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Abstract

We revisit the estimation of the extreme value index for randomly censored data from a heavy tailed dis-
tribution. We introduce a new class of estimators which encompasses earlier proposals given in Worms and
Worms (2014) and Beirlant et al. (2018), which were shown to have good bias properties compared with
the pseudo maximum likelihood estimator proposed in Beirlant et al. (2007) and Einmahl et al. (2008).
However the asymptotic normality of the type of estimators first proposed in Worms and Worms (2014) was
still lacking. We derive an asymptotic representation and the asymptotic normality of the larger class of es-
timators and consider their finite sample behaviour. Special attention is paid to the case of heavy censoring,
i.e. where the amount of censoring in the tail is at least 50%. We obtain the asymptotic normality with a
classical

?
k rate where k denotes the number of top data used in the estimation, depending on the degree

of censoring.
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1. Introduction

Starting from Beirlant et al. (2007), the estimation of the extreme value index in a censorship framework
is of growing interest. Suppose we observe a sample of n independent couples pZi, δiq1ďiďn where

Zi “ minpXi, Ciq and δi “ IXiďCi .

The i.i.d. samples pXiqiďn and pCiqiďn, of respective continuous distribution functions F and G, are samples
from the variable of interest X and of the censoring variable C, measured on n individual items (insurance
claims, hospitalized patients, ...). The variablesX and C are supposed to be independent and, for convenience
only, we will suppose in this work that they are non-negative. We will denote by Z1,n ď . . . ď Zi,n ď
. . . ď Zn,n the order statistics associated to the observed sample, and by pδ1,n, . . . , δn,nq the corresponding
indicators of non-censorship.

Einmahl et al. (2008) presented a general method for adapting estimators of the extreme value index in
this censorship framework. Worms and Worms (2014) proposed a more survival analysis-oriented approach
restricted to the heavy tail case, while Diop et al. (2014) extended the framework to data with covariate
information. Beirlant et al. (2016) and Beirlant et al. (2018) proposed bias-reduced versions of two existing
estimators. See also Brahimi et al. (2015), Brahimi et al. (2016) and Brahimi et al. (2018) for other papers
on the subject.

In this paper, we propose a new class of estimators that encompasses one of the estimators proposed
in Worms and Worms (2014) and propose a novel approach to prove the asymptotic normality of these
estimators which was unknown up to now for the case β “ 0. We consider here that the distributions F and
G are heavy-tailed, with positive and respective extreme value indices (EVI) γ1 and γ2, i.e.

F̄ pxq “ 1´ F pxq “ x´1{γ1 lF pxq and Ḡpyq “ 1´Gpyq “ y´1{γ2 lGpyq,

where lF and lG are slowly varying at infinity. Our target is the EVI γ1, which we try to recover from our
randomly censored observations.

Denoting the distribution function of Z with H, by independence of X and C we readily obtain H̄pzq “
1 ´ Hpzq “ z´1{γ lHpzq, where lH “ lF lG and the EVI γ of Z is related to those of X and C via the
important relation 1{γ “ 1{γ1 ` 1{γ2. Further in this paper, we will denote by p the crucial quantity
p “ γ{γ1 “ γ2{pγ1 ` γ2q Ps0, 1r, which has to be interpreted as the asymptotic proportion of non-censored
observations in the tail.

We assume in this work that the slowly varying functions lF and lG satisfy the second order condition
first proposed by Hall and Welsh (1985). This yields the so called ”Hall-type” model, i.e. as x, y Ñ `8,

F̄ pxq “ C1x
´1{γ1

`

1`D1x
´β1p1` op1qq

˘

(1)

Ḡpyq “ C2y
´1{γ2

`

1`D2y
´β2p1` op1qq

˘

(2)

where β1, β2, C1,C2 are positive constants and D1, D2 are real constants. Then, setting

C “ C1C2, β˚ “ minpβ1, β2q, and D˚ “

$

&

%

D1 if β1 ă β2,
D2 if β2 ă β1,
D1 `D2 if β1 “ β2,

we have, as z Ñ8,
H̄pzq “ Cz´1{γ

`

1`D˚z
´β˚p1` op1qq

˘

. (3)

Correspondingly, with H´puq “ inftz : Hpzq ě uu (0 ă u ă 1) the quantile function corresponding to H, we
consider UHpxq “ H´p1´ 1{xq, the right-tail function of H, for which as xÑ8,

UHpxq “ Cγxγ
`

1` γD˚C
´β˚γx´β˚γp1` op1qq

˘

. (4)

Let us now explain how we build our new family of estimators of γ1. For some real number β, consider
the Box-Cox transform k´βpuq “

şu

1
t´β´1dt for u ą 1, with the case β “ 0 leading to k0puq “ logpuq. Based

on the relation

lim
tÑ8

E r k´βpX{tq |X ą t s “ lim
tÑ8

ż 8

1

sF putq
sF ptq

dk´βpuq “
γ1

1` βγ1
, (5)

