∈O〈Σ, B〉 is not equal to B∗ as soon as 2τ = ∆(C∗) <
2
m∗ |Γ|V .
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The two propositions above are proved in Appendix A.1. As a consequence, when Γ is not pro-
portionnal to the identity matrix, the population minimizers based on K-means and convexified
K-means do not necessary recover the true partition even when the ”within-between group“ covari-
ance gap is strictly positive. This undesirable behavior of K-means is not completely unexpected
as K-means is a quantization algorithm which aims to find for clusters of similar width, instead of
”homogeneous” clusters. Hence, we need to modify it for our purpose.

This leads us to suggesting a population level correction in Proposition 3. Indeed, as a direct
Corollary of Proposition 3, we have

B∗ = argmin
B∈C

〈Σ− Γ, B〉 ,

as long as ∆(C∗) > 0. This suggests the following Penalized Convex K-means (PECOK) algo-
rithm, in three steps. The main step 2 produces an estimator B̂ of B from which we derive the
estimated partition Ĝ. We summarize this below.

The PECOK algorithm

Step 1. Estimate Γ by Γ̂.

Step 2. Estimate B∗ by B̂ = argmax
B∈C

(
〈Σ̂, B〉 − 〈Γ̂, B〉

)
.

Step 3. Estimate G∗ by applying a clustering algorithm to the columns of B̂.

The required inputs for Step 2 of our algorithm are: (i) Σ̂, the sample covariance matrix; (ii) Γ̂,
the estimator produced at Step 1; and (iii) K, the number of groups. Our only requirement on the
clustering algorithm applied in Step 3 is that it succeeds to recover the partition G∗ when applied to
true partnership matrix B∗. The standard K-means algorithm [29] seeded with K distinct centroids,
kmeans++ [3], or any approximate K-means as defined in (28) in Section 5.4, fulfill this property.
This step is done at no additional statistical accuracy cost, as shown in Corollary 4 below.

We view the term 〈Γ̂, B〉 as a penalty term on B, with data dependent weights Γ̂. Therefore,
the construction of an accurate estimator Γ̂ of Γ is a crucial step for guaranteeing the statistical
optimality of the PECOK estimator.

5.2. Construction of Γ̂. Estimating Γ before estimating the partition itself is a non-trivial task,
and needs to be done with care. We explain our estimation below and analyze it in Proposition 8
in Appendix A.4. We show that this estimator of Γ is appropriate whenever Γ is a diagonal matrix
(or diagonally dominant, with small off-diagonal entries). For any a, b ∈ [p], define

(21) V (a, b) := max
c,d∈[p]\{a,b}

∣∣∣(Σ̂ac − Σ̂ad)− (Σ̂bc − Σ̂bd)
∣∣∣√

Σ̂cc + Σ̂dd − 2Σ̂cd

,

with the convention 0/0 = 0. Guided by the block structure of Σ, we define

b1(a) := argmin
b∈[p]\{a}

V (a, b) and b2(a) := argmin
b∈[p]\{a,b1(a)}

V (a, b),

to be two elements ”close” to a, that is two indices b1 = b1(a) and b2 = b2(a) such that the empirical
covariance difference Σ̂bic− Σ̂bid, i = 1, 2, is most similar to Σ̂ac− Σ̂ad, for all variables c and d not
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VARIABLE CLUSTERING 15

equal to a or bi, i = 1, 2. It is expected that b1(a) and b2(a) either belong to the same group as a,
or belong to some ”close” groups. Then, our estimator Γ̂ is a diagonal matrix, defined by

(22) Γ̂aa = Σ̂aa + Σ̂b1(a)b2(a) − Σ̂ab1(a) − Σ̂ab2(a), for a = 1, . . . , p.

Intuitively, Γ̂aa should be close to Σaa + Σb1(a)b2(a) −Σab1(a) −Σab2(a), which is equal to Γaa in the
favorable event where both b1(a) and b2(a) belong to the same group as a.

In general, b1(a) and b2(a) cannot be guaranteed to belong to the same group as a. Nevertheless,
these two surrogates b1(a) and b2(a) are close enough to a so that |Γ̂aa − Γaa| to be at most of
the order of |Γ|∞

√
log(p)/n in `∞-norm, as shown in Proposition 8 in Appendix A.4. In the next

subsection, we show that Γ̂ is good enough to ensure that PECOK perfectly recovers G∗ under
minimal separation condition.

Note that PECOK requires the knowledge of the true number K of groups. When the number
K of groups itself is unknown, we can modify the PECOK criterion by adding a penalty term as
explained in a previous version of our work [14, Sec. 4]. Alternatively, we propose in Section 7 a
simple cross-validation procedure.

5.3. Perfect cluster recovery with PECOK for near-minimax ∆-cluster separation. We show in
this section that the PECOK estimator recovers the clusters exactly, with high probability, at a
near-minimax separation rate with respect to the ∆(C∗) metric.

Theorem 4. There exist c1, c2, c3 three positive constants such that the following holds. Let Γ̂
be any estimator of Γ, such that |Γ̂−Γ|V ≤ δn,p with probability 1− c1/p. Then, under Assumption
1, and when L4 log(p) ≤ c3n and

(23) ∆(C∗) ≥ cL

[
‖Γ‖∞

{√
log p

m∗n
+

√
p

nm∗2
+

log(p)

n
+

p

nm∗

}
+
δn,p
m∗

]
,

then B̂ = B∗, with probability higher than 1−c1/p. Here, cL is a positive constant that only depends
on L in Assumption 1. In particular, if Γ̂ is the estimator (22), the same conclusion holds with
probability higher than 1− c2/p when

(24) ∆(C∗) ≥ cL‖Γ‖∞

{√
log p

m∗n
+

√
p

nm∗2
+

log(p)

n
+

p

nm∗

}
.

The proof is given in Appendix A.3.
Remark 1. We left the term δn,p explicit in (23) in order to make clear how the estimation of

Γ affects the cluster separation ∆(C∗) metric. Without a correction (i.e. taking Γ̂ = 0), the term
δn,p/m

∗ equals |Γ|V /m∗ which is non zero (and does not decrease in a high-sample asymptotic)
unless Γ has equal diagonal entries. This phenomenon is consistent with the population analysis in
the previous subsection. Display (24) shows that the separation condition can be much decreased
with the correction. In particular, for balanced clusters, exact recovery is guaranteed when

(25) ∆(C∗) ≥ cL

[√
K ∨ log p

m∗n
+
K ∨ log p

n

]
,

for an appropriate constant cL > 0. In view of Theorem 2 the rate is minimax optimal when the
number of clusters K ≤ log(p). For an even larger number of clusters (K ≥ log(p)), the rate is
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only minimax up to some loss. For instance, if the clusters are balanced, we possibly lose a factor
K/ log(p) relative to the optimal rate. As discussed in the introduction, this gap is possibly due to
a computational barrier and we refer to [15] for more details.

Bounded variables X also follow subGaussian distribution. Nevertheless, the corresponding sub-
Gaussian norm L may be large and Theorem 4 can sometimes be improved, as in Theorem 5 below,
proved in Appendix A.3

Theorem 5. There exist c1, c2, c3 three positive constants such that the following holds. Let Γ̂
be any estimator of Γ, such that |Γ̂−Γ|V ≤ δn,p with probability 1− c1/p. Then, under Assumption
1-bis, and

∆(C∗) ≥ c2

[
M‖Γ‖1/2∞

√
p log(p)

nm∗2
+M2 p log(p)

nm∗
+
δn,p
m∗

]
.(26)

then B̂ = B∗, with probability higher than 1− c1/p.

When we choose Γ̂ as in (22), the term δn,p/m
∗ can be simplified as under Assumption 1, see

Proposition 8 in Appendix A.4. For balanced clusters, Condition (26) can be simplified in

∆(C∗) ≥ c2

[
M‖Γ‖1/2∞

√
K log(p)

nm∗
+M2K log(p)

n
+
δn,p
m∗

]
.

In comparison to (25), the condition does not depend anymore on the subGaussian nom L, but the
term K ∨ log(p) has been replaced by K log(p).

Remark 2. For the Ising Block Model (3) with K balanced groups, we have M = 1 and p = m∗K,
C∗ = (ωin − ωout)IK + ωoutJ and Γ = (1 − ωin)IK . As a consequence, no diagonal correction is
needed, that is we can take Γ̂ = 0, and since |Γ|V = 0, we have δn,p = 0. Then, for K balanced
groups, condition (26) simplifies to

(ωin − ωout) & K

√
log(p)

np
+
K log(p)

n

In the specific case K = 2, we recover (up to numerical multiplicative constants) the optimal rate
proved in [8]. Our procedure and analysis provide a generalization of these results, as they are valid
for general K and Theorem 5 also allows for unequal groups.

5.4. A comparison between PECOK and Spectral Clustering. In this section we discuss connec-
tions between the clustering methods introduced above and spectral clustering, a method that has
become popular in network clustering. When used for variable clustering, uncorrected spectral clus-
tering consists in applying a clustering algorithm, such as K-means, on the rows of the p×K-matrix
obtained by retaining the K leading eigenvectors of Σ̂.

