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Abstract
In this article we propose an alternative way to prove some recent results on statistics on words,
such as the expected number of runs or the expected sum of the run exponents. Our approach
consists in designing a general framework, based on the symbolic method developed in analytic
combinatorics. The descriptions obtained in this framework are built in such a way that the
degree of ambiguity of an object O (i.e., the number of different descriptions corresponding to
O) is exactly the value of the statistic under study for O. The asymptotic estimation of the
expectation is then done using classical techniques from analytic combinatorics. To show the
generality of our method, we not only apply it to obtain new proofs of known results, but also
extend them from the uniform distribution to any memoryless distribution.
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1 Introduction

In this article we propose an alternative way to prove some recent results on statistics on
words, such as the expected number of runs or the expected sum of the run exponents.
Studying statistics on words is a classical topic in discrete probabilities, which has many
fundamental applications in computer science, for instance in the fields of bioinformatics,
information theory and average case analysis of algorithms.

We specially focus on statistics related to the runs in a random word (see Section 2.1 for
the definition). Bounding the maximal number of runs in a word is a fundamental question
in combinatorics of words, with consequences in text algorithms. Kolpakov and Kucherov
proved that it is in O(n) in their seminal paper [12], and they conjectured that it is at most
n. Banai and his coauthors proved this conjecture very recently [1]. Several other statistics,
such as the total run length or the sum of exponents, have also been studied in the literature.
Besides tightening lower and upper bounds in the worst case [4, 5, 8, 14, 16, 17, 18, 1],
works have been done on the expected values of those statistics, for uniform distributions on
words [15, 13, 11, 3]. It is the kind of questions we propose to study in this article.

Our main contribution is to provide a general framework, which proves quite useful to
obtain asymptotic equivalents to the expectations of statistics related to runs. We follow and
adapt the main ideas developed in the field of analytic combinatorics (see the textbook of
Flajolet and Sedgewick [6]): First we explain how to build the formal power series Lχ(z) that
corresponds to the statistic χ directly from a combinatorial specification on sets of words.
Then, we use the techniques of complex analysis to estimate the expectation En[χ] of χ for
uniform random words of length n. The main difference with the classical framework is that
the combinatorial specifications we use are ambiguous. Usually, unambiguity is mandatory for
this combinatorial method to apply. However, if the degree of ambiguity of the specification
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9:2 Estimating Statistics on Words Using Ambiguous Descriptions

for a word w, i.e. the number of ways to produce w, is exactly χ(w), then we can directly
get an expression of Lχ(z), or an equation it satisfies.

The net gain of this method is that once Lχ(z) is known, no tedious computations are
needed to get the asymptotic equivalent of En[χ]. The tools from analytic combinatorics
apply and directly yield the result. Moreover, this framework can be used to go beyond
uniform distributions, since it can easily be extended to memoryless distributions, where
each letter is chosen independently with some fixed probability on the alphabet.

The technique we propose is quite natural, and there are hints of its use, for instance,
in [6, A.7.] and also in the study of hidden words [7]. However, it lacks a general framework,
which is what we propose and illustrate in this article. This introduction is continued in
Section 3, where we present the method on three basic examples, after the required notations
given in Section 2. This is done in an informal way, but it should gives a fair picture of our
method. The formalism of weighted sets is then introduced in Section 4. In Section 5, we
propose alternative proofs to some results of the literature. Finally, we explain in Section 6
how to generalize them to memoryless distributions.

2 Preliminaries

For any two nonnegative integers i, j, let [i, j] denote the integer interval {i, . . . , j}. By
convention, [i, j] = ∅ if j < i. Let also [i] denote the integer interval [1, i].

The mobius function µ : Z≥1 → {−1, 0, 1} is defined as follows. If n = pα1
1 · · · p

αk

k is the
decomposition of a positive n into prime numbers, then µ(n) = (−1)k if all the αi’s are equal
to 1, and µ(n) = 0 otherwise. The main property of this function is that f and g are two
functions from Z≥1 such that f(n) =

∑
d|n g(d), then g(n) =

∑
d|n µ

(
n
d

)
f(d), where d|n

means that d ranges over the divisors of n.

2.1 Words and Probabilities on Words
In the sequel we consider words on a finite alphabet A, of cardinality ` ≥ 2. We assume the
reader is familiar with the classical definitions on words, such as prefixes, suffixes, factors,
subwords . . . For w ∈ A∗ of length n and i ∈ [n], let wi (or w[i]) denote the i-th letter of w,
with the convention that positions start at 1. The last letter of w is therefore w|w|. Let also
w[i, j] = wi · · ·wj denote the factor of w that starts at position i and ends at position j.

