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Reliability-Based Design Optimization (RBDO) in electromagnetic field problems requires the calculation of probability of failure 

leading to a huge computational cost in the case of expensive models. Three different RBDO approaches using kriging surrogate model 

are proposed to overcome this difficulty by introducing an approximation of the objective function and constraints. These methods use 

different infill sampling criteria (ISC) to add samples in the process of optimization or/and in the reliability analysis. Several enrichment 

criteria and strategies are compared in terms of number of evaluations and accuracy of the solution. 

 
Index Terms—Infill sampling criteria, kriging model, reliability analysis, reliability-based design optimization.  

 

I. INTRODUCTION 

ELIABILITY-BASED DESIGN OPTIMIZATION (RBDO) 

approaches can be divided into Double-Loop (DLM), 

Single-Loop (SLM) and Sequential Decoupled Methods 

(SDM). They have emerged in the past few decades and become 

more and more popular in electromagnetics owing to their 

ability to account for uncertain parameters. However, for 

expensive black-box models, the computational burden can 

become unbearable. 

To overcome this issue, iterative kriging surrogate models 

have been proposed to reduce the number of evaluations [1]-

[3]. Infill Sampling Criterion (ISC) was used with the aim of 

improving the quality of the surrogate model, and searching for 

the solution of the optimization problem. However, the meta-

model is established before starting RBDO and no enrichment 

is made during neither optimization nor reliability analysis. 

 With the purpose of enhancing the efficiency, different 

strategies including the choice of the ISC and the positioning of 

sample enrichments in the optimization process are investigated 

in this paper for each aforementioned type of RBDO 

approaches, so that the reliabilities are also analyzed by meta-

models. A mathematical example is used to compare with 

classic RBDO, i.e. without kriging model, and highlight the 

most effective strategy. Then, RBDO of a transformer modelled 

by a time consuming model based on the Finite Element method 

is performed with the most effective strategy. 

II. INFILL SAMPLING CRITERIA 

Iterative surrogate-based optimization methods start with a 

small set of initial sampling points to create a preliminary meta-

model. Then, the infill sampling criteria are considered as new 

objective functions to add points into the sample set and update 

the meta-model until the predicted error is less than a chosen 

tolerance. A great advantage of this approach is that it enhances 

the accuracy of meta-model and search the probabilistic 

optimum simultaneously with a small amount of samples. 

Expected Improvement (EI) criterion [4] is widely used for 

surrogate-based optimizations without constraints. 

 𝐸𝐼𝑓 = {
(𝑓𝑚𝑖𝑛 − 𝑓)𝛷(𝑧) + 𝑠̂𝑓𝜙(𝑧) if 𝑠̂𝑓 > 0

0 if 𝑠̂𝑓 = 0
 (1) 

where 𝑓𝑚𝑖𝑛   is the best current sampled objective function 

value,  𝑓  and 𝑠̂𝑓  are the predicted value and the mean square 

error (MSE), 𝜙(∙)  and 𝛷(∙)  denote the probability density 

function and the cumulative distribution function of the 

standard normal distribution respectively, and 𝑧 =

(𝑓𝑚𝑖𝑛 − 𝑓) 𝑠̂𝑓⁄ . 

However, as EI is multimodal, more attention should be paid 

on the infill criterion to be sure to find the global solution. The 

Weighted EI (WEI) criterion [5] seems to be more suitable as it 

adds weights into EI expression to balance exploration (right 

part) and intensification (left part). 

W𝐸𝐼𝑓 = {
𝜔(𝑓𝑚𝑖𝑛 − 𝑓)𝛷(𝑧) + (1 − 𝜔)𝑠̂𝑓𝜙(𝑧) if 𝑠̂𝑓 > 0

0 if 𝑠̂𝑓 = 0
 (2) 

Choosing small weight 𝜔 prevents WEI from converging to 

a local minimum if the initial sampling is inside the security 

domain. This condition is quite difficult to satisfy for many 

devices, as their security domains may be small and sometimes 

discontinuous. To avoid this issue, a Modified WEI (MWEI) 

combined with the surrogate objective function is proposed: 

 MW𝐸𝐼𝑓 = W𝐸𝐼𝑓 − 𝜔𝑓 (3) 

Investigations on the same example as in [5] show that a 

weight equal to 0.1 provide to a global optimum with less 

iterations. 

