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A network reduction method inducing scale-free degree distribution

Nicolas Martin?, Paolo Frasca?, Carlos Canudas-de-Wit†

Abstract— This paper deals with the problem of graph reduc-
tion towards a scale-free graph while preserving a consistency
with the initial graph. This problem is formulated as a mini-
mization problem and to this end we define a metric to measure
the scale-freeness of a graph and another metric to measure the
similarity between two graphs with different dimensions, based
on spectral centrality. We also want to ensure that if the initial
network is a flow network, the reduced network preserves this
property. We explore the optimization problem and, based on
the gained insights, we derive an algorithm allowing to find an
approximate solution. Finally, the effectiveness of the algorithm
is shown through a simulation on a Manhattan-like network.

I. INTRODUCTION

Many physical systems can be represented as networks and
physical phenomena as processes over networks. Hence the
use of these mathematical objects in modelling is becoming
more and more common as the computing power and the
interest for big data increases. Large networks are common
in several fields like transportation, power grid or web [1].
The analysis and the control design of these large networks
(with thousands of nodes) may be hard problems. From this
complexity follows the necessity of network reduction meth-
ods. One can distinguish two approaches to this problem. On
the first hand, the approach coming from mathematics and
computer science considers networks as static mathematical
objects. The reduction is often treated with topological ob-
jectives, for instance focusing on the detection of community
structures (group of densely connected nodes) [2]–[4]. In the
other hand, the approach coming from system analysis and
control theory considers the networks as representations of
dynamical systems. The work within this approach aims to
reduce networks by preserving a consistency in the dynamics
or the control properties [5]–[8]. In our approach, several
objectives are targeted. We propose a network reduction
method with dynamical objectives [9]: preservation of the
spectral centrality and preservation of the flow network
property1 and a topological objective: we want the reduced
graph to be scale-free (while the initial graph is arbitrary).

Scale-free networks are ubiquitous in a wide range of
fields like biological networks [10], social networks [11] and
the world-wide web [12] among others. They are character-
ized by the presence of some nodes (the so-called hubs) with
a large degree (number of connections) and a large number
of nodes with small degree. Their degree distribution is a
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1A network is said to be a flow network if for each node the amount of
weights going in the node equals the amount of weights going out the node

power law. A more precise definition is given further. These
networks have first been introduced by Price in 1965 [13]
but their study came into fashion in 1999 with the work of
Barabasi and its collaborators [14]. The scale-freeness of a
network implies some interesting properties [15]: robustness
to failure, ultra-small world property2, fitness for immuniza-
tion strategy [16], network navigability [17], and interesting
properties for control design [18]. In the context of our
project, we are interested in the controlability gain brought
by considering a scale-free network abstracting an arbitrary
network. We present here a method allowing to reveal this
underlying structure. The question of the advantage in term
of controllability will be part of a future work.
We consider directed, weighted, strongly connected3 graphs
and we formulate the problem of graph reduction toward a
scale-free graph while keeping a consistent behavior. The
essential contribution of this paper is the introduction of a
practical reduction method satisfying the following proper-
ties:
• The reduced graph has a degree distribution very close

to a fixed scale-free degree distribution.
• The spectral centralities of the reduced network and the

initial network are equal up to a projection.
• If the initial network is a flow network the output is

ensured to also be a flow network.

II. PROBLEM FORMULATION

This section is devoted to introduce the problem of net-
work reduction. First, we introduce some concepts about
graph theory and we present the problem as a minimization
problem. Then, we give specifications for each element of the
problem in view to study a particular case in the following
section.

A. Graph-theoretical preliminaries and notation

Consider a directed and weighted graph G, represented by
the triple (A,V,E) where A is the adjacency matrix: Ai, j 6= 0
indicates that there is an edge between node i and node j.
V is the set of vertices and E the set of edges. We may note
G = (·,V,E) if only the structure of G (and not the weights)
are relevant.
Consider the following notations:
• Γn is the set of directed, weighted and strongly con-

nected networks with n nodes (we note Γ if the number
of nodes is not known or relevant).

2The average path length is proportional to the double-logarithm of the
number of nodes.

3A graph G is said strongly connected, if for all pair (u,v) of nodes in
G there is a path from u to v.