Recall that a word w is not primitive when there exists a word v and an integer k ≥ 2
such that w = vk, and that it is primitive otherwise. Let P denote the set of all primitive
words. A word w of length n is periodic with period p ≥ 1 when w[i] = w[i+ p], for every
i ∈ [n− p]. The period of a word is its smallest period. If w is periodic with period p, then
its exponent is |w|p . The exponent is not necessarily an integer: for instance the exponent of
ababa is 5/2. A run of period p in a word w is a factor w[i, j] of w with least period p, such
that p ≥ 2 and w[i − 1, j] and w[i, j + 1], when they exist, are not of period p (the factor
w[i, j] is “maximal” for the period p). We identify such a run by the triplet (i, j, p). Let
runs(v) denote the set of all runs in the word v.

The uniform distribution on a finite set E is the probability p defined for all e ∈ E by
p(e) = 1

|E| . By a slight abuse of notation, we will speak of the uniform distribution on A∗ to
denote the sequence (pn)n≥0 of uniform distributions on An. For instance, if A = {a, b, c},
then each element of An has probability 3−n under this distribution.

Another very classical distribution on An is the memoryless distribution of probability p,
where p is a probability on the alphabet A. Under this distribution, the probability of a word
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w = w1 · · ·wn ∈ An is Pp(w) = p(w1) · · · p(wn). This distribution consists in generating each
letter of the word independently, following p.

2.2 Elements of Analytic Combinatorics
We only present the parts of this well-established theory that will be needed in the sequel.
For more information, the reader is referred to the book of Flajolet and Sedgewick [6].

A set E with a size function s : E → N is a combinatorial set if for every n ∈ N, En := s−1(n)
is finite. The generating series E(z) of E is defined by E(z) :=

∑
e∈E z

s(e) =
∑
n≥0 enz

n,
with en = |En|. We will also use the notation [zn]E(z) := en to denote the n-th coefficient
E(z). If E and F are two combinatorial sets of size functions s and t, E × F is also a
combinatorial set for the size function r((e, f)) = s(e) + t(f), for every e ∈ E and f ∈ F .
This construction extends naturally to E1 × · · · × Ek and to Ek, for every k ≥ 2.

The symbolic method consists in a dictionary to directly translate unambiguous combina-
torial specifications into equations on generating series. In particular:

I Theorem 1 ([6]). For E and F two combinatorial sets of generating series E(z) and F (z):
If E and F are two disjoint sets, then G = E∪̇F implies that G(z) = E(z) + F (z).
If G = E × F , then G(z) = E(z)F (z).
If E0 = ∅ and G = E∗ := ∪k≥0Ek, then G(z) = 1

1−E(z) .

There are other basic constructions, but we will not need them in this article. However,
there is a more advanced tool that is particularly useful for us: If E0 = ∅, a tuple of elements
of E is primitive when, it is primitive as a word on the alphabet E . From [6, A.4] we get that
if F is the set of primitive tuples of elements of E , then

F (z) =
∑
k≥1

µ(k)E(zk)
1− E(zk) . (1)

As an illustration, observe that the generating series of the alphabet is A(z) = `z, as there
are ` letters, each of size 1. Since a word is a tuple of letters, the generating series of all
words1 is 1

1−A(z) = 1
1−` z . Moreover, by Equation 1, the generating series P (z) of the set P

of primitive words on A is

P (z) =
∑
k≥1

µ(k) `zk

1− `zk . (2)

The second part of the theory consists in considering generating series as analytic functions
from C to C, and then in using the powerful techniques of this field. We referred the reader
to [6] for the classical definitions of the theory of analytic functions. In the sequel, we
will only use the following theorem, which is a simplified version of the classical Transfer
Theorem [6, p.393]. The full version is much more powerful, but it requires some analytic
conditions that are too long to introduce for this extended abstract.

I Theorem 2 (Simplified Transfer Theorem [6]). Let r be a positive real number. Let f be a
function from C to C, which is analytic at 0, with radius of convergence greater than r. For
any k ∈ Z≥1, we have the following asymptotic equivalent as n tends to infinity,

[zn] f(z)
(1− z/r)k ∼

f(r)nk−1

(k − 1)! rn .

1 This elementary result can of course be obtained directly.

CPM 2016



9:4 Estimating Statistics on Words Using Ambiguous Descriptions

We will also use Theorem 2 the following way in the sequel: if f1, . . . , fk are analytic at 0
and of radius of convergence greater than r, then applying the theorem to each term yields

[zn]
(

f1(z)
1− z/r + f2(z)

(1− z/r)2 + . . .+ fk(z)
(1− z/r)k

)
∼ fk(r)nk−1

(k − 1)! rn , (3)

since the other terms are negligible when n tends to infinity.
Extracting the n-th coefficient of Equation (2) yields the well known fact that if Pn

denote the number of primitive words, then Pn =
∑
d|n `

n/d ∼ `n. Hence, P (z) is analytic at
0 and its radius of convergence is 1/`. This simple fact will be quite useful in the sequel.