For constrained problems, an extended method consists in 

multiplying the value of EI by the probability of feasibility (PF) 

[6]. However, PF may prevent the sampling on the constraint 

boundary where the deterministic optimum may lie. Another 

constraint handling method is the Expected Violation (EV) 

method [7] but the number of candidate points to evaluate can 

be very large. An alternative method is to use the predicted 

value of the constraint functions 𝑔̂ directly as constraints in the 

infill sub-problem [8]. 
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III. INFILL STRATEGIES FOR RBDO METHODS 

RBDO is a combination of deterministic constrained 

optimizations and reliability analysis. For the first one, the 

design variables 𝑑  are the mean value of random variables 𝑋 

and the standard deviations 𝜎  are constant. For reliability 

analysis, 𝑑  and 𝜎  are constants and the design variable 𝑥  is a 

realization of 𝑋. 𝛽𝑡 is the given target reliability index. 

A. Double-Loop Method 

DLM like Performance Measure Approach (PMA) [9] has a 

nested structure: The outer loop seeks for the optimum and the 

inner loop searches the Most Performance Target Point (MPTP) 

that maximize the constraint subject to a given reliability index. 

There are two places where ISC can be introduced to improve 

the accuracy of kriging model: Outer loop and inner loop. For 

the inner loop, EI of 𝑔  is used to find MPTP by solving the 

optimization problem in Eq. (4)-(5) as the constraint on the 

reliability index is an explicit function of the design variables: 

 
𝑥∗ = argmax

𝑥
𝐸𝐼𝑔(𝑥)

𝑠. 𝑡.  ‖(𝑥 − 𝑑) 𝜎⁄ ‖ = 𝛽𝑡

 (4) 

𝐸𝐼𝑔 = {
(𝑔̂ − 𝑔𝑚𝑎𝑥)𝛷(𝑧𝑔) + 𝑠̂𝑔𝜙(𝑧𝑔) if 𝑠̂𝑔 > 0

0 if 𝑠̂𝑔 = 0
 (5) 

where 𝑧𝑔 = (𝑔̂ − 𝑔𝑚𝑎𝑥) 𝑠̂𝑔⁄  , 𝑠̂𝑔  is the MSE of the constraint, 

and  𝑔𝑚𝑎𝑥  is the maximum sampled constraint value. 

For outer loop, the criterion MWEI is preferred to avoid local 

solutions and the implicit inequality constraints are computed 

by the inner loop. However, as the two loops are nested, the 

enrichment in inner loop may bring out thousands of model 

evaluations. To test it, two strategies are proposed: the first one 

(PMA1) adds new samples only inside the outer loop, whereas 

the second (PMA2) enriches inside both loops. 

B. Single-Loop Method 

For SLM like Single Loop Approach (SLA) [10], the main 

point is that the inner loop optimization is replaced by an 

approximation based on a first order Taylor expansion to avoid 

the numerous evaluations required to find the MPTP. 

It is important to note that due to its approximation, the 

method itself has already loose some precision. Therefore, it is 

expected that with a surrogate model, the two approximation 

errors will be added and the accuracy will be further reduced. 

C. Sequential Decoupled Method 

SDM like Sequential Optimization and Reliability 

Assessment (SORA) [11] are based on a series of sequential 

deterministic optimizations and reliability assessments. The 

main point is to shift the boundaries of constraints inside the 

feasible domain based on the reliability information obtained in 

the former iteration. The first optimization aims at searching the 

global deterministic optimum. Reliability assessment is then 

conducted to locate the MPTP corresponding to the target 

reliability index. Finally, new optimizations are carried out by 

taking into account the shift 𝑡 computed with MPTP. 