• ΠG is the degree distribution of G. It is a vector defined
for all k between 1 and max{deg(v),v ∈V}} by:

ΠG(k) =
card({v ∈V,deg(v) = k})

card(V )

where deg(v) is the degree4 of the node v.
• G|I , where G = (A,V,E) and I ⊂V , is the subgraph of

G where only the vertices I and the edges connecting
two vertices in I are considered.

• |G| is the number of nodes in G.
We give now a definition of scale-free graphs.
Definition 1 (Scale-free graph): A graph is called scale-

free if its degree distribution is proportional to a power law:

ΠG(k) ∝ k−α , (1)

where α > 0 is called the scale-free coefficient5. We denote
α-scale-free distribution a scale-free distribution with a co-
efficient α . In practice we call scale-free graph any graph
which is relatively close to a power law.

(a) Example of a scale-free graph. The size of the node is proportional
to its degree. The main feature of scale-free graphs is the presence of
nodes with high degree, called hubs. For instance, the Barabasi-Albert
model allows to generate this type of graphs [14].

k

G
(k

)

Scale-free graph 
 asymptotic degree distribution

(b) Scale-free degree distribution is a power law.

Fig. 1. Scale-free graph

We choose to use partitioning as method of reduction
as it preserves the connections of the network: two parts
are connected if and only if there is a connection between
two nodes in these parts. This property is meaningful when
dealing with physical networks.

4As we consider directed graph the degree computed can be in-degree
or out-degree. In the following, as the computations and the results remain
the same for the two cases, the degree used is not precised.

5In most applications α ∈ [2;3]

We need, now, to introduce some definitions relative to
partitioning.

Definition 2 (Graph partition): A partition S =
{S1, ...,Sn} of a connected graph G = (·,V,E), is a
partition of the set of vertices V such that, for each part Si,
the subgraph G|Si is weakly connected: G|Si is composed by
an unique component.

Definition 3 (Graphs coming out of a partition): Let
G0 = (·,V0,E0) be a graph, let S be a partition of this
graph. We denote G1 = (·,V1,E1) the graph whose nodes
correspond to the parts of S and whose edges correspond to
the connections between the parts. Explicitly we have:

V1 = {1, .., |S|}
(i, j) ∈ E1 ⇔ ∃(v,w) ∈ Si×S j s.t.(v,w) ∈ E0

(2)

We will denote this relation by G0 �G1 or by G0
S
�G1 when

we want to emphasize the partition.
Note that, since this relation only determines the structure of
the reduced graph and not its weights, there is an infinity of
weighted graphs coming out of a given partition of a given
graph .

Definition 4 (Merging): A merging is a particular parti-
tion where only two nodes are combined together.
Let V = {1, ...,n} be the set of vertices, the merging of the
vertices v and w is denoted by Sv,w and:

Sv,w ={{1},{2}, . . . ,{v−1},{v+1}, . . .
. . . ,{w−1},{w+1}, . . .{n},{v,w}}

Thanks to these definitions we can now introduce the main
problem.

B. Graph reduction as an optimization problem
The general problem is to find a partition S of an initial

large network G0 ∈ Γ, such that the network G1 coming
out of the partition S of G0 has a behavior coherent with
the initial network and has a degree distribution close to a
scale-free distribution while preserving physical properties.
This problem can be formally stated as follows:

Given an initial graph G0 ∈ Γ∩Ψ, find a graph G̃, solution
of the following minimization problem.

min
G

JSFα
(G)+ Jsim(G,G0),

subject to G0 � G

G ∈Ψ

(3)

where:
• JSFα

is a scale-free cost function, indicating the
α−scale-freeness of the graph.

• Jsim is a similarity cost function giving an indication of
behavior consistency between the two graphs.

• Ψ is the set of graphs respecting the physical properties
imposed.

In what follows we give specifications to the general
problem (3) in order to study a particular instance of this
problem.



C. Scale-free cost function

We introduce a preliminary definition before giving the
definition of the cost function.