If χ is a statistic on a combinatorial set E , i.e. a mapping from E to R, the cumulative
generating series of χ is the formal power series Lχ(z) =

∑
e∈E χ(e)z|e|. Observe that the

expectation of χ for uniform random elements of En is given by En[χ] = [zn]Lχ(z)/[zn]E(z).
Since we focus on statistics on words in this article, we will always have [zn]E(z) = `n, the
number of words of length n, except in Section 6 where we directly work with probabilities.

3 Three Introductory Examples

In this section we study three basic examples, to illustrate how some statistics on random
words can be estimated using ambiguous specifications. We will not be fully formal, the
rigorous framework will be presented in the next section.

We start with the classical question of estimating the expected number occurrences of
a fixed pattern v of length m in a uniform random word w of length n. Occurrences may
overlap: aaa has two occurrences of aa in our settings. Let αv be the random variable
that counts the number of occurrences of v in w. The classical probabilistic analysis of the
expectation En[αw] of αw for the uniform distribution on An is the following: for any i ∈ [n]
let Xi be the random variable that values 1 if there is an occurrence of v in w starting
at position i and that values 0 otherwise. Then we have αv =

∑n
i=1 Xi. The Xi’s are

not independent, but since the expectation is linear, we have En[αv] =
∑n
i=1 E[Xi]. As a

consequence, E[Zn] = (n−m+ 1)`−m ∼ n`−m, as v is fixed in our settings.
As we are working with the uniform distribution, the probabilistic proof can also be

established in a purely combinatorial manner: We just count the number of words of length n
having an occurrence of v at position i, and get exactly the same computations.

There is another, more advanced, way to obtain this result using combinatorics. The
symbolic method described in Section 2.2 works when one starts with an unambiguous
combinatorial specification. If the regular expression is ambiguous, then applying blindly
the rules of transformation does not produce the correct generating series. Nonetheless, the
resulting series L(z) can still be useful: roughly speaking, if κ(w) denote the number of
different ways that the word w can be parsed in the expression (we call this quantity the
degree of ambiguity of w), then L(z) =

∑
w κ(w)z|w|. We can take advantage of this property,

provided we can design an ambiguous expression such that for every word, the value of the
statistic is equal to its degree of ambiguity. Back to our example, it is not difficult to see that
for the ambiguous expression L = A∗vA∗, each word w can be parsed in a number of ways
equal to the number of occurrences of v in w. Hence, using the dictionary of the symbolic
method, we get that Lαv

(z) = zm

(1−`z)2 . From this expression we obtain:∑
|w|=n

αv(w) = [zn] zm

(1− `z)2 = [zn−m] 1
(1− `z)2 = (n−m+ 1)`n−m.

We just have to divide by `n to get the expectation of αv. Instead, we can use the Simplified
Transfer Theorem directly on zm

(1−`z)2 to obtain that En[αv] ∼ n`−m. It is probably too
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complicated to use analytic combinatorics here, but in many situations, we will not want
to find an exact expression for the n-th coefficient, if it can be avoided. Using the Transfer
Theorem, we can find asymptotic equivalents without first computing the coefficients.

Let us consider another simple example. Assume that we are now interested in the number
βv(w) of occurrences of v as a subword of w. The expectation of βv for random words of
length n can be established using probabilities and the linearity of the expectation as for
αv. However, we want to illustrate the use of analytic tools once more. It is not difficult
to verify that the ambiguous expression L = A∗v1A

∗v2A
∗ · · ·A∗vmA∗ corresponds to our

needs. Its associated generating series is L(z) = zm

(1−`z)m+1 , which satisfies the conditions
of the Simplified Transfer Theorem. This yields that [zn]L(z) ∼ `n−mnm

m! . As there are `n
words of length n, the expected number of occurrences of v as a subword of a random word
of length n is asymptotically equivalent to nm

m!`m . See [7] for more information on statistics
related to subwords.

We conclude this section with a last elementary example. Let π(w) denote the length of
the largest word v such that w ∈ vA∗v, where v denote the reverse (or mirror) of v. The
description L = ∪v∈A+vA∗v is ambiguous, but a word w is in exactly π(w) sets of this union,
since the number of nonempty prefixes of a word is equal to its length. The specification L
can be rewritten E×A∗, where E is the set of pairs (v, v) for nonempty v. The generating
series of E is E(z) = `z2

1−`z2 , and the symbolic method yields that L(z) = E(z)
1−`z . As E(z) is

analytic at 0 with radius of convergence 1√
`
> 1

` , the Simplified Transfer Theorem applies
and yields that [zn]L(z) ∼ E(`−1)`n = 1

`−1`
n. Hence, the expected value of π tends to 1

`−1 .
In the sequel, we define a framework on sets of weighted words to formalize what we did

for our three introductory examples. It is directly inspired from the simple remarks we just
made, on how ambiguity can be used to estimate statistics. However, this is done in a more
sophisticate way. We will be able, for instance, to handle non-integer degrees of ambiguity,
which will prove useful in Section 5.