SC algorithm

1. Compute V̂ , the matrix of the K leading eigenvectors of Σ̂
2. Estimate G∗ by applying a (rotation invariant) clustering method to the rows of V̂ .

First, we recall the premise of spectral clustering, adapted to our context. For G∗-block covariance
models as (1), we have Σ − Γ = AC∗At. Let U be the p × K matrix collecting the K leading
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VARIABLE CLUSTERING 17

eigenvectors of Σ− Γ. It has been shown, see e.g. Lemma 2.1 in Lei and Rinaldo [27], that a and b
belong to the same cluster if and only if Ua: = Ub: and if and only if [UU t]a: = [UU t]b:. Arguing as
in Peng and Wei [32], we have the following.

Lemma 2. SC algorithm is equivalent to the following algorithm:
Step 1. Find B = argmax{〈Σ̂, B〉 : tr(B) = K, I < B < 0}.
Step 2. Estimate G∗ by applying a (rotation invariant) clustering method to the rows of B.

The connection between (unpenalized) PECOK and spectral clustering now becomes clear. The
(unpenalized) PECOK estimator B̃ (20) involves the calculation of

(27) B̃ = argmax
B
{〈Σ̂, B〉 : B1 = 1, Bab ≥ 0, tr(B) = K, B < 0}.

Since the matrices B involved in (27) are doubly stochastic, their eigenvalues are smaller than 1
and hence (27) is equivalent to B̃ = argmaxB{〈Σ̂, B〉 : B1 = 1, Bab ≥ 0, tr(B) = K, I < B < 0}.
Note then that B can be viewed as a less constrained version of B̃, in which C is replaced by
C = {B : tr(B) = K, I < B < 0}, where we have dropped the p(p + 1)/2 constraints given by
B1 = 1, and Bab ≥ 0. We show in what follows that the possible computational gains resulting
from such a strategy may result in severe losses in the theoretical guarantees for exact partition
recovery. In addition, the proof of Lemma 2 shows that B = V̂ V̂ t, so, contrary to B̂, the estimator
B is (almost surely) never equal to B∗.

In view of this connection between Spectral clustering and unpenalized PECOK and on the fact
that the population justification of spectral clustering deals with the spectral decomposition of
Σ− Γ, this leads to propose the following corrected version of the algorithm based on Σ̃ := Σ̂− Γ̂.

CSC algorithm

1. Compute Û , the matrix of the K leading eigenvectors of Σ̃ := Σ̂− Γ̂
2. Estimate G∗ by clustering the rows of Û , via an η-approximation of K-means (28).

For η > 1, an η-approximation of K-means is a clustering algorithm producing a partition Ĝ such
that

(28) crit
(
Û t, Ĝ

)
≤ η min

G
crit

(
Û t, G

)
,

with crit(·, ·) the K-means criterion (16). Although solving K-means is NP-Hard [4], there exist
polynomial time approximate K-means algorithms, see Kumar et al. [25]. As a consequence of the
above discussion, the first step of CSC can be interpreted as a relaxation of the program associated
to PECOK estimator B̂.

In the sequel, we provide some results for CSC procedure. To simplify the presentation, we
assume in the following that all the groups have the same size |G∗1| = . . . = |G∗K | = m = p/K.
We emphasize that this information is not required by either PECOK or CSC, or in the proof of
Proposition 5 below. We only use it here to illustrate the issues associated with CSC in a way that
is not cluttered by unnecessary notation. We denote by SK the set of permutations on {1, . . . ,K}
and we denote by

L(Ĝ,G∗) = min
σ∈SK

K∑
k=1

|G∗k \ Ĝσ(k)|
m
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the sum of the ratios of miss-assigned variables with indices in G∗k. In the previous sections, we

studied perfect recovery of G∗, which would correspond to L(Ĝ,G∗) = 0. We give below conditions
under which L(Ĝ,G∗) ≤ ρ, for an appropriate quantity ρ < 1, and we show that very small values
of ρ require large cluster separation, possibly much larger than the minimax optimal rate. We begin
with a general theorem pertaining to partial partition recovery by CSC, under restrictions on the
smallest eigenvalue λK(C∗) of C∗.

Proposition 5. We let Re(Σ) = tr(Σ)/‖Σ‖op denote the effective rank of Σ. There exist
cη,L > 0 only depending on η and L and a numerical constant c1 such that the following holds
under Assumption 1. For any 0 < ρ < 1, if

(29) λK(C∗) ≥
cη,L
√
K‖Σ‖op

m∗
√
ρ

√
Re(Σ) ∨ log(p)

n
,

then L(Ĝ,G∗) ≤ ρ, with probability larger than 1− c1/p.

The proof extends the arguments of [27], initially developed for clustering procedures in stochastic
block models, to our context. Specifically, we relate the error L(Ĝ,G∗) to the noise level, quantified
in this problem by ‖Σ̃− AC∗At‖op. We then employ the results of [23] to show that this operator
norm can be controlled, with high probability, which leads to the conclusion of the theorem.

We observe that ∆(C∗) ≥ 2λK(C∗), so the lower bound (29) on λK(C∗) enforces the same lower-
bound on ∆(C∗). As n goes to infinity, the right hand side of Condition (29) goes to zero, and CSC is
therefore consistent in a large sample asymptotic. In contrast, we emphasize that (uncorrected) SC
algorithm is not consistent as can be shown by a population analysis similar to that of Proposition
4.

To further facilitate the comparison between CSC and PECOK, we discuss both the conditions
and the conclusion of this theorem in the simple setting where C∗ = τIK and Γ = Ip. Then, the
cluster separation measures coincide up to a factor 2, ∆(C∗) = 2λK(C∗) = 2τ .

Corollary 2 (Illustrative example: C∗ = τIK and Γ = Ip). There exist three positive numeri-
cal constants cη,L, c′η,L and c3 such that the following holds under Assumption 1. For any 0 < ρ < 1,
if

(30) ρ ≥ cη,L
[K2

n
+
K log(p)

n

]
and τ ≥ c′η,L

[K2

ρn
∨ K
√
ρnm

]
,

then L(Ĝ,G∗) ≤ ρ, with probability larger than 1− c3/p.

Recall that, as a benchmark, Theorem 4 above states that, when Ĝ is obtained via the PECOK

algorithm, and if τ &
√

K∨log p
mn + log(p)∨K

n , then L(Ĝ,G∗) = 0, or equivalently, Ĝ = G∗, with high

probability. We can therefore provide the following comparison.

• If we consider ρ as a user specified small value, independent of n or p, and if the number of
groups K is either a constant or grows at most as log p, then the size of the cluster separation
given by either Condition (30) or by PECOK are essentially the same, up to unavoidable log p
factors. The difference is that, in this regime, CSC guarantees recovery up to a fixed, small,
fraction of mistakes, whereas PECOK guarantees exact recovery.
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• Although perfect recovery, with high probability, cannot be guaranteed for CSC, we could be
close to it by requiring ρ to be close to zero. In this case, the distinctions between Conditions
(30) and that for PECOK become much more pronounced.
• When we move away from the case C∗ = τIK , the comparison becomes even less favorable

to CSC. For instance, when Γ = I and C∗ = τIK + αJ , with J being the matrix with all
entries equal to one, as in the Ising Block model discuss page 16. Notice that in this case we
continue to have ∆(C∗) = 2λK(C∗) = 2τ . Then, for a given, fixed, value of ρ and K fixed,
condition (29) requires the cluster separation

τ &
α
√

log(p)
√
nρ

,

which is independent of m, unlike the minimax cluster separation rate that we established
in Theorem 2 above. Therefore, the correction strategies employed in SBM are not directly
transferable to variable clustering, which further supports the merits our PECOK method.

All the results of this section are proved in Section 5 of the supplement [12].

6. Approximate G-block covariance models. In the previous sections, we have proved that
under some separation conditions, COD and PECOK procedures are able to exactly recover the
partition G∗. However, in practical situations, the separation conditions may not be met. Besides,
if the entries of Σ have been modified by an infinitesimal perturbation, then the corresponding
partition G∗ would consist of p singletons.

As a consequence, it may be more realistic and more appealing from a practical point of view
to look for a partition G[K] with K < |G∗| groups such that Σ is close to a matrix of the form
ACAt + Γ where Γ is diagonal and A is associated to G[K]. This is equivalent to considering a
decomposition Σ = ACAt + Γ with Γ non-diagonal, where the non-diagonal entries of Γ are small.
In the sequence, we write R = Γ − Diag(Γ) for the matrix of the off-diagonal elements of Γ and
D = Diag(Γ) for the diagonal matrix given by the diagonal of Γ.

In the next subsection, we discuss under which conditions the partition G[K] is identifiable and
then, we prove that COD and PECOK are able to recover these partitions.