Definition 5 (Scale-free target distribution): The α-scale-
free target distribution of size n is a vector noted ΠSF

α,n and
defined as:

Π
SF
α,n =

1

∑
kmax
i=1 iα


1α

2α

...
kα

max

 (4)

where kmax is the largest degree for which the number of
nodes having this degree is higher than 1 in a α-scale-free
graph of size n:

kmax = argmax
k

{
n

kα

∑
kmax
i=1

≥ 1

}
(5)

This definition of kmax gives a reasonable value for the
largest degree in a scale-free graph.

Definition 6 (Scale-free cost function): The α−scale-free
cost function of a graph G is defined as:

JSFα
(G) =

∥∥∥ΠG−ΠSF
α,|G|

∥∥∥
2∥∥∥ΠSF

α,|G|

∥∥∥
2

(6)

Note that ΠG and ΠSF
α,|G| are not of the same size in the

case where kmax 6= max{deg(v),v ∈ V}}. In this case, zeros
are added at the end of the smallest vector so that the sizes
match.

D. Similarity cost function

The similarity cost function aims to define a notion of
consistency that we want to preserve between the initial
graph and the reduced graph. In our case we focus on a
measure of the spectral centrality.

1) Spectral centrality: With the aim to compare the
behavior of two graphs, we associate to every graph G =
(A,V,E) the following equation:{

x(t +1) = P>x(t)
x(0) = x0

(7)

where x(t)∈R|G| is the state of the system (the value in each
node) at time t and P is the adjacency matrix normalized by
row, i.e. each element is divided by the sum of its row:

Pi, j =
Ai, j

∑
k

Ai,k
, (8)

This matrix P will be called normalized adjacency matrix of
G. Equation (7) can be viewed as the evolution of a linear
system or as the evolution of a Markovian chain where P>

is the matrix of transition.
As we have specified that G is strongly connected, then the
associated Markov chain is irreducible and it always exists
a stationary distribution x? such that [19]:

x? = P>x? (9)

Vector x? is unique up to a multiplicative constant. We add
condition ‖x?‖1 = 1 to ensure the uniqueness. x? is the
spectral centrality of the graph.
We call Φ the operator associating a graph in Γ to its spectral
centrality:

Φ : Γn −→ [0,1]n

G 7−→ x?, s.t. x? = P>x? and ‖x?‖1 = 1

This vector gives a value at each node which is an indicator
of the influence of this node on the graph. For instance in a
random walk it would correspond to the percentage of time
spent on each node. This definition of the spectral centrality
is similar, for instance, to the PageRank definition.

2) Projection operator: To compare two spectral
centralities in different dimensions we associate to any
partition S an operator of projection σS defined as follows:

Definition 7 (Projection operator): Let x ∈ Rn and S a
partition of the set {1, ..,n}, we define the projection operator
σS as:

σS : Rn −→ R|S|

x 7−→ y : ∀i, yi = ∑
j∈Si

x j
(10)

The projection of the vector is then equal to the sum of the
components within each cluster.

3) Formulation: With the previous definitions we can give
the definition of the similarity cost function.

Definition 8 (Similarity cost function): Let G0 ∈ Γ, G1

and S such that G0
S
� G1. The similarity cost function is

the relative distance between the spectral centrality6 of G1
and the projection of the spectral centrality of G0.

Jsim(G1,G0) =
‖Φ(G1)−σS(Φ(G0))‖2

‖σS(Φ(G0))‖2
(11)

E. Physical property: flow network

In the problem we treat, we assume that the initial network
is a flow network [20] (also called transportation network)
and we aim to preserve this property through the reduction.
The preservation of this property has a strong physical
meaning as some networks as electrical networks, water
supply networks or generally every networks representing
transportation are flow network by their nature. For instance,
in electrical network this property is translated by the Kir-
choff’s circuit law. Thus, by preserving this property we
ensure that the reduction method does not violate an intrinsic
property of these networks. We give here a definition of the
set of graph having this property:

Ψ =

{
G = (A,V,E), ∀k, ∑

i
Aik = ∑

j
Ak j

}
Afterwards, we talk without distinction of flow network

or flow graph.

6Note that if G0 ∈ Γ and G0 � G1 then G1 ∈ Γ. It is then possible to
compute the spectral centrality of G1.