4 Combinatorics of Sets of Weighted Words

In this section we introduce the framework that will be used throughout this article. The
idea is to formalize the notion of “number of time an ambiguous expression is parsed”, and
to do it in a way similar to the symbolic method. For this purpose, we have to introduce
some formalism on sets of weighted words. The definitions we propose are natural extensions
of the classical ones on sets.

Consider the two sets of words E = {a, ab, aa} and F = {ε, a, b}. We interpret them as
“each word of E has weight 1”, and the same for F . Since a is in both E and F , we would
like a to have weight two in E ∪ F . Similarly, since ab = a · b = ab · ε, we would like ab to
have weight two in E · F . Finally, since aaa = a · a · a = a · aa = aa · a, we would like aaa to
have weight three in E∗. A relevant way to handle this is to use multisets, that is, sets where
an element may appear more than once. We will need a bit more in the sequel, and thus
allow the weights to take any real positive value in the definitions below.

Formally, if E be a nonempty set, a weighted set2 on E is a mappingM from E to R≥0.
For e ∈ E , we say that e is inM (written e ∈M) ifM(e) 6= 0, and we write e /∈M otherwise.
A setM is viewed as a weighted set where every element of e has weight 1: for every e ∈ E ,
M(e) = 1 if e ∈M andM(e) = 0 otherwise.

2 We use the terminology “weighted set on E” for “set of weighted elements of E”, as a weighted graph is
a graph of weighted vertices.

CPM 2016



9:6 Estimating Statistics on Words Using Ambiguous Descriptions

If E is a combinatorial set of size function s, we define the generating series M(z) of
a weighted set M on E by M(z) =

∑
e∈EM(e)zs(e). Observe that ifM is a set, then the

generating series ofM viewed as a weighted set or as a set coincide.
From now on, we only work on weighted sets of words on A. To simplify the notations,

we will sometimes writeM = {a 7→ 1
2 , ba 7→ 3, baba 7→ 11} for the weighted set defined by

M(a) = 1
2 ,M(ba) = 3,M(baba) = 11, andM(x) = 0 for every x /∈ {a, ba, baba}.

IfM andM′ are two weighted sets of words, the sum M⊕M′ is the weighted set N
defined by N (w) =M(w) +M′(w), for every w ∈ A∗. The concatenation M�M′ of the
weighted setsM andM′ is defined by

M�M′ =
⊕
v∈M
v′∈M′

{vv′ 7→ M(v)M′(v′)}.

That is, every pair (v, v′) contributes additively toM(v)M(v′) to the weight of the word vv′.
For instance, ifM = {a 7→ 1/2, ab 7→ 3} andM′ = {ε 7→ 5, b 7→ 7}, then their concatenation
isM�M′ = {a 7→ 5/2, ab 7→ 37/2, abb 7→ 21}.

If ε /∈ M, the star M? is defined by M? = ⊕k≥0Mk, where M0 = {ε 7→ 1} and
Mk+1 =Mk �M for every k ≥ 0. Observe that if ε ∈M, then this operation is not well
defined, as ε is in everyMk and therefore has infinite weight inM∗.

The following proposition extends the symbolic method to weighted sets of words.

I Proposition 3. IfM andM′ are two weighted sets of words, then

N =M⊕M′ ⇒ N(z) = M(z) +M ′(z),
N =M�M′ ⇒ N(z) = M(z)M ′(z),

N =M? ⇒ N(z) = 1
1−M(z) , (if ε /∈M).

In the sequel, we will implicitly use the following lemma, which was already presented
informally in Section 3.

I Lemma 4. Let αv(w) denote the number of occurrences of v as a factor of w. The
generating series of the weighted set A∗ � {v 7→ 1} �A∗ (the weighted set version of A∗vA∗)
is equal to Lαv

(z), the cumulative generating series of the statistic αv.

Proof. As A∗v is a unambiguous expression, every element of A∗ � {v 7→ 1} has weight
1, and the same holds for A∗. Thus, by definition, if N = (A∗ � {v 7→ 1}) � A∗, then
N (w) = |{(w1, w2) ∈ A∗ ×A∗ : w = w1v · w2}|, which is exactly αv(w), as announced. J

5 Application to Run Statistics

5.1 The Expected Number of Runs
For any given word v, let ρ(v) denote its number of runs. In [15], Puglisi and Simpson
established the following result.

I Theorem 5 ([15]). The expected number of runs in a word of length n on an alphabet of
size ` satisfies asymptotically

En[ρ] ∼

`− 1
`

∑
k≥1

µ(k)
`2k−1 − 1

n.
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To prove Theorem 5, they proceed as follows. For every given p, they compute the total
number of runs of period p in the set of all words of length n. Then, they sum these values for
all possible p. Finally, they obtain an asymptotic equivalent of this quantity using elementary,
but technical, computations.

In this section, we propose an alternative proof of Theorem 5 using our framework. Recall
that P is the set of all primitive words and that P (z) is its associated generating series. Let
C = {ww 7→ 1 : w ∈ P} and let D = {aww 7→ 1 : w ∈ P and the last letter of w 6= a}.