6.1. Identifiability of approximate G-block covariance models. When Γ is allowed to be not
exactly equal to a diagonal matrix, we encounter a further identifiability issue, as a generic matrix
Σ may admit many decompositions Σ = ACAt + Γ. In fact, such a decomposition holds for any
membership matrix A and any matrix C if we define Γ = Σ−ACAt. So we need to specify the kind
of decomposition that we are looking for. For K being fixed, we would like to consider the partition
G with K clusters that maximizes the distance between goups (e.g. MCOD(Σ, G)) while having
the smallest possible noise term |R|∞. Unfortunately, such a partition G does not necessarily exist
and is not necessarily unique. Let us illustrate this situation with a simple example.

Example. Assume that Σ is given by Σ =

2r 0 0
0 2r 0
0 0 2r

 + Ip, with r > 0, with the convention

that each entry corresponds to a block of size 2. Considering partitions with 2 groups and allowing
Γ to be non diagonal, we can decompose Σ using different partitions. For instance

Σ =

2r 0 0
0 r r
0 r r


︸ ︷︷ ︸

=A1C1At
1

+

0 0 0
0 r −r
0 −r r

+ Ip︸ ︷︷ ︸
=Γ1

=

r r 0
r r 0
0 0 2r


︸ ︷︷ ︸

=A2C2At
2

+

 r −r 0
−r r 0
0 0 0

+ Ip︸ ︷︷ ︸
=Γ2

.
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Importantly, the two decompositions correspond to two different partitions G1 and G2 and both
decompositions have |Ri|∞ = r and MCOD(Σ, Gi) = 2r = 2|R|∞, for i = 1, 2. In addition, no de-
composition Σ = ACAt+D+R with associated partition in 2 groups, satisfies MCOD(Σ, G) > 2r
or |R|∞ < r. As a consequence, there is no satisfying way to define a unique partition maxi-
mizing MCOD(Σ, G), while having |R|∞ as small as possible. We show below that the cutoff
MCOD(Σ, G) > 2|R|∞ is actually sufficient for partition identifiability.

For this, let us define Pj(Σ,K), j = {1, 2} as the set of quadruplets (A,C,D,R) such that
Σ = ACAt + D + R, with A a membership matrix associated to a partition G with K groups
with mink |GK | ≥ j, and D and R defined as above. Hence P1 corresponds to partitions without
restrictions on the minimum group size. For instance, singletons are allowed. In contrast P2 only
contains partitions without singletons. We define

ρ1(Σ,K) = max {MCOD(Σ, G)/|R|∞ : (A,C,D,R) ∈ P1(Σ,K) and G associated to A} ,
ρ2(Σ,K) = max {∆(C)/|R|∞ : (A,C,D,R) ∈ P2(Σ,K)} .

We view ρ1 and ρ2 as respective measures of “purity” of the block structure of Σ.

Proposition 6.

(i) Assume that ρ1(Σ,K) > 2. Then, there exists a unique partition G such that there exists a
decomposition Σ = ACAt+Γ, with A associated to G and MCOD(Σ, G) > 2|R|∞. We denote
by G1[K] this partition.

(ii) Assume that ρ2(Σ,K) > 8. Then, there exists a unique partition G with mink |Gk| ≥ 2, such
that there exists a decomposition Σ = ACAt + Γ, with A associated to G and ∆(C) > 8|R|∞.
We denote by G2[K] this partition.

(iii) In addition, if both ρ1(Σ,K) > 2 and ρ2(Σ,K) > 8, then G1[K] = G2[K].

The conditions ρ1(Σ,K) > 2 and ρ2(Σ,K) > 8 are minimal for defining uniquely the partition
G1[K]. For ρ1, this has been illustrated in the example above the proposition. For ρ2, we provide a
counter example when ρ2(Σ,K) = 8 in Section 1.3 of the supplement [12]. The proof of Proposition
6. is given in Section 1.2 of [12].

The conclusion of Proposition 6 does essentially revert to that of Proposition 1 of Section 2 as soon
as |R|∞ is small enough respective to the cluster separation sizes. Denoting K∗ the number of groups
of G∗, we observe that G1[K∗] = G∗ and G2[K∗] = G∗ if m∗ ≥ 2. Besides, ρ1(Σ,K) = ρ2(Σ,K) = 0
for K > K∗. For K < K∗ and when G1[K] (resp. G2[K]) are well defined, then the partition G1[K]
(resp. G2[K]) is coarser than G∗. In other words, G1[K] is derived from G∗ by merging groups G∗k
thereby increasing MCOD(Σ, G) (resp. ∆(C)) while requiring |R|∞ to be small enough.

We point out that, in general, there is no unique decomposition Σ = ACAt+Γ with A associated
to G2[K], even when mink |G2[K]k| ≥ 2. Actually, it can be possible to change some entries of C
and R, while keeping C +R, ∆(C) and |R|∞ unchanged.

6.2. The COD algorithm for approximate G-block covariance models. We show below that the
COD algorithm is still applicable if Σ has small departures from a block structure. We set λmin(Σ)
for the smallest eigenvalue of Σ.

Theorem 6. Under the distributional Assumption 1, there exist numerical constants c1, c2 > 0

such that the following holds for all α ≥ c1L
2
√

log p
n . If, for some partition G and decomposition

Σ = ACAt +R+D, we have

(31) |R|∞ ≤
λmin(Σ)

2
√

2
α and MCOD(Σ, G) > 3α|Σ|∞ ,
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then COD recovers G with probability higher than 1− c2/p.

The proof is given in Section 3.1 of the supplement [12]. If G satisfies the assumptions of Theorem
6, then it follows from Proposition 6 that G = G1[K] for some K > 0. First, consider the situation
where the tuning parameter α is chosen to be of the order

√
log(p)/n. If MCOD(Σ, G∗) ≥ 3α|Σ|∞,

then COD selects G∗ with high probability. If MCOD(Σ, G∗) is smaller than this threshold, then
no procedure is able to recover G∗ with high probability (Theorem 1). Nevertheless, COD is able
to recover a coarser partition G1[K] whose corresponding MCOD metric MCOD(Σ, G) is higher
than the threshold 3α|Σ|∞ and whose matrix R is small enough. For larger α, then COD recovers a
coarser partition G (corresponding to G1[K] with a smaller K) whose corresponding approximation
|R|∞ is allowed to be larger.

6.3. The PECOK algorithm for approximate G-block covariance models. In this subsection, we
investigate the behavior of PECOK under the approximate G-block models. The number K of
groups being fixed, we assume that ρ2(Σ,K) > 8 so that G2[K] is well defined. We shall prove that
PECOK recovers G2[K] with high probability. By abusing the notation, we denote in this subsection
G∗ for the target partition G2[K], B∗ for the associated partnership matrix and (A,C∗, D,R) ∈
P2(Σ,K) any decomposition of Σ maximizing ∆(C)/|R|∞.

Similarly to Proposition 3, we first provide sufficient conditions on C∗ under which a population
version of PECOK can recover the true partition.

Proposition 7. If, ∆(C∗) >
7|D|V +2‖R‖op

m + 3|R|∞ , then B∗ = argminB∈C〈Σ, B〉.

Corollary 3. If ∆(C∗) > 3|R|∞ +
2‖R‖op
m , then B∗ = argminB∈C〈Σ−D,B〉.

In contrast to the exact G-block model, the cluster distance ∆(C∗) now needs to be larger than
|R|∞ for the population version to recover the true partition. The |R|∞ condition is fact necessary
as discussed in subsection 6.1. In comparison to the necessary conditions discussed in subsection
6.1, there is an additional ‖R‖op/m term. The proofs are given in Appendix A.2.

We now examine the behavior of PECOK when we specify the estimator Γ̂ to be as in (22). Note
that in this approximate block covariance setting, the diagonal estimator Γ̂ is in fact an estimator
of the diagonal matrix D. In order to derive deviation bounds for our estimator Γ̂, we need the
following diagonal dominance assumption.

Assumption 2: (diagonal dominance of Γ) The matrix Γ = D +R fulfills

(32) Γaa ≥ 3 max
c:c 6=a

|Γac| (or equivalently Daa ≥ 3 max
c:c6=a

|Rac|).

The next theorem states that PECOK estimator B̂ recovers the groups under similar conditions
to that of Theorem 4 if R is small enough. The proof is given in Appendix A.3, with proofs of
intermediate results given in Section 4 of the supplement [12].

Theorem 7. There exist c1, c2, cL, c′L four positive constants such that the following holds.
Under Assumptions 1 and 2, and when L4 log(p) ≤ c1n and

(33) |R|∞ +

√
|R|∞|D|∞ + ‖R‖op

m
≤ cL‖Γ‖op

{√
log p

mn
+

√
p

nm2
+

log(p)

n
+

p

nm

}
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we have B̂ = B∗, with probability higher than 1− c2/p, as soon as

(34) ∆(C∗) ≥ c′L

[
‖Γ‖op

{√
log p

mn
+

√
p

nm2
+

log(p)

n
+

p

nm

}]
,

So, as a long as |R|∞ and ‖R‖op are small enough so that (33) are satisfied, PECOK algorithm will
correctly identify the target partition G∗ at the ∆-(near) optimal minimax level (34). A counterpart
of Theorem 7 for Assumption 1-bis is provided in Appendix A.3.

7. Simulation results. In this section we verify numerically our theoretical findings and also
illustrate the finite sample performance of our methods. The implementation of PECOK can be
found at github.com/martinroyer/pecok/ and that of COD at CRAN.R-project.org/package=cord.