III. ANALYSIS OF THE OPTIMIZATION PROBLEM

In this section, we will see how the partition can be chosen
such that: i) the similarity cost function is null and ii) the
output graph remains a flow graph.
These results will allow us to design an algorithm giving an
approximation of the solution.

A. Cancelling similarity cost function

The similarity cost function translates the ability of the
reduced graph to have a spectral centrality consistent with
the spectral centrality of the initial graph. We see here that
with a certain condition we can ensure a perfect consistency
between the two graphs.

Theorem 1: Let G0 = (A0,V0,E0) ∈ Γn. For all
edges (v,w) ∈ E0 there is a graph G1 coming out of

the merging Sv,w of G0, G0
Sv,w
� G1, such that the similarity

cost function between G0 and G1 is null which is
Jsim(G1,G0) = 0.

In this case P1, the normalized adjacency matrix of G1,
has the following form:

P1 = FP0H>,

where F,H ∈ Rn−1×n are defined by:

Fi, j =


1 if i < n−1∧Si = { j}
βv if i = n−1∧ j = v
βw if i = n−1∧ j = w
0 else

(12)

Hi, j =

{
1 if j ∈ Si
0 else (13)

and βv =
x?0(v)

x?0(v)+x?0(w)
, βw =

x?0(w)
x?0(v)+x?0(w)

where x?0 is the spectral
centrality of G0.

The proof is not given here but it will be part of a future
work.

B. Preservation of the flow network property

We see here that if the initial graph G0 is a flow graph,
it is possible to preserve this property through the reduction
while keeping the result of the previous theorem true.

Theorem 2: Let G0 = (A0,V0,E0) ∈ Γn∩Ψ. For all edges
(v,w) ∈ E0 there is a graph G1 = (A1,E1,V1) coming out of
the merging Sv,w of G0 such that G1 is a flow graph and the
similarity cost function between G0 and G1 is null, which is:

∀ (v,w) ∈ E0, ∃ G1, G0
Sv,w
� G1 s.t.

Jsim(G1,G0) = 0 ∧ G1 ∈Ψ

(14)

In this case A1 has the following form:

A1 = κ Diag(l)FP0H>, (15)

where F , H are the merging matrices of Sv,w defined in (12)-
(13) (1), l is the left eigenvector of FP0H associated with
eigenvalue 1 and κ ∈ R∗ is any arbitrary scalar.

As in the last section, we do not exhibit the proof here.
We have seen in this section that for every flow graph G0

and for every merging Sv,w, it exists a graph G1 coming out
of the merging Sv,w of G0 such that the spectral centralities
of G0 and G1 are perfectly consistent and such that G1 is a
flow graph. Let’s note that the graph G1 is not unique as its
adjacency matrix is defined up to a multiplicative constant
κ . In the following, we choose κ such that the sum of all
weights in G1 is equal to the sum of all weights in G0 which
is:

κ =
|A0|0

|Diag(l)FP0H>|0
(16)

where | • |0 is defined as: |A|0 = ∑i, j Ai, j for all matrices A.
By this way, the reduced graph G1 is uniquely defined and
we denote it by G1 = G(v,w)

0

IV. ALGORITHM

In this section we will see how the results of the previous
section can be used to design an effective algorithm to
provide an approximate solution of the problem (3).

A. Algorithm description and comments

The results of section III suggest that we can merge edges
recursively to obtain a reduced graph perfectly consistent
with the first one and remaining a flow graph. Thus we
propose an algorithm of reduction step-by-step, and at each
step we look for the edge whose merging minimizes the
scale-free cost function JSFα

. Actually, as the number of
linked node can be tremendous, we only look for the best
edge within a random subset of edges of size nrand and we
discuss then the influence of this random selection.
A partial description of the algorithm is presented in Algo-
rithm 1: Therein Ek is the set of edges of the graph at step
k. The inputs are the initial graph Ginit ∈ Γn∩Ψ, a scale-free
coefficient α and an integer nrand .
First, we initialize the first graph G0 (line 1) and a random
subset Ē of nrand edges is drawn (line 4). For each edge
e, the graph G

e
�
k is build according to (15) and (16) and its

scale-freeness nSF(e) is computed (line 6). Among the nrand
edges the best one is the one whose merging minimizes the
scale-free cost function (line 8). This edge is merged to build
the new graph (line 9).