Three strategies are proposed. In the first one (SORA1), the 

reliability analysis is the same as in the inner loop of PMA and 

enrichment is made with EI criterion. For the deterministic 

optimizations, the constraints are computed with the meta-

model 𝑔̂(𝑑 − 𝑡) and the MWEI is preferred in order to find the 

global solution. 

The second strategy (SORA2) differs from the first one by 

the fact that enrichment of the kriging models with MWEI 

criterion is made at first iteration only. For all other iterations, 

the deterministic optimization is made with the meta-models 𝑓 

and 𝑔̂. 

For the third strategy (SORA3), if the deterministic optimum 

found in 𝑘-th cycle 𝑑𝑘 is close to any optimum of other 𝑘 − 1 

cycles, as the former reliability assessments have already added 

points in this region, the accuracy is considered to meet the 

requirement so there is no need to add samples any more. The 

proximity criterion defined in (6) is checked before entering 

reliability analysis: 

 ‖(𝑑𝑘 − 𝑑𝑖)/𝜎‖ < 𝛽𝑡 ,   𝑖 = 1, … , 𝑘 − 1 (6) 

where 𝑑𝑖 is the deterministic optimum found by the 𝑖-th cycle. 

If (6) is satisfied, the meta-model of constraints is used 

directly and only MPTP are evaluated. For the deterministic 

optimizations, it takes the same strategy as SORA2. The 

flowchart of SORA3 is shown in Fig. 1 where 𝑥𝑘 is the MPTP 

of 𝑘-th cycle. 

IV. COMPARISON OF STRATEGIES 

To assess the efficiency of kriging-based RBDO methods, 

the mathematical example in [12] with two variables and three 

constraints is analyzed. Noting that the random variables are 

  
Fig. 1. The process of SORA3 strategy. 
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Gaussian and their standard deviations are all equal to 0.3. 

Lower and upper bounds are 0 and 10 respectively for both 

variables. The target reliability index 𝛽𝑡 is chosen equal to 2, so 

that the target probability of failure 𝑃𝑡 = 𝛷(−𝛽𝑡) = 2.28%. 

 
TABLE 1 

RESULTS OF MATHEMATICAL EXAMPLE USING DIFFERENT STRATEGIES 

Strategy 
Number of 

evaluations 
Optimal solution 

Optimal 

value 

Maximal 

𝑃𝑓 (%) 

SLA (exact model) 165 [2.2512; 1.9677] -1.9953 2.32 

PMA/SORA  
(exact model) 

3183/531 [2.2513; 1.9691] -1.9945 2.27 

SLA 26 [2.2466; 1.9617] -1.9996 2.59 
PMA1 29 [2.2494; 1.9649] -1.9972 2.44 

PMA2 1804 [2.2513; 1.9691] -1.9945 2.27 

SORA1/2/3 142/97/45 [2.2513; 1.9691] -1.9945 2.27 

 

The results are given in Table 1 with an initial sampling of 20 

points. The probability of failure 𝑃𝑓   is calculated by Monte-

Carlo Simulation (MCS) with 106  samples. For comparison 

purpose, results given by classic RBDO methods without 

kriging are also presented. 

All the iterative kriging-based RBDO methods lead to a 

reduced number of evaluations. SLA with kriging has the 

minimum number of evaluations but is not accurate enough as 

the maximum probability of failure is much greater than 𝑃𝑡 due 

to the approximation used to simplify the reliability analysis. As 

expected, PMA with infill during inner loops requires thousands 

of samples to evaluate. The other PMA strategy is faster but the 

accuracy is not sufficient. Kriging-based SORA strategies lead 

to the best result and the third one SORA3 is the most efficient. 

Fig. 2 shows two iterations of SORA3. 

As SORA3 seems to be the most efficient meta-model 

strategy on this mathematical example, it is tested on the RBDO 

of a transformer with FEM. 