7.1. Simulation design. Recall our G-latent covariance Σ = ACA′+ Γ. Under various scenarios
of A and Γ to be described momentarily, we consider the following models for C:

• Model 1: C = BTB where B is a random (K− 1)×K matrix with independent entries. Each
entry takes the value +1 and −1 with equal probability 0.5 × K−1/2, and the value 0 with
probability 1−K1/2.
• Model 2: C = C ′ − 0.001I where C ′ is generated by Model 1.

The matrix C is positive semi-definite in Model 1 and negative definite in Model 2. In the first
two simulation scenarios (referred to as M1 and M2 thereafter), we set C derived from Models 1–2
respectively, and specify A to correspond to K = 10 equal-size groups of variables (or equivalently
m = p/K).

In a third scenario (M1S), we specify A such that it corresponds to the existence of 5 singletons,
which are variables that form their own groups of size 1, respectively, and the remaining K − 5
groups have equal-size, while C is the same as M1.

In these first three scenarios, we employ diagonal Γ = D where the p diagonal entires of D are
random permutations of {0.5, 0.5 + 1.5/(p− 1), . . . , 2}.

In the fourth scenario (M1P), we consider the approximate G-block model by setting Γ = D+R
where R = 0.1 · U tU/max(U tU) and U is a p × p matrix with iid random entries from a uniform
distribution on [−1, 1]. We run these four scenarios for two representative p = 200 and p = 1600,
and for sample sizes n = 100, 300, . . . , 900 unless noted otherwise. All simulations are repeated 100
times.

The goal of our methods is to create sub-groups of vectors of dimension n, from a given collection
of p vectors of observations, each of dimension n. This task can be viewed as that of clustering p
objects in Rn. The existing data clustering algorithms are not tailored to recovering groups with this
structure, but they can serve as comparative methods. We thus compare the performance of COD
and PECOK with three popular clustering algorithms: K-means, Hierarchical Clustering (HC) and
spectral clustering. We apply K-means on the columns of the n×p matrix of n observations, and use
the negative correlation as distance matrix in HC. The spectral clustering algorithm is discussed
in Section 5.4, which does not correct for Γ. We use the standard K-means and HC algorithms
in R, and we also implement our COD algorithm in R. We also include a variant of the COD
algorithm suggested by a reviewer. This variant applies the connected component algorithm (as
implemented in CRAN package igraph available at https://CRAN.R-project.org/package=igraph)
to a graph converted from our proposed COD metric matrix thresholded at level α, which will
be referred to as COD-cc. The spectral clustering algorithm is based on the widely used Python
package scikit-learn, and we implement our PECOK algorithm also using Python.
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The three competing methods require specification of the number of groups K, and we will use
the true K = 10 to evaluate their oracle performance. For our proposed methods, we use the CV
approach proposed in Section 4.3 to determineK in a data-adaptive fashion. We select eitherK from
a grid in PECOK or the K-related threshold α also from a grid in COD, using the two independent
datasets of size n proposed in Section 4.3. The grid for PECOK is 2, 4, . . . , 40. Since the theoretical
choice of α is proportional to n−1/2 log1/2 p, we use a grid of α/

(
n−1/2 log1/2 p

)
= 0.25, 0.5, . . . , 5 in

COD.

7.2. Exact recovery performance and comparison. Figure 1 shows the average percentages of
exact recovery across 100 runs by K-means, HC, COD, COD-cc, and PECOK when n varies.
Under one setting with a very large p = 1600, PECOK did not complete computation within
two weeks, and thus its numerical performance for large p = 1600 was not reported in the figure.
COD and COD-cc clearly outperform all other competing methods (K-means, HC and spectral
clustering) when n is about 300 or larger in all the scenarios. K-means and HC, even with the
oracle choice of K and large n = 900, fail to recover the true groups exactly. COD-cc is better
than COD for small n = 100, there are almost no finite sample differences between COD and
COD-cc for n = 900, which is consistent with our theory showing that they share the same
rates described before. COD-cc and COD have similar performance across almost all models,
and COD-cc achieves close to 100% recovery for smaller samples than COD under the model
with singletons (M1S). Except for the model containing singletons (M1S), PECOK has the best
performance for small n = 100 and p = 200, and achieves close to 100% as COD and COD-
cc for larger n. Under the singleton scenario M1S, COD-cc has the best performance for all n,
while the difference between COD-cc and COD vanishes when n = 900. Under this model, the
recovery percentages of PECOK increase with n but only reaches about 40% when n = 900 and
p = 200. This is consistent with our theoretical results that PECOK is not expected to work well
in the presence of singletons, while COD adapts to this situation. We also note that the competing
methods used for comparison are able to recover clusters very close to the truth (measured by
the adjusted rand index, or ARI), see Section 7 of the supplemental material [12] for this partial
recovery comparison.

7.3. The importance of correcting for Γ in PECOK. The step 1 of our PECOK algorithm is to
estimate and correct for Γ. We illustrate the importance of this step by comparing its performance
with two closely related methods, Γ-uncorrected PECOK and K-means, neither of which corrects
for Γ. The Γ-uncorrected PECOK algorithm simply replaces the estimated Γ̂ in the step 1 of
PECOK by a zero matrix. We use the true K as input to these two methods to assess their oracle
performance under the true K, while the parameter K in PECOK is selected by CV as described
before. To fix ideas, we use scenario M1 described before and set p = 200. Figure 2(a) shows that
the exact recovery percentages of K-means are close to zero, and those of Γ-uncorrected PECOK are
smaller than 30%, across all n. After correcting for Γ, PECOK yields close to 100% exact recovery
when n increases to 300.

7.4. Comparison under varying m. In this section we illustrate the finite sample performance of
PECOK when m varies. We use the simulation scenario M1 under p = 200, and consider m = 50
and m = 20, for n = 60, 80, 100, 150, to compare the increasing trend in performance before reaching
100% when n reaches 200 as shown in Figure 1. The rest of the simulation set-up is the same as
that of the previous section. As predicted by our theory, Figure 2(b) shows the percentages of exact
recovery is better for a larger m = 50, compared with m = 20, for the same n.
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Fig 1: Percentages of exact recovery by K-means (K-Oracle, medium green lines, triangle points),
HC (H-Oracle, light blue lines, cross points), spectral clustering (S-Oracle, light yellow lines, up-
side-down triangle points), COD (dark red lines, circle points), COD-cc (light orange lines, plus
points), PECOK (light pink lines, diamond points) across 100 runs of 4 scenarios described in the
main text, when p = 200 (solid lines) and p = 1600 (dashed lines). All standard errors are smaller
than 5%.
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Fig 2: Comparison of Exact recovery percentages across 100 runs. (a) The parameter K in K-means
(K-Oracle, medium green lines, triangle points) and Γ-uncorrected PECOK (UP-Oracle, navy blue
lines, square points) are set to the true K while PECOK (light pink lines, diamond points) selects
K using our CV criterion. (b) The exact recovery percentages of PECOK are shown under m = 50
(solid line) and m = 20 (dash line). All standard errors are smaller than 5%.
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8. Data analysis. Using functional MRI data, [35] found that the human brain putative areas
are organized into clusters, sometimes referred to as networks or functional systems. We use a pub-
licly available fMRI dataset to illustrate the clusters recovered by different methods. The dataset was
originally published in [37] and is publicly available from Open fMRI (https://openfmri.org/data-
sets) under the accession number ds000007. We will focus on analyzing two scan sessions from
subject 1 under a visual-motor stop/go task (task 1). Before performing the analysis, we follow
the preprocessing steps suggested by [37], and we follow [35] to subsample the whole brain data
using p = 264 putative areas, see Section 8 of the supplementary materials [12] for details. This
subject was also scanned in two separate sessions, and each session yielded n = 180 samples for
each putative area.

We apply our CV approach described in Section 4.3 to these two session data. Using the first scan
session data only, we first estimate Ĝ using COD and COD-cc on a fine grid of α = c

√
log(p)/n

where c = 0.5, 0.6, . . . , 3. For a fair comparison, we set K in PECOK to be the same as the resulting
K’s found by COD. We then use the second session data to evaluate the CV loss CV (G) given
in Section 4.3. Among our methods (COD, COD-cc, and PECOK), COD yields the smallest
CV loss when K = 142. We thus first focus on illustrating the COD clusters here. Table 2 lists
the largest cluster of putative areas recovered by COD and their functional classification based
on prior knowledge. Most of these areas are classified to be related to visual, motor, and task
functioning, which is consistent with the implication of our experimental task that requires the
subject to perform motor responses based on visual stimuli. Figure 3(a) plots the locations of these
coordinates on a standard brain template. It shows that our COD cluster appears to come mostly
from approximately symmetric locations from the left and right hemisphere, though we do not
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enforce this brain function symmetry in our algorithm. Note that the original coordinates in [35]
are not sampled with exact symmetry from both hemispheres of the brain, and thus we do not
expect exact symmetric locations in the resulting clusters based on these coordinates.