I Lemma 6. The generating series of the weighted set (C � A∗) ⊕ (A∗ � D � A∗) is the
cumulative generating series of the statistic ρ.

Proof. For the weighted setM = C �A∗ = ⊕w∈P{ww 7→ 1} �A∗,M(w) is the number of
prefixes of the form ww for w ∈ P , that is,M counts the number of runs at the beginning of
the word. Similarly, for N = A∗ �D �A∗ = ⊕w∈D,a 6=w[|w|]A

∗ � {aww 7→ 1} �A∗, N (w) is
the number of runs of w that does not start at the first position, since each run is identified
by the factor aww. Hence,M⊕N counts the number of runs, concluding the proof. J

The generating series of C and D are C(z) = P (z2) and D(z) = (`− 1)zP (z2), respectively.
Hence, the cumulative generating series Lρ(z) of the number of runs can be obtained using
Proposition 3:

Lρ(z) = P (z2)
1− `z + (`− 1)zP (z2)

(1− `z)2 .

Since the radius of convergence of P (z2) is 1√
`
> 1

` , we are in the settings of Equation (3)
and the Simplified Transfer Theorem yields that [zn]Lρ(z) ∼ n `−1

` P (`−2)`n. Dividing by `n
gives another expression for the result of Theorem 5:

En[ρ] ∼ `− 1
`

P

(
1
`2

)
n. (4)

In particular, the infinite sum of Theorem 5 is just P (`−2). Indeed, by Equation (2) we have

P

(
1
`2

)
=
∑
k≥1

µ(k) ` · `−2k

1− ` · `−2k .

Multiplying the numerator and denominator by `2k−1 yields the formula of Theorem 5.

5.2 The Expected Total Run Length
The total run length of a word is the sum of the lengths of its runs. We denote by τ(w) the
total run length of w. In [11], Glen and Simpson proved the following result.

I Theorem 7 ([11]). The expected total run length of a uniform random word of length n
asymptotically satisfies

En[τ ] ∼

∑
k≥1

Pk
2k(`− 1) + 1

`2k+1

n,

where Pk is the number of primitive words of length k.

CPM 2016



9:8 Estimating Statistics on Words Using Ambiguous Descriptions

Their techniques follows the steps of the proof of Theorem 5 given in Section 5.1.
In order to prove Theorem 7 with our framework, we first focus on another statistic. For

any word w, let δ(w) denote the sum of the periods of the runs of w. We are interested
in the expected value of δ for uniform random words of length n. Consider the weighted
set C = {ww 7→ |w| : w ∈ P}, where the weight of each ww is the length of w. A
direct computation yields that the generating series of C is C(z) = z2P ′(z2). Similarly the
generating series of the weighted set D = {aww 7→ |w| : w ∈ P and the last letter of w 6= a}
is D(z) = (`− 1)z3P ′(z2).

We can now reuse the ambiguous specification of Lemma 6, with C and D instead of C
and D, and get that the cumulative generating series of δ is

Lδ(z) = z2P ′(z2)
1− `z + (`− 1)z3P ′(z2)

(1− `z)2 , with P ′(z) = d

dz
P (z).

By Equation 3, from this expression of Lδ(z) we directly get the following proposition.

I Proposition 8. The expected sum of the periods of the runs in a uniform random word of
length n asymptotically satisfies En[δ] ∼ `−1

`3 P
′(`−2)n.

We can now proceed with our proof of Theorem 7. Consider the ambiguous specification
L = ∪w∈PA∗wwA∗. Observe that a run r = (i, j, p) in a word v matches the expression of
L exactly once for every w = v[k, k + p− 1], with k ∈ {i, . . . , j − 2p+ 1}. That is, the pair
(v, r) matches the specification exactly |r| − 2p + 1 times. In other words, the generating
series of the weighted set A∗ � C � A∗ is the cumulative generating series of the statistic
τ − 2δ + ρ (recall that τ is the total run length, δ is the sum of periods and ρ is the number
of runs). Thus, Proposition 3 directly yields:

P (z2)
(1− `z)2 = Lτ (z)− 2Lδ(z) + Lρ(z)⇒ Lτ (z) = P (z2)

(1− `z)2 + 2Lδ(z)− Lρ(z).

Theorem 2 applies and we obtain that

En[τ ] = 1
`n

[zn]Lτ (z) ∼
(

2(`− 1)
`3 P ′

(
1
`2

)
+ 1
`
P

(
1
`2

))
n, (5)

which is another formulation of Theorem 7. Indeed, since P (z) =
∑
k≥1 Pkz

k, we have

1
`
P

(
1
`2

)
= 1
`

∑
k≥1

Pk
`2k =

∑
k≥1

Pk
`2k+1 .

Moreover, P ′(z) =
∑
k≥1 kPkz

k−1, and thus

2(`− 1)
`3 P ′

(
1
`2

)
= 2(`− 1)

`3

∑
k≥1

kPk
`2k−2 =

∑
k≥1

Pk
2k(`− 1)
`2k+1 .