Algorithm 1 Merge to scale-free
1: G0 = Ginit ;
2: k = 0;
3: while ¬stop do
4: Ē = rand(Ek,nrand);
5: for e ∈ Ē do
6: nSF(e) = JSFα

(G
e
�
k )

7: end for
8: ebest = argmine nSF(e)

9: Gk+1 = G
ebest�
k

10: k++;
11: end while

This algorithm does not provide the global minimum of (3)
but an approximation of it. The stopping criterion stop is not



discussed here, it may naturally be defined as the step where
it is no more possible to find a merging increasing the scale-
freeness of the graph or as a fixed number of iterations. The
influence of the random process and the size of the subset
of edges is discussed in the last section.

B. Algorithm complexity

Proposition 1: Consider the execution of Algorithm 1 on
an initial graph Ginit with Nv nodes, and with nrand the size
of the random subset of edges Ē. Thus, the complexity in
term of numbers of operations is O(nrandN3

v ).

This complexity is polynomial with respect to the size
of the initial graph (its number of nodes). Since the naive
way to find a partition of a graph by testing all possibilities
has an exponential complexity, a polynomial algorithm is
significantly faster.
The growth of the computation time is linear in function of
nrand . We will investigate in the next section, the influence
of this parameter on the performance of the algorithm.

V. SIMULATIONS

In this section, an applications is presented: the algorithm
is applied on an academic case : a Manhattan-like network
which is introduced later. Moreover a study of the influence
of the random process of the algorithm, and in particular of
the size of the random subset, is presented.

A. Manhattan-like network

This network mimicking the urban network of certain city
(in particular Manhattan), consists in a basic grid. In our
case, we add some irregularities by removing nodes, adding
diagonal shortcuts and adding one-way road. An example of
such a network is in Fig.2(a). We randomly add weights on
the initial graph while ensuring it to be a flow graph. It is
interesting to run our algorithm over this type of network
because: i) it is a good representation of some physical
networks as urban traffic networks [21], ii) it is far from a
scale-free network so it can show the ability of the algorithm
to get close to a scale-free distribution and iii) it is easy to
build this type of network even with arbitrarily large size
making the results presented easily reproducible. The tuning
of the different parameters of the algorithm is presented in
Table V-A.

Grid size |G| αSF nrand Degree
65×65 3824 −2 10 in

The output of the simulation is presented in Figure 2. It
appears clearly that the algorithm drives the graph very close
to the scale-free distribution targeted. The run time for is
simulation is about 180 seconds.

B. Influence of the size of the set of edges

In the previous simulation, nrand , the size of the random
subset of edges was equal to 10 and it appears that it is
sufficient to obtain a scale-free graph. However we can
wonder, how fast the algorithm drives the graph towards

a scale-free distribution in function of this parameter. The
evolution of the value of the scale-free cost function at
each step of the algorithm for different values of nrand is
represented in Fig.3.

Let first remark that in every cases the error decreases
before going up, even in the case where nrand = 1 which
correspond to the case where the edge to merge is selected
randomly. It shows that a graph (at least this type of graph)
naturally tends towards a scale-free structure when it is
recursively merged. The figure shows also that there is no
significant advantage to have a large value of nrand . Thus, at
each step of the algorithm we may select only a small random
subset of edges (≈ 15) without reducing the performance of
the algorithm in view to reduce the computation time.

VI. CONCLUSION

In this paper, we have formulated a problem of graph
reduction toward a scale-free distribution as an optimization
problem where we seek to optimize the scale-freeness of the
graph and the similarity (in term of spectral centrality) while
ensuring it to remain a flow graph. It appears that in the case
of a particular partition, a merging, it is possible to have a
perfect consistency with the initial graph and to preserve the
physical property. Thus, we design an algorithm which takes
advantage of these results and allows to find a graph with an
arbitrary scale-free distribution, and with these two properties
in a reasonable computation time. Finally a simulation on a
large graph is presented, and shows the efficiency of the
algorithm.
It is useful to remark that the reduction algorithm is applied
to drive an arbitrary initial graph towards a scale-free struc-
ture, but it could be used to drive it towards any desired
structure while preserving the similarity and the flow graph
property.
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