Because there are no gold standards for partitioning the brain, we follow common practice and use
a prediction criterion to further compare the clustering performance of different methods. For a fair
comparison, we also estimate Ĝ using K-means, HC, and spectral clustering on the same resulting
K’s found by COD. The prediction criterion is as follows. We first compute the covariance matrices
Ŝ1 and Ŝ2 from the first and second session data respectively. For a grouping estimate Ĝ, we use
the following loss to evaluate its performance

(35)
∥∥∥Ŝ2 − Υ

(
Ŝ1, Ĝ

)∥∥∥
F
.

where block averaging operator Υ (R,G) produces a G-block structured matrix based on Ĝ. For
any a ∈ Gk and b ∈ Gk′ , the output matrix entry [Υ (R,G)]ab is given by

[Υ (R,G)]ab =


|Gk|−1 (|Gk| − 1)−1∑

i,j∈Gk,i 6=j Rij if a 6= b and k = k′

|Gk|−1 |Gk′ |−1∑
i∈Gk,j∈Gk′

Rij if a 6= b and k 6= k′

1 if a = b.

In essence, this operator smooths over the matrix entries with indices in the same group, and one
may expect that such smoothing over variables in the true cluster will reduce the loss (35) while
smoothing over different clusters will increase the loss.

Figure 3(b) compares the prediction loss values under different group sizes for each method. This
shows that our CV approach for COD indeed selects a value K = 142 that is immediately next
to a slightly larger one (K = 206), the latter having the smallest prediction loss, near the bottom
plateau. However, the differences are almost negligible. This suggests that our CV criterion, which
comes with theoretical guarantees, also provides good prediction performance in this real data
example, while selecting a slightly smaller K, as desired, since this makes the resulting clusters
easier to describe and interpret.

Regardless of the choice of K or α, Figure 3(b) also shows that COD almost always yields the
smallest prediction loss for a wide range of K, while PECOK does slightly better when K is between
5 and 10. Though COD-cc has large losses for medium or small K, its performance is very close to
the best performer COD near K = 146. Kmeans in this example is the closest competing method,
while the other two methods (HC and SC) yield larger losses across the choices of K.

9. Discussion. In this section, we discuss some related models and give an overall recommen-
dation on the usage of our methods.

9.1. Comparison with Stochastic Block Model. The problem of variable clustering that we con-
sider in this work is fundamentally different from that of variable clustering from network data. The
latter, especially in the context of the Stochastic Block Model (SBM), has received a large amount
of attention over the past years, for instance [1, 15, 20, 26–28, 31]. The most important difference
stems from the nature of the data: the data analyzed via the SBM is a p × p binary matrix A,
called the adjacency matrix, with entries assumed to have been generated as independent Bernoulli
random variables; its expected value is assumed to have a block structure. In contrast, the data
matrix X generated from a G-block covariance is a n× p matrix with real entries, and rows viewed
as i.i.d copies of a p-dimensional vector X with mean zero and dependent entries. The covariance
matrix Σ of X is assumed to have (up to the diagonal) a block structure.
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Fig 3: (a) Plot of the coordinates of the largest COD cluster overplayed over a standard brain
template. The coordinates are shown as red balls. (b) Comparison of COD, COD-cc, PECOK,
K-means, HC, and SC using the Frobenius prediction loss criterion (35) where the groups are
estimated by these methods respectively.
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Table 2
MNI coordinates (x, y, z, in mm) of the largest COD group and their functioning classification.

X Y Z Function X Y Z Function

40 -72 14 visual -7 -21 65 motor

-28 -79 19 visual -7 -33 72 motor

20 -66 2 visual 13 -33 75 motor

29 -77 25 visual 10 -46 73 motor

37 -81 1 visual 36 -9 14 motor

47 10 33 task -53 -10 24 motor

-41 6 33 task -37 -29 -26 uncertain

38 43 15 task 52 -34 -27 uncertain

-41 -75 26 default -58 -26 -15 uncertain

8 48 -15 default -42 -60 -9 attention

22 39 39 default -11 26 25 saliency
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Need for a correction. Even though the analysis of the methods in our setting would differ
from the SBM setting, we could have applied available clustering procedures tailored for SBMs
to the empirical covariance matrix Σ̂ = XtX/n by treating it as some sort of weighted adjacency
matrix. It turns out that applying verbatim the spectral clustering procedure of Lei and Rinaldo [27]
or the SDP such as the ones in [2] would lead to poor results. The main reason for this is that, in
our setting, we need to correct both the spectral algorithm and the SDP to recover the correct
clusters (Section 5). Second, the SDPs studied in the SBM context (such as those of [2]) do not
handle properly groups with different and unknown sizes, contrary to our SDP. To the best of our
knowledge, our SDP (without correction) has only been independently studied by Mixon et al. [30]
in the context of Gaussian mixtures.

Analysis of the SDP. As for the mathematical arguments, our analysis of the SDP in our on
covariance-type model differs from that in mean-type models partly because of the the presence of
non-trivial cross-product terms. Instead of relying on dual certificates arguments as in other work
such as [33], we directly investigate the primal problem and combine different duality-norm bounds.
The crucial step is the Lemma 5 which allows to control the Frobenius inner product by a (unusual)
combination of `1 and spectral control. In our opinion, our approach is more transparent than dual
certificates techniques, especially in the presence of a correction Γ̂ and allows for the attainment of
optimal convergence rates.

9.2. Extension to other Models. The general strategy of correcting a convex relaxation of K-
means can be applied to other models. In [36], one of the authors has adapted the PECOK al-
gorithm to the clustering problem of mixture of subGaussian distributions. In particular, in the
high-dimensional setting where the correction plays a key role, [36] obtains sharper separation con-
ditions dependencies than in state-of-the-art clustering procedures [30]. Extensions to model-based
overlapping clustering are beyond the scope of this paper, but we refer to [10] for recent results.

9.3. Practical recommendations. Based on our extensive simulation studies, we conclude this
section with general recommendations on the usage of our proposed algorithms.

If p is moderate in size, and if there are reasons to believe that no singletons exist in a particular
application, or if they have been removed in a pre-processing step, we recommend the usage of
the PECOK algorithm, which is numerically superior to existing methods: exact recovery can be
reached for relatively small sample sizes. COD is also very competitive, but requires a slightly larger
sample size to reach the same performance as PECOK. The constraint on the size of p reflects the
existing computational limits in state-of-the art algorithms for SDP, not the statistical capabilities
of the procedure, the theoretical analysis of which being one of the foci of this work.

If p is large, we recommend COD-type algorithms. Since COD is optimization-free, it scales very
well with p, and only requires a moderate sample size to reach exact cluster recovery. Moreover,
COD adapts very well to data that contains singletons and, more generally, to data that is expected
to have many inhomogeneous clusters.

APPENDIX A: RESULTS FOR THE PECOK ESTIMATOR

In order to avoid notational clutter, we write G for G∗ and m for m∗ for the entirety of this
section.

A.1. The motivation for a K-means correction: proof of Propositions 3 and 4 .
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A.1.1. Proofs of Proposition 3. The basis of this proof is the following lemma.

Lemma 3. The collection C contains only one matrix whose support is included in supp(B∗),
that is

C ∩
{
B, supp(B) ⊂ supp(B∗)

}
= {B∗} .

Proof. Consider any matrix B ∈ C whose support is included in supp(B∗). Since B1 = 1, it
follows that each submatrix BGkGk

is symmetric doubly stochastic. Since BGkGk
is also positive

semidefinite, we have

tr(BGkGk
) ≥ ‖BGkGk

‖op ≥ 1tBGkGk
1/|Gk| = 1 .

As B ∈ C, we have tr(B) = K, so all the submatrices BGkGk
have a unit trace. Since ‖BGkGk

‖op ≥ 1,
this also enforces that BGkGk

contains only one non-zero eigenvalue and that a corresponding
eigenvector is the constant vector 1. As a consequence, BGkGk

= 11t/|Gk| for all k = 1, . . . ,K and
B = B∗.

As a consequence of Lemma 3, in order to prove Proposition 3 we only need to prove that

〈Σ, B∗ −B〉 > 0, for all B ∈ C (resp. O) such that supp(B) * supp(B∗).

We have
〈Σ, B∗ −B〉 = 〈AC∗At, B∗ −B〉+ 〈Γ, B∗ −B〉.

Define the p-dimensional vector v by v = diag(AC∗At). Since B1 = 1 for all B ∈ C, we have
〈v1t + 1vt, B∗ −B〉 = 0. Hence, we have

〈AC∗At, B∗ −B〉 = 〈AC∗At − 1

2
(v1t + 1vt), B∗ −B〉

=
∑
j,k

∑
a∈Gj , b∈Gk

(
C∗jk −

C∗jj + C∗kk
2

)
(B∗ab −Bab)

=
∑
j 6=k

∑
a∈Gj , b∈Gk

(
C∗jj + C∗kk

2
− C∗jk

)
Bab

=
∑
j 6=k

(
C∗jj + C∗kk

2
− C∗jk

)
|BGjGk

|1,(36)

where BGjGk
= [Bab]a∈Gj , b∈Gk

. Next lemma lower bounds 〈Γ, B∗−B〉 for B ∈ O. It is stated below
and proved at page 30.