V. ELECTROMAGNETIC DEVICE 

The electromagnetic device is a single-phase safety isolating 

transformer with grain-oriented E-I laminations designed for 

installation in electric cabinet [13]. The primary and secondary 

windings are wound around the frame surrounding the central 

core (Fig. 3, left). 

A. Finite Element Models 

Thermal and magnetic phenomena are modeled by using 3D 

FEA on the eighth of transformer due to symmetries. There are 

about 43,000 nodes and 290,000 edges in the model. The right 

part of Fig. 3 shows the mesh in the magnetic circuit, the 

insulating, the air gap, the frame and the opposing direction of 

currents in the primary and secondary windings that create flux 

in the gap between the coils (leakage flux). 

For the electromagnetic modeling, all magnetic and electric 

quantities are assumed sinusoidal. Full-load and no-load 

simulations are used to compute all the characteristics. The iron 

losses are computed with the Steinmetz formula and the leakage 

inductances are calculated with the magnetic co-energy. The 

core magnetic nonlinearity is taken into account. 

In the thermal modeling, some assumptions are considered: 

the insulator between the core and the coils is in perfect contact 

with both parts; there is no thermal contact between the exterior 

coil and the magnetic circuit; there is no thermal exchange with 

the air trapped between the coils and the iron; there is no 

convection on the upper and lower sides of the coil; there is no 

temperature gradient in the copper and the iron, and all surfaces 

have the same convection coefficient. 

A magneto-thermal weak coupling is considered and the 

computational time is equal to10 minutes on a single core of an 

Intel Xeon CPU E5-2690 at 2.60 GHz. The copper and iron 

losses are computed with the magnetic AC solver and 

introduced as heat sources in the thermal static solver. The 

copper temperature is used to compute the coils resistors 

introduced in the magnetic solver and this loop continues until 

change in temperatures is less than 0.1 °C. Both solvers use the 

same mesh and are included in Opera3D software. 

B. Analytical Model 

In order to motivate the need of a time expensive 3D FEA 

model, an Analytical Model (AM) is also used to compare 

RBDO results with both models. 

The physical phenomena within the transformer are electric, 

magnetic and thermal. The assumptions for AM are uniform 

distribution of the magnetic flux density in the iron core and no 

voltage drop due to the magnetizing current. The thermal 

assumptions are the same than the 3D FEA except that the 

temperatures are uniform within the coils and laminations. 

The weakest points of AM are the assumption of uniform 

temperature in copper and iron, and the approximation of the 

leakage inductance values. 

 
Fig. 3. Design variables of transformer and mesh. 

 

 
Fig. 2. Iterations of SORA3 for the mathematical example (green points are 
initial sampling, pink points are enrichment samples during deterministic 

optimizations, yellow ones are added by reliability analysis and blue ones are 

MPTPs at the current iteration, dashed lines and contours present the real 
constraints and objectives respectively while solid ones present the meta-

models). 
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C. Optimization Problem 

The optimization problem contains 7 design variables. There 

are three parameters (𝑎, 𝑏, 𝑐) for the shape of the lamination, 

one for the frame (𝑑), two for the section of conductors (𝑆1, 𝑆2), 

and one for the number of primary turn (𝑛1) (Fig. 3, left). 

There are 7 inequality constraints in this problem. The 

copper and iron temperatures  𝑇𝑐𝑜 , 𝑇𝑖𝑟  respectively should be 

less than 120℃ and 100℃. The efficiency 𝜂 should be greater 

than  80% . The magnetizing current 𝐼𝜇 𝐼1⁄  and drop voltage 

Δ𝑉2 𝑉2⁄  should be less than 10% . All these constraints are 

computed with FEM or AM model. Finally, the filling factors 

of both coils 𝑓1, 𝑓2 should be lower than 0.5. 