Summing the two terms yields the formula of Theorem 7.

5.3 The Expected Sum of Exponents
For any word v ∈ A∗, let γ(v) denote the sum of the exponents of the runs of v. In [13],
Kusano, Matsubara, Ishino and Shinohara proved the following result.
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I Theorem 9 ([13]). The expected sum of the exponents of runs for uniform random words
of length n satisfies asymptotically:

En[γ] ∼

∑
k≥1

µ(k)
(

2(`− 1)
`2k − `

+ 1
k`

log
(

`2k

`2k − `

)) n.

We follow the analysis of the previous section: A run r = (i, j, p) in a word v matches
the expression L = ∪w∈PA∗wwA∗ exactly |r| − 2p+ 1 times. Since we want to compute the
statistic γ, we have to divide the contribution of each run (i, j, p) by p.

Let C̃ = {ww 7→ 1
|w| : w ∈ P} and let D̃ = {aww 7→ 1

|w| : w ∈ P and w|w| 6= a}. Let
C̃(z) and D̃(z) denote their generating series. By Proposition 3, the generating series of
L̃ = A∗ � C̃ �A∗ is L̃(z) = C̃(z)

(1−`z)2 . Moreover, it satisfies:

L̃(z) =
∑
v∈A∗

∑
r∈runs(v)
r=(i,j,p)

|r| − 2p+ 1
p

z|v| = Lγ(z)− 2Lρ(z) +
∑
v∈A∗

∑
r∈runs(v)
r=(i,j,p)

z|v|

p
(6)

Let ξ(v) be the sum of 1
p for every (i, j, p) ∈ runs(v). Using exactly the same idea as in

Section 5.1, its cumulative series is Lξ(z) = C̃(z)
1−`z + D̃(z)

(1−`z)2 . Hence, Equation (6) rewrites

Lγ(z) = 2Lρ(z) + C̃(z)− D̃(z)
(1− `z)2 − C̃(z)

1− `z .

Since the radius of convergence of both C̃(z) and D̃(z) is 1/
√
`, the Simplified Transfer

Theorem applies. We obtain that the expected value of γ asymptotically satisfies

En[γ] ∼
(

2(`− 1)
`

P

(
1
`2

)
+ 1
`
Q

(
1
`2

))
n, (7)

where the function Q(z) =
∫ z

0 P (t)t−1dt naturally appears when simplifying C̃(`−1)−D̃(`−1).
One can check that Equation (7) is just another formulation of Theorem 9. Indeed, we

have

2`− 1
`

P

(
1
`2

)
=
∑
k≥1

µ(k) 2(`− 1)
`(`2k−1 − 1) =

∑
k≥1

µ(k)2(`− 1)
`2k − `

.

And since everything is normally convergent,(
1
`2

)
=
∫ 1/`2

0
P (t)t−1dt =

∫ 1/`2

0

∑
k≥1

µ(k)
t

` tk

1− ` tk dt =
∑
k≥1

µ(k)
∫ 1/`2

0

` tk−1

1− ` tk dt.

Observe that the derivative of t 7→ − log(1− ` tk) is t 7→ k` tk−1

1−` tk . Thus

Q

(
1
`2

)
=
∑
k≥1

µ(k)
k

log 1
1− `1−2k =

∑
k≥1

µ(k)
k

log `2k

`2k − `
.

This gives the announced result.

CPM 2016
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6 Generalization to Memoryless Sources

In this section, we show how our formalism can be used to generalize the results to memoryless
sources (see Section 2.1 for the definition). From now on, the alphabet is A = {a1, . . . , a`}
and we have a probability function p on A that charges at least two letters:3 p(ai) < 1 for
every i ∈ [`]. Let ~p be the vector ~p = (p(a1), . . . , p(a`)).

6.1 Multivariate Generating Series and Memoryless Sources
For v ∈ A∗ and i ∈ [`], let |v|i denote the number of occurrences of the letter ai in v. In our
settings, multivariate generating series are formal power series on the formal variables z, u1,
. . . , u`. When needed, we will use the vector ~u = (u1, . . . , u`) to simplify the notations. For
any positive integer k, let ~uk denote the vector (uk1 , . . . , uk` ), and let Nk(~u) = uk1 + . . .+ uk2 .

The multivariate generating series L(z, ~u) of a language L is defined by

L(z, ~u) :=
∑
v∈A∗

z|v|
∏̀
i=1

u
|v|i
i =

∑
n,k1,...,k`≥0

L(n, k1, . . . , k`)znuk1
1 · · ·u

k`

` ,

where L(n, k1, . . . , k`) is the number of words of length n of L with exactly ki occurrences of
ai, for every i ∈ [`].