Lemma 4. For any matrix B belonging to O and any diagonal matrix Γ,

(37) 〈Γ, B∗ −B〉 ≥ −‖Γ‖V
m

∑
k 6=j
|BGjGk

|1 .

Hence, combining (36) and Lemma 4, we obtain

〈Σ, B∗ −B〉 ≥
∑
j 6=k

(
C∗jj + C∗kk

2
− C∗jk −

‖Γ‖V
m

)
|BGjGk

|1 ,
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for all B ∈ O. The condition ∆(C∗) > 2|Γ|V
m enforces that if supp(B) * supp(B∗) then 〈Σ, B∗−B〉 >

0. This proves the first claim of Proposition 3.
To show the counterpart of this result that corresponds to replacing O by C, we invoke the lemma

stated below and proved at page 30.

Lemma 5. For any p× p symmetric matrix S, we have for any B ∈ C

|〈S,B∗ −B〉| ≤ 2

[∑
j 6=k
|BGjGk

|1

](
‖S‖op
2m

+ 3|B∗S|∞
)
.

Define the diagonal matrix D = (maxa Γaa + mina Γaa)I/2. Since tr(B) = tr(B∗), we have
〈Γ, B∗ − B〉 = 〈Γ −D,B∗ − B〉. The matrix S = Γ −D satisfies ‖S‖op = ‖Γ‖V /2 and |B∗S|∞ ≤
‖Γ‖V /(2m). Applying Lemma 5 to S, we obtain

|〈Γ, B∗ −B〉| ≤ 7

2m
‖Γ‖V

[∑
j 6=k
|BGjGk

|1
]
.

Hence, together with (36), we obtain

〈Σ, B∗ −B〉 ≥
∑
j 6=k

(
C∗jj + C∗kk

2
− C∗jk −

7‖Γ‖V
2m

)
|BGjGk

|1 ,

for all B ∈ C. The condition ∆(C∗) > 7|Γ|V
m enforces that if supp(B) * supp(B∗) then 〈Σ, B∗−B〉 >

0, which proves the second claim of Proposition 3. To complete the proof of Proposition 3 it remains
to prove the two lemmas stated above.

Proof of Lemma 4. By definition of B∗ and since tr(B) = tr(B∗) = K, we have

〈Γ, B∗ −B〉 = 〈Γ− (max
b

Γbb)I,B
∗ −B〉 =

p∑
a=1

(Γaa − (max
b

Γbb))
[ 1

|Gk(a)|
−Baa

]
≥

p∑
a=1

−‖Γ‖V
[ 1

|Gk(a)|
−Baa

]
+

(38)

Since B belongs to O, each row sums to one and each Bab is either equal to 0 or to Baa. Thus,∑
b/∈Gk(a)

Bab = 1−
∑

b∈Gk(a)

Bab ≥ [1− |Gk(a)|Baa]+

which implies [ 1

|Gk(a)|
−Baa

]
+
≤ 1

m

∑
b/∈Gk(a)

Bab

Coming back to (38), this gives us 〈Γ, B∗ −B〉 ≥ −‖Γ‖Vm
∑

k 6=j |BGjGk
|1.

Proof of Lemma 5. Observe first that B∗ is a projection matrix that induces the following
decomposition of S.

S = B∗S + SB∗ −B∗SB∗ + (I −B∗)S(I −B∗).
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By the definition of the inner product, followed by the triangle inequality, and since (I−B∗)B∗ = 0,
we further have

|〈S,B∗ −B〉| ≤ 3|B∗S|∞|B∗(B∗ −B)|1 + |〈(I −B∗)S(I −B∗), B∗ −B〉|
= 3|B∗S|∞|B∗(B∗ −B)|1 + |〈S, (I −B∗)B(I −B∗)〉|.(39)

Relying on the duality of the nuclear ‖ ‖∗ and operator ‖ ‖op norms, we have

|〈S, (I −B∗)B(I −B∗)〉| ≤ ‖S‖op‖(I −B∗)B(I −B∗)‖∗.

We begin by bounding the nuclear norm ‖(I − B∗)B(I − B∗)‖∗. Since (I − B∗)B(I − B∗) ∈ S+,
we have

‖(I −B∗)B(I −B∗)‖∗ = tr((I −B∗)B(I −B∗)) = 〈I −B∗, B(I −B∗)〉 = 〈I −B∗, B〉.

Using the fact that the sum of each row of B is 1 and tr(B) = K, we have

‖(I −B∗)B(I −B∗)‖∗ = 〈I −B∗, B〉 = tr(B)−
K∑
k=1

∑
a,b∈Gk

Bab
|Gk|

= K −K +
∑
k 6=j

∑
a∈Gk, b∈Gj

Bab
|Gk|

≤ 1

m

∑
k 6=j
|BGjGk

|1 .(40)

Next, we simplify the expression of |B∗(B∗ −B)|1 = |B∗(I −B)|1.

|B∗(I −B)|1 =
∑
j 6=k

∑
a∈Gj , b∈Gk

|(B∗B)ab|+
K∑
k=1

∑
a,b∈Gk

|[B∗(I −B)]ab|

=
∑
j 6=k

∑
a∈Gj , b∈Gk

1

|Gj |
∑
c∈Gj

Bcb +

K∑
k=1

∑
a,b∈Gk

1

|Gk|

∣∣∣1− ∑
c∈Gk

Bcb

∣∣∣
= 2

∑
j 6=k
|BGjGk

|1 ,

where we used again B1 = 1 and that the entries of B are nonnegative. Gathering the above
bounds together with (39) yields the desired result. This completes the proof of this result and of
Proposition 3.

A.1.2. Proof of Proposition 4. By symmetry, we can assume that the true partition matrix B∗

is diagonal block constant. Define the partition matrix B1 :=

[
2/m 0 0

0 2/m 0
0 0 1/(2m)

]
where the first

two blocks are of size m/2 and the the last block has size 2m. The construction of the matrix B1

amounts to merging groups G2 and G3, and to splitting G1 into two groups of equal size. Then,

〈Σ, B∗〉 = γ+ + 2γ− +mtr(C∗) , 〈Σ, B1〉 = 2γ+ + γ− +mtr(C∗)−mτ .

As a consequence, 〈Σ, B1〉 < 〈Σ, B∗〉 if and only if τ > γ+−γ−
m .
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A.2. Analysis of the population version under the approximate model: proofs of
Proposition 7 and Corollary 3. In this subsection, we prove Proposition 7 and Corollary 3.
As a consequence of Lemma 3 above, we only need to prove that,

〈Σ, B∗ −B〉 > 0, for all B ∈ C such that supp(B) * supp(B∗).

We have
〈Σ, B∗ −B〉 = 〈AC∗At, B∗ −B〉+ 〈D,B∗ −B〉+ 〈R,B∗ −B〉.

Define the p-dimensional vector v by v = diag(AC∗At). Since B1 = 1 for all B ∈ C, we have
〈v1t + 1vt, B∗ −B〉 = 0. Hence, we have

〈AC∗At, B∗ −B〉 = 〈AC∗At − 1

2
(v1t + 1vt), B∗ −B〉

=
∑
j,k

∑
a∈Gj , b∈Gk

(
C∗jk −

C∗jj + C∗kk
2

)
(B∗ab −Bab)

=
∑
j 6=k

∑
a∈Gj , b∈Gk

(
C∗jj + C∗kk

2
− C∗jk

)
Bab

=
∑
j 6=k

(
C∗jj + C∗kk

2
− C∗jk

)
|BGjGk

|1,(41)

where BGjGk
= [Bab]a∈Gj , b∈Gk

. From Lemma 5 we get

|〈D,B∗ −B〉| ≤ 7

2m
|D|V

∑
j 6=k
|BGjGk

|1

and

|〈R,B∗ −B〉| ≤
(

3

2
|R|∞ +

‖R‖op
m

)∑
j 6=k
|BGjGk

|1.

Combining the two last inequalities with (41) gives the Proposition. The Corollary follows.

A.3. Exact recovery with PECOK: approximate model. Proofs of Theorems 7, 4
and 5. The conclusion of Theorems 7 and 4 follows by combining the conclusion of Theorems 8
and 9, stated below and proved in the next subsection, with the conclusion of Proposition 8 stated
and proved in Appendix A.4 below.

Specifically: Theorem 8, specialized to R = 0 and coupled with (i) of Proposition 8 proves
Theorem 4. Theorem 9, specialized to R = 0 and coupled with (ii) of Proposition 8 proves Theorem
5. Finally, Theorem 8 coupled with (i) of Proposition 8 proves Theorem 7. If we combine Theorem
8 with (ii) of Proposition 8 we obtained a version of Theorem 7 for bounded variables, which we
do not state, for space limitations.

The following theorem examines the behavior of PECOK under the general model (4).