2



and estimating sF by the Kaplan-Meier estimator sFKMn defined for t ă Zn,n by

sFKMn ptq “
ź

Zi,nďt

ˆ

n´ i

n´ i` 1

˙δi,n

, (6)

we introduce the following class of statistics

pTkpβq :“
k
ÿ

j“2

sFKMn pZn´j`1,nq

sFKMn pZn´k,nq

ˆ

k´β

ˆ

Zn´j`1,n

Zn´k,n

˙

´ k´β

ˆ

Zn´j,n
Zn´k,n

˙˙

(7)

where k “ kn denotes an integer sequence satisfying kn Ñ8 and kn “ opnq. With β “ 0 we thus obtain the
estimator

pγ
pW q
1,k :“ pTkp0q “

k
ÿ

j“2

sFKMn pZn´j`1,nq

sFKMn pZn´k,nq
log

ˆ

Zn´j`1,n

Zn´j,n

˙

(8)

of γ1 which was considered in Worms and Worms (2014) and Beirlant et al. (2018). In fact pγ
pW q
1,k turns

out to be very close to the estimator
řk
j“1

sFKMn pZ´n´j`1,nq

sFKMn pZn´k,nq
log

Zn´j`1,n

Zn´j,n
defined in equation (12) of Worms and

Worms (2014) based on ideas issued from the so-called Leurgans approach in survival regression analysis.
The difference concerns a different way to circumvent the use of sFKMn at Zn,n: whether using left-limits or

deleting sFKMn pZn,nq as in pγ
pW q
1,k .

Note that the statistics pTkpβq were used in Beirlant et al. (2018) to obtain a bias-reduced version of the

estimator pγ
pW q
1,k :

pγ
pBRq
1,k “ pγ

pW q
1,k ´

p1` β1pγ
pW q
1,k q

2p1` 2β1pγ
pW q
1,k q

pβ1pγ
pW q
1,k q

2

˜

pTkpβ1q ´
pγ
pW q
1,k

1` β1pγ
pW q
1,k

¸

, (9)

where β1 denotes the second order parameter of F in assumption (1).

Now, it is clear from (5) that we can construct the following estimator of γ1 when the tuning parameter
β is supposed to be larger than ´1{γ1:

pγ1,kpβq “
pTkpβq

1´ β pTkpβq
. (10)

We will compare these estimators with the pseudo maximum likelihood estimator which was first proposed

in the random censoring context by Beirlant et al. (2007) and Einmahl et al. (2008):

pγ
pHq
1,k “

1

ppn

1

k

k
ÿ

i“1

log
Zn´i`1,n

Zn´k,n
where ppn “

1

k

k
ÿ

i“1

δn´i`1,n. (11)

In Beirlant et al. (2018) a small sample simulation study was performed using all those available

estimators and it was found that pγ
pW q
1,k overall shows quite good bias and MSE performance. However, since

no results on the asymptotic normality of this estimator were available yet, these authors proposed the use
of a bootstrap algorithm to construct confidence intervals. In this paper we prove the asymptotic normality
of pγ1,kpβq in the case p ` βγ ą 1

2 . Hence this paper provides the first complete proof of the asymptotic

normality for pγ
pW q
1,k in case p ą 1

2 , issued from an explicit asymptotic development stated in Theorem 1 of

the next section. In the deterministic threshold case, this central limit result (for pγ
pW q
1,k ) had already been

obtained in Worms and Worms (2018), where a more general competing risks setting was considered, and
using a different approach from the present proof.

The restriction p ą 1
2 is rather restrictive for instance in insurance problems such as those discussed in

Beirlant et al. (2018) where heavy censoring appears. The introduction of the class of estimators pγ1,kpβq
helps to circumvent this problem when considering β ą 0.

Finally, in the next section, we will see that our results also lead to the statement of the asymptotic

normality of the bias-reduced estimator pγ
pBRq
1,k , which was not known so far.

Our paper is organized as follows: in Section 2, we state and discuss the asymptotic normality result
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for pγ1,kpβq and pγ
pBRq
1,k . Section 3 is devoted to the proof. Technical aspects of the proof are postponed to

the Appendix. In Section 4 we discuss the finite sample behavior of the different estimators pγ1,kpβq with

β ą ´1{γ1, and of pγ
pBRq
1,k .

2. Results

Our first and main result states the asymptotic behavior of the statistics pTkpβq defined in (7). This result

entails the asymptotic normality of the estimator pγ
pW q
1,k of γ1 by considering the particular case β “ 0. The

main condition is that the heaviness of the tail of the censoring variable C should be sufficiently high with
respect to the one of the variable X. More precisely, introducing the notation pβ “ p` γβ “ pp1` γ1βq, the
condition is be that pβ must be larger than 1{2 (i.e. γ2 ą γ1{p1` 2γ1βq).

Theorem 1. Let conditions p1q and p2q hold. We assume further that pβ ą
1
2 , and

?
k pk{nq

γβ˚ nÑ8
ÝÑ λ, (12)

and, if λ “ 0, that n “ OpkBn q for some large enough B ą 0. We then have, as nÑ8,

?
k

ˆ

pTkpβq ´
γ1

1` γ1β

˙

“ Gn ` λmβ ` oPp1q where Gn
d
“

γ

pβ

1
?
k

k
ÿ

i“2

u
pβ´1
i,k pppEi ´ 1q ´ pIUiďp ´ pqq

with pEiq and pUiq denoting independent iid samples with, respectively, standard exponential and standard
uniform distributions, and

mβ “

"

´γ2β1D1C
´γβ1p´1

β ppβ ` γβ1q
´1 if β1 ď β2,

0 if β1 ą β2.

Therefore, as