The goal is to minimize the mass 𝑚𝑡𝑜𝑡 of iron and copper 

materials. Thus, the optimization problem is expressed as: 

min 𝑚𝑡𝑜𝑡 (𝑎, 𝑏, 𝑐, 𝑑, 𝑆1, 𝑆2, 𝑛1) 𝑠. 𝑡. 𝜂≥0.8 (7) 

3≤𝑎≤30 (mm) 14≤b≤95 (mm) 𝑇𝑐𝑜≤120℃ Iμ I1⁄ ≤0.1  

6≤c≤40 (mm) 10≤d≤80 (mm) 𝑇𝑖𝑟≤100℃ ΔV2 V2⁄ ≤0.1  

200≤𝑛2≤1200  0.15≤S1,2≤19(mm2) 𝑓2≤0.5 𝑓2≤0.5  

For RBDO, all constraints are considered with a target 

probability of failure equal to 0.13%, which means a reliability 

index of 3. The standard deviation of each design variable is 

equal to 1% of its lowest bound. 

D. Results 

Table 2 shows optimal values, objective, probabilities of 

failure calculated by MCS with 106 samples computed with the 

meta-model, and the number of evaluations. 
 

TABLE 2 

RESULTS OF TRANSFORMER OPTIMIZATION WITH META-MODEL 

Values SORA3 + FEM SORA3 + AM FEM reeval. 

𝑎 12.902 13.153 

𝑏 46.042 51.039 

𝑐 18.183 16.532 

𝑑 42.318 43.098 

𝑛1 659.06 641.75 

𝑆1 0.3254 0.3216 

𝑆2 2.7552 2.8956 

𝑚𝑡𝑜𝑡 2.4028 2.3552 2.3520 

𝑃(𝑇𝑐𝑜 > 120℃) 0% 0% 0% 

𝑃(𝑇𝑖𝑟 > 100℃) 0.1506% 0.1567% 90.05% 

𝑃(∆𝑉2 𝑉2⁄ > 0.1) 0% 0% 0% 

𝑃(𝐼μ 𝐼1⁄ > 0.1) 0.1348% 0.1420% 0.3281% 

𝑃(𝑓1 > 0.5) 0.1327% 0.1236% 71.20% 

𝑃(𝑓2 > 0.5) 0.1282% 0.1307% 0.0014% 

𝑃(𝜂 < 0.8) 0% 0% 0% 

Evaluations 7265 7242 1 

 

For AM, SORA without meta-model is also tested and the 

number of evaluations is greater than 10,000, so it can be seen 

that SORA3 with kriging meta-model (SORA3 + AM, center 

column in Table 2) can find a solution almost satisfying all 

constraints with less evaluations. However when the same 

solution is reevaluated with FEM (FEM reeval., right column 

in Table 2), the highest probability of failure is 90%, so RBDO 

cannot be performed with AM only. The mass computed with 

FEM is slightly different from the one with AM because the 

voltage drop is considered to calculate the number of turns for 

the secondary coil. 

SORA3 with FEM (SORA3 + FEM, left column in Table 2) 

leads to a probability of failure close to its target value. The 

objective value is higher with FEM because AM underestimates 

constraints. The initial sampling includes 7,000 points 

evaluated in parallel on 24 cores in about 49 hours then the 265 

infill sampling points are evaluated sequentially in about 44 

hours. The first advantage of SORA3 with FEM is that a 

significant computing time can be saved as it reduces the 

number of evaluations. The second advantage is that kriging 

model gives accurate derivatives that enable the use of fast 

gradient-based algorithm. Contrarily, as FEM provides noisy 

derivatives it requires a noise-free costly algorithm when 

directly connected with it. 

VI. CONCLUSION 

According to the mathematical example, the third strategy of 

kriging-based SORA is the most efficient without losing too 

much accuracy among the 6 approaches proposed. 

RBDO of a single-phase safety isolating transformer is also 

performed here with FEM and the kriging-based SORA shows 

its applicability in dealing with this highly constrained problem 

by reducing the number of evaluations. Then, compared with 

analytical model of the same device, this approach with FEM 

could get a more accurate solution. 
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