Theorem 8. There exist c1, . . . , c3 three positive constants such that the following holds. Let
Γ̂ be any estimator of D, such that |Γ̂ − D|V ≤ δn,p with probability 1 − c1/(2p). Then, under
Assumption 1, and when L4 log(p) ≤ c3n and

(42) ∆(C∗) ≥ cL

[
‖Γ‖op

{√
log p

mn
+

√
p

nm2
+

log(p)

n
+

p

nm

}
+
δn,p + ‖R‖op

m
+ |R|∞

]
,

we have B̂ = B∗, with probability higher than 1− c1/p.
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The following theorem examines the behavior of PECOK under the general model (4) and when
the variables are bounded.

Theorem 9. There exist c1, c2 two positive constants such that the following holds. Let Γ̂ be
any estimator of D, such that |Γ̂−D|V ≤ δn,p with probability 1−c1/(2p). Then, under Assumption
1-bis, and when

∆(C∗) ≥ c2

[
M‖Γ‖1/2op

√
p log(p)

nm2
+M2 p log(p)

nm
+
δn,p + ‖R‖op

m
+ |R|∞

]
,(43)

we have B̂ = B∗, with probability higher than 1− c1/p.

A.3.1. Proofs of Theorems 8 and 9. In contrast to other SDP analyses performed for other
models [30], our proof does not rely on dual certificates techniques. Instead of that, we directly
investigate the primal problem and combine different duality-norm bounds. In our opinion, this
makes the arguments more transparent. The two key ingredients are Lemmas 3 and 5 above.

Given k, l ∈ [K], we define ∆kl(C
∗) = C∗kk + C∗ll − 2C∗kl. As a consequence of Lemma 3 page 29,

we only need to prove that

(44) 〈Σ̂− Γ̂, B∗ −B〉 > 0, for all B ∈ C such that supp(B) * supp(B∗),

with high probability.

We begin by introducing some notation. For any k, l ∈ [K], we denote mk = |Gk| the size of group
Gk and

(45) γkl =
1

mkml

∑
a∈Gk,b∈Gl

Γab .

Recall that X denotes the n× p matrix of observations and we set Z = XAt(AtA)−1. We have the
decomposition

X = XB∗ + X(I −B∗) =: ZAt + E

with Cov (AZ,E) = B∗Γ(I − B∗), Cov (E) = (I − B∗)Γ(I − B∗), and Cov (Zk, Z l) = C∗kl + γkl.
Note that in the latent model Xa = Zk(a) + Ea, the random variables Zk and Ea differ from Zk
and Ea.

Our first goal is to decompose Σ̂− Γ̂ in such a way that the distance |Z:k−Z:j |22 becomes evident.

To this end, recall that nΣ̂ = XtX and let us define Γ̃ = 1
nEtE. Hence, we have

nΣ̂ = AZtZAt + nΓ̃ +A(ZtE) + (EtZ)At.

Using the fact that for any vectors v1 and v2 we have |v1− v2|22 = |v1|22 + |v2|2− 2vt1v2, we can write

[AZtZAt]ab =
1

2
|[AZt]a:|22 +

1

2
|[AZt]b:|22 −

1

2
|[AZt]a: − [AZt]b:|22,

for any 1 ≤ a, b ≤ p. We also observe that

[A(ZtE) + (EtZ)At]ab = [(AZt)a: − (AZt)b:][Eb: −Ea:] + [AZtE]aa + [AZtE]bb.
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Define the p× p matrix W by

(46) Wab := n(Σ̂ab − Γ̂ab)−
1

2
|[AZt]a:|22 −

1

2
|[AZt]b:|22 − [AZtE]aa − [AZtE]bb.

Combining the four displays above we have

(47) W = W1 +W2 +W3 + n(Γ− Γ̂),

with

(W1)ab := −1

2
|[AZt]a: − [AZt]b:|22 − nB∗ΓB∗,(48)

(W2)ab := [(AZt)a: − (AZt)b:][Eb: −Ea:]− n[B∗Γ(I −B∗) + (I −B∗)ΓB∗]ab,(49)

and

(50) W3 = nΓ̃− n(I −B∗)Γ(I −B∗),

for any 1 ≤ a, b ≤ p. Observe from (46) that W − n(Σ̂ − Γ̂) is a sum of four matrices, two of
which are of the type 1vt1, and two of the type v21t, for some vectors v1, v2 ∈ Rp. Since for any two
matrices B1 and B2 in C, we have B11 = B21 = 1, it follows that

〈W − n(Σ̂− Γ̂), B1 −B2〉 = 0 .

As a consequence and using the decomposition (47), proving (44) reduces to proving

(51) 〈W1 +W2 +W3 + n(Γ− Γ̂), B∗ −B〉 > 0, for all B ∈ C such that supp(B) * supp(B∗).

We will analyze the inner product between B∗−B and each of the four matrices in (51) separately
in the following lemmas. Their proofs are given after the proof of this theorem.

The matrix W1 contains the information about the clusters, as we explain below. Note that
for two variables a and b belonging to the same group Gk, (W1)ab = −nγkk. As a consequence,
〈W1, B

∗〉 = −n
∑

kmkγkk. For two variables a and b belonging to two different groups Gj and Gk,
(W1)ab = −|Z:i−Z:k|22/2−nγkj . In the sequel, we denote by BGj ,Gk

the submatrix (Bab)a∈Gj , b∈Gk
.

Since all the entries of B are nonnegative, and B1 = 1,

−〈W1, B〉 =
1

2

∑
j 6=k
|Z:j − Z:k|22|BGjGk

|1 +
∑
j,k

nγjk|BGjGk
|1,

=
1

2

∑
j 6=k

[
|Z:j − Z:k|22 + 2nγjk

]
|BGjGk

|1 + n
∑
k

γkk

mk −
∑
j:j 6=k

|BGjGk
|1


=

1

2

∑
j 6=k

(
|Z:j − Z:k|22 − nγkk − nγjj + 2nγjk

)
|BGjGk

|1 + n
∑
k

mkγkk.

Hence, we obtain

(52) 〈W1, B
∗ −B〉 =

1

2

∑
j 6=k

[
|Z:j − Z:k|22 − nγjj − nγkk + 2nγjk

]
|BGjGk

|1 ,

Each of the random variables |Z:j −Z:k|22 is a quadratic form of independent random variables. As
a consequence, we can apply Hanson-Wright inequalities, of the type stated in Lemma 10 of the
suplement [12] to simultaneously control all these quantities. This leads us to Lemmas 6 - 9, proved
in the supplement [12].
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Lemma 6. Under either Assumption 1 and Condition (42) or Assumption 1-bis and Condition
(43), it holds with probability higher than 1− 1/p, that

(53) 〈W1, B
∗ −B〉 ≥

∑
j 6=k

n
∆jk(C

∗)

4
|BGjGk

|1 ,

simultaneously for all matrices B ∈ C.

We will analyze below the three remaining cross products.

Lemma 7. Under Assumption 1, there exists an event of probability larger than 1 − 2/p such
that the following holds simultaneously for all B ∈ C
(54)

|〈W2, B
∗−B〉| ≤ c1L

2
∑
j 6=k

[√
∆jk(C∗)|Γ|∞ +

|D|∞√
m

+ |R|∞ + |R|1/2∞ |D|1/2∞
] [√

n log(p) + log(p)
]
|BGjGk

|1 ,

Under Assumption 1-bis, there exists an event of probability larger than 1 − 2/p such that the
following holds simultaneously for all B ∈ C

(55) |〈W2, B
∗−B〉| ≤ c′1M

∑
j 6=k

[√
n log(p)

[
∆k(a)k(b)(C∗) +

|D|∞
m

+ |R|∞
]

+M log(p)

]
|BGjGk

|1 .

It remains to control the term W3 corresponding to the empirical covariance matrix of the noise E.
This is the main technical difficulty in this proof.

Lemma 8. Under Assumption 1, it holds with probability higher than 1− 1/p that

|〈W3, B
∗ −B〉| ≤ cL‖Γ‖op

(√
np

m2
+
p

m

)∑
j 6=k
|BGjGk

|1 ,(56)

simultaneously over all matrices B ∈ C. Here, cL is a constant that only depends on L > 0.
Under Assumption 1-bis, it holds with probability higher than 1− 1/p that

|〈W3, B
∗ −B〉| ≤ c2M

[√np‖Γ‖op log(p)

m2
+
pM log(p)

m

]∑
j 6=k
|BGjGk

|1 ,(57)

simultaneously over all matrices B ∈ C.

Finally, we control the last term 〈n(Γ− Γ̂), B∗ −B〉 with the next lemma.