Multivariate generating series are widely use in combinatorics and analytic combinatorics.
In particular, when the parameters controlled by the ui’s are additive, the symbolic method
can be extended, giving efficient techniques to build the series. We refer the interested reader
to [6, Ch. III] for more information on this topic. Interestingly, we can also extend our
framework to multivariate generating series, when the ui’s are associated with the number of
occurrences of the letters. First, the definition is extended to a weighted setM by weighting
each word: M(z, ~u) :=

∑
v∈A∗M(v) z|v|

∏`
i=1 u

|v|i
i . Proposition 3 is then directly generalized:

ifM and N are two weighted sets then the multivariate series ofM⊕N isM(z, ~u)+N(z, ~u),
the one ofM�N is M(z, ~u)N(z, ~u), and the one ofM? is 1

1−M(z,~u) .
The main reason to consider multivariate series is the following: if L(z, ~u) is the series

of a language L, then if we instantiate every formal variable ui with the value p(ai),
which we simply write L(z, ~p), then we obtain a univariate series such that [zn]L(z, ~p) is
exactly the probability that a word of length n belongs to L, for the memoryless model
of probability p. Similarly, if the generating series M(z) of the weighted set M is the
cumulative generating series of a statistic χ (for the uniform distribution), then En[χ] =
[zn]M(z, ~p) for the memoryless distribution of probability p. The proofs of these facts are
completely straightforward. However, together with the symbolic method, this provides a
useful framework to deal with statistics on random words for memoryless distributions.

As an example, let us consider our first introductory statistic, the number of occurrences
of the pattern v in a word. We use the weighted set description A∗ � {v 7→ 1} � A∗. The
multivariate series of A? is 1

1−z N1(~u) , since it is the weighted star of A, whose multivariate
series is A(z, ~u) = u1z + . . . + u`z = N1(~u) z. The multivariate series of {v 7→ 1} is
V (z, ~u) = z|v|u

|v|1
1 · · ·u|v|`` . Hence, the multivariate series of the number of occurrences of v is

V (z,~u)
(1−N1(~u)z)2 . For ~u = ~p, we have N1(~p) = 1, since p is a probability, and V (z, ~p) = Pp(v)z|v|,
by definition of a memoryless model. Hence, the multivariate series for ~u = ~p is equal to
Pp(v)

(1−z)2 . The Simplified Transfer Theorem yields that the expected number of occurrences of
v in a word of length n is asymptotically Pp(v)n, for this memoryless distribution.

3 Everything is trivial if p(ai) = 1 for some i, as the only word of An with positive probability is an
i .
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6.2 Expected Number of Runs for Memoryless Sources
We start as in Section 5.1, and use the weighted set (C �A∗)⊕ (A∗ �D �A∗) to count the
number of runs, with C = {ww 7→ 1 : w ∈ P} and D = {aww 7→ 1 : w ∈ P and w|w| 6= a}.
The associated multivariate series is therefore L(z, ~u) = C(z,~u)

1−N1(~u)z + D(z,~u)
(1−N1(~u)z)2 , where C(z, ~u)

and D(z, ~u) are the multivariate series of C and D.
At this point we have to compute the multivariate generalization P (z, ~u) of P (z), the

series of primitive words. We will also need to compute Pi(z, ~u), the multivariate series of
the primitive words that ends by ai. This is done using Equation (1), which readily extends
to multivariate series in our case, yielding

P (z, ~u) =
∑
k≥1

µ(k)zkNk(~u)
1− zkNk(~u) and Pi(z, ~u) =

∑
k≥1

µ(k)zk uki
1− zkNk(~u) .

Moreover, C(z, ~u) = P (z2, ~u2) and it is easy to compute from Pi(z, ~u) that

D(z, ~u) =
∑
i∈[`]

zviPi(z2, ~u2) =
∑
k≥1

µ(k)z2k+1
∑`
i=1 viu

2k
i

1−N2k(~u)z2k , with vi =
∑
j∈[`]
j 6=i

ui.

This formula looks complicated, but it simplifies when evaluating it at z = 1, the dominant
singularity, and at ~u = ~p. In particular, if ~u = ~p, then vi = 1 − p(ai) and

∑`
i=1 viu

k
i =

Nk(~p) − Nk+1(~p). Hence, applying the Simplified Transfer Theorem to the expression of
L(z, ~p) yields the following result.
I Theorem 10. For the memoryless distribution of probability p, the expected number of
runs in a random word of length n satisfies asymptotically

En[ρ] ∼ D(1, ~p)n =

∑
k≥1

µ(k)N2k(~p)−N2k+1(~p)
1−N2k(~p)

n.

7 Conclusions

As illustrated throughout this article, the framework we propose is quite useful to study
some statistics on random words. We choose to focus on presenting the technique itself in
this extended abstract, to try to convince the reader that it is a precious tool to estimate the
expectation of various parameters on words.

Due to the lack of space, we only generalized the result on the expected number of runs
to memoryless distributions, but the other theorems of Section 5 can also be extended in
a similar way. Some other kinds of generalizations can also be obtained. For instance, the
expected number of cubic-runs (runs of exponent at least 3) is asymptotically equivalent to
`−1
` P (`−3)n, which can be obtained as in Section 5.1. More generally, all results can readily

be generalized to k-runs. Other known statistics can be studied using this method: as a last
example, the expected number of squares χ in a word, i.e. the number of factors of the form
vv for nonempty v was studied in [3]. In our framework, this corresponds to the weighted set
⊕v∈A+A

∗ � {vv 7→ 1} �A∗, thus Lχ(z) = `z2

(1−`z)2(1−`z2) and En[χ] ∼ n
`−1 .

A natural extension of this work would be to provide similar tools to deal with higher
moments, in particular with the variance. However, what we did in this article is related to
the linearity of the expectation, and the variance is not linear. To compute higher moments,
we have to handle dependencies between runs in a word, which is much more complicated. It
would also be interesting to revisit some other probabilistic studies of the literature, such
as [9, 2, 10], to see if they can be included in the framework of sets of weighted words.

CPM 2016



9:12 Estimating Statistics on Words Using Ambiguous Descriptions

References
1 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and

Kazuya Tsuruta. The "Runs" Theorem. CoRR, abs/1406.0263, 2014.
2 Manolis Christodoulakis, Michalis Christou, Maxime Crochemore, and Costas S. Iliopoulos.

Abelian borders in binary words. Discrete Applied Mathematics, 171:141–146, 2014.
3 Manolis Christodoulakis, Michalis Christou, Maxime Crochemore, and Costas S. Iliopoulos.

On the average number of regularities in a word. Theoretical Computer Science, 525:3–9,
2014.

4 Maxime Crochemore and Lucian Ilie. Maximal repetitions in strings. Journal of Computer
and Systems Sciences, 74(5):796–807, 2008.

5 Maxime Crochemore, Lucian Ilie, and Liviu Tinta. The "runs" conjecture. Theoretical
Computer Science, 412(27):2931–2941, 2011.

6 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2008.

7 Philippe Flajolet, Wojciech Szpankowski, and Brigitte Vallée. Hidden word statistics. Jour-
nal of the ACM, 53(1):147–183, 2006.

8 Frantisek Franek and Qian Yang. An asymptotic lower bound for the maximal number of
runs in a string. Intern. Journal of Foundations Computer Science, 19(1):195–203, 2008.

9 Kimmo Fredriksson and Szymon Grabowski. Average-optimal string matching. Journal of
Discrete Algorithms, 7(4):579–594, 2009.

10 Pawel Gawrychowski, Gregory Kucherov, Benjamin Sach, and Tatiana A. Starikovskaya.
Computing the longest unbordered substring. In Costas S. Iliopoulos, Simon J. Puglisi, and
Emine Yilmaz, editors, String Processing and Information Retrieval – 22nd International
Symposium, SPIRE 2015, London, UK, September 1-4, 2015, Proceedings, volume 9309 of
Lecture Notes in Computer Science, pages 246–257. Springer, 2015.

11 Amy Glen and Jamie Simpson. The total run length of a word. Theoretical Computer
Science, 501:41–48, 2013.

12 Roman Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in lin-
ear time. In Proceedings of the 1999 Symposium on Foundations of Computer Science
(FOCS’99), New York (USA), pages 596–604, New-York, October 17-19 1999. IEEE Com-
puter Society.

13 Kazuhiko Kusano, Wataru Matsubara, Akira Ishino, and Ayumi Shinohara. Average value
of sum of exponents of runs in a string. Intern. Journal of Foundations of Computer Science,
20(06):1135–1146, 2009.

14 Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai, and Ayumi Shinohara.
New lower bounds for the maximum number of runs in a string. In Jan Holub and Jan
Zdárek, editors, Proceedings of the Prague Stringology Conference 2008, Prague, Czech
Republic, September 1-3, 2008, pages 140–145, 2008.

15 Simon J. Puglisi and Jamie Simpson. The expected number of runs in a word. Australasian
Journal of Combinatorics, 42:45–54, 2008.

16 Simon J. Puglisi, Jamie Simpson, and William F. Smyth. How many runs can a string
contain? Theoretical Computer Science, 401(1-3):165–171, 2008.

17 Wojciech Rytter. The number of runs in a string. Information and Computation,
205(9):1459–1469, 2007.

18 Jamie Simpson. Modified Padovan words and the maximum number of runs in a word.
Australasian Journal of Combinatorics, 46:129–145, 2010.


	Introduction
	Preliminaries
	Words and Probabilities on Words
	Elements of Analytic Combinatorics

	Three Introductory Examples
	Combinatorics of Sets of Weighted Words
	Application to Run Statistics
	The Expected Number of Runs
	The Expected Total Run Length
	The Expected Sum of Exponents

	Generalization to Memoryless Sources
	Multivariate Generating Series and Memoryless Sources
	Expected Number of Runs for Memoryless Sources

	Conclusions