Lemma 9. It holds that

|〈Γ− Γ̂, B∗ −B〉| ≤ c3

[ |D − Γ̂|V + ‖R‖op
m

+ |R|∞
]∑
j 6=k
|BGjGk

|1(58)

simultaneously over all matrices B ∈ C.
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End of the proof of Theorem 8. Under Assumption 1, we combine (53), (54), (56) and (58)
and the assumption L4 log(p) ≤ c4n and obtain that, with probability larger than 1− c/p,

1

n
〈W,B∗ −B〉 ≥

∑
j 6=k

[
∆jk(C

∗)

4
− c1L

2

√
∆jk(C∗)|Γ|∞

log(p)

n

−c2L
2
[ |D|∞√

m
+ |R|∞ + |R|1/2∞ |D|1/2∞

]√ log(p)

n
− cL‖Γ‖op

[√ p

nm2
+

p

nm

]
−c3

[ |D − Γ̂|V + ‖R‖op
m

+ |R|∞
]]
|BGjGk

|1 ,(59)

simultaneously for all B ∈ C. Condition (42) enforces that, for each (j, k), the term in the bracket
of (59) is positive. Hence, with probability at least 1 − c1/p, the Inequality (51) holds since any
matrix B ∈ C whose support is not included in supp(B∗) satisfies |BGjGk

|1 > 0 for some j 6= k. �

End of the proof of Theorem 9. Let us now assume that Assumption 1-bis holds. Combining
(52), (55), (57) and (58) we obtain that, with probability larger than 1− c/p,

1

n
〈W,B∗ −B〉 ≥

∑
j 6=k

[
∆jk(C

∗)

4
− c1M

√
∆jk(C∗)

log(p)

n

−c2M

√
|D|∞
m

+ |R|∞

√
log(p)

n
− c3M

2 p log(p)

nm
− c4M‖Γ‖1/2op

√
p log(p)

nm2

−c5

[ |D − Γ̂|V + ‖R‖op
m

+ |R|∞
]]
|BGjGk

|1 ,(60)

simultaneously for all B ∈ C. Condition (43) enforces that, for each (j, k), the term in the bracket
of (60) is positive and as previously that (51) holds with probability at least 1− c3/p. �

A.4. Guarantees for the estimator (22) of Γ. Proposition 8 controls the estimation error
of estimator Γ̂ defined by (22) under both the exact model and the approximate block G-block
model (4). We set v2 = minc 6=d Var (Xc −Xd).

Proposition 8. Assume that Γ either

(a) is diagonal;
(b) or fulfills the diagonal dominance assumption (32).

Assume also that ∆(C∗) ≥ 0. Then, the two following results holds.
(i) Under Assumption 1, there exist three numerical constants c1–c3 such that when m ≥ 3 and

L4 log(p) ≤ c1n, with probability larger than 1− c3/p, the estimator Γ̂ defined by (22) satisfies

(61) |Γ̂− Γ|V ≤ 2|Γ̂− Γ|∞ ≤ c2

(√
|R|∞|Γ|∞ + |Γ|∞L2

√
log(p)

n

)
.

(ii) Under Assumption 1-bis, there exist three numerical constants c1–c3 such that when m ≥ 3
and log(p) ≤ c1(v/M)2n, with probability larger than 1 − c3/p, the estimator Γ̂ defined by (22)
satisfies

(62) |Γ̂− Γ|V ≤ 2|Γ̂− Γ|∞ ≤ c2

(√
|R|∞|Γ|∞ +M

√
|Γ|∞ log(p)

n
+M2 log(p)

n

)
.
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Proof of Proposition 8. To ease the presentation of this proof, we introduce the new nota-
tion

ne1(a) := argmin
b∈[p]\{a}

V (a, b) and ne2(a) := argmin
b∈[p]\{a,ne1(a)}

V (a, b).

(i) We start with the first part of the proposition. Let a, b1, b2 be three different indices. Under
Assumption 1, the Corollary 1 of Hanson-Wright inequality given in the supplemental material [12]
gives that with probability at least 1− p−4

∣∣∣ 1
n
〈X:a −X:b1 ,X:a −X:b2〉 − Cov (Xa −Xb1 , Xa −Xb2)

∣∣∣
≤ cL2

√
Var(Xa −Xb1) Var(Xa −Xb2)

(√
log(p)

n
+

log(p)

n

)
.

Applying the inequality 2ab ≤ a2 + b2, and a union bound, we obtain that the inequalities∣∣∣ 1
n
〈X:a −X:b1 ,X:a −X:b2〉 − Cov (Xa −Xb1 , Xa −Xb2)

∣∣∣
≤ c′L2

[
Var (Xa −Xb1) + Var (Xa −Xb2)

](√ log(p)

n
+

log(p)

n

)

hold simultaneously over all triplets of different indices a, b1, b2, with probability 1 − 1/p. Decom-
posing these variance and covariance terms, we obtain

Cov (Xa −Xb1 , Xa −Xb2)

= Daa +
1

2

(
∆k(a)k(b1)(C

∗) + ∆k(a)k(b2)(C
∗)−∆k(b2)k(b1)(C

∗)
)

+Rb1b2 −Rab1 −Rab2 ,

and Var (Xa −Xb) = Daa +Dbb + ∆k(a)k(b)(C
∗)− 2Rab. Hence

Var (Xa −Xbi) ≤ 2|D|∞ + 2|R|∞ + |∆k(a)k(bi)(C
∗)|,(63)

∣∣∣Cov (Xa −Xb1 , Xa −Xb2)−Daa

∣∣∣ ≤ 3|R|∞ +
|∆k(a)k(b1)(C

∗)|+ |∆k(a)k(b2)(C
∗)|+ |∆k(b1)k(b2)(C

∗)|
2

.

(64)

For i = 1, 2, write ti := |∆k(a)k(nei(a))(C
∗)| and t12 = |∆k(ne1(a))k(ne2(a))(C

∗)|. Since log(p) ≤
c1L
−4n, the previous inequalities entail that

(65)
∣∣∣Γ̂aa −Daa

∣∣∣ ≤ c(|R|∞ + (t1 + t2 + t12) + L2|Γ|∞

√
log(p)

n

)

with probability at least 1 − 1/p. As a consequence, we only have to prove that t1, t2 and t12 are

smaller than c
(√
|R|∞|Γ|∞ + L2|Γ|∞

√
log(p)/n

)
with probability at least 1− c/p. We focus on t1,

the arguments for t2 and t12 being similar.

First note that t1 = 0 if k(a) = k(ne1(a)) so that we may assume henceforth that k(a) 6=
k(ne1(a)). We have the following.

Lemma 10. Assume that Γ either
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(a) is diagonal;
(b) or fulfills the diagonal dominance assumption (32).

Assume also that ∆(C∗) ≥ 0. Then, there exists a numerical constant c1, such that, outside an
event of probability less than 1/p2, we have

(i) under Assumption 1,

(66)
∣∣〈X:a −X:ne1(a),X:c −X:d〉

∣∣ ≤ c1

(√
n|R|∞ + L2|Γ|1/2∞

√
log(p)

)
|X:c −X:d|2 ,

simultaneously over all c, d 6= (a, ne1(a));
(ii) under Assumption 1-bis,

(67)
∣∣〈X:a −X:ne1(a),X:c −X:d〉

∣∣ ≤ c1

(√
n|R|∞ +M

√
log(p)

)
|X:c −X:d|2 ,

simultaneously over all c, d 6= (a, ne1(a)).
Similar bounds also hold for ne2(a) instead of ne1(a).

This lemma is proved in the supplement [12]. Below, c′ denotes a numerical constant, whose
value may vary from line to line.

For any c and d, the variance of Xc − Xd is less than ∆k(c)k(d)(C
∗) + 2|D|∞ + 2|R|∞. As a

consequence, Hanson-Wright inequality together with an union bound over all c, d ∈ [p] and the
condition L4 log(p) ≤ c1n leads to

|X:c −X:d|2 ≤ c′
√
n[4|Γ|∞ + ∆k(c)k(d)(C∗)] ,

simultaneously over all c 6= d, with probability 1 − 1/p2. Take c and d any two indices such that
k(a) = k(c) and k(ne1(a)) = k(d). So combined with Lemma 10, we get with probability at least
1− 2p−2

(68)
∣∣〈X:a −X:ne1(a),X:c −X:d〉

∣∣ ≤ c′ (√n|R|∞ + L2|Γ|1/2∞
√

log(p)
)√

n[|Γ|∞ + t1].

Let us now lower bound the left hand-side of the above inequality. For any c in the same group as a
and b in the same group as d, we have E [〈Xa −Xb, Xc −Xd〉] = ∆k(b)k(a)(C

∗)+Rac+Rbd−Rbc−Rab.
Therefore, Corollary 1 of the Hanson-Wright inequality given in the supplement [12] yiels, with
probability at least 1− p4,∣∣〈X:a −X:b,X:c −X:d〉

∣∣ ≥ n∆k(b)k(a)(C
∗)− 4n|R|∞ − c′L2

√
n log(p)[∆k(b)k(a)(C

∗) + |Γ|∞].

As a consequence, for any c and d such that k(a) = k(c) and k(ne1(a)) = k(d), we get from
L4 log(p) ≤ c1n and a union bound∣∣〈X:a −X:ne1(a),X:c −X:d〉

∣∣ ≥ nt1/2− 4n|R|∞ − c′L2|Γ|∞
√
n log(p)

with probability 1 − 1/p2. Gathering the previous bound with (68), Condition (66), Assumption
(32) and L4 log(p) ≤ n, we conclude that

t1 ≤ c′
[
|R|1/2∞ |Γ|1/2∞ + L2|Γ|∞

√
log(p)

n

]
simultaneously for all a, with probability 1− c3/p. Together with (65), this concludes the proof of
the first part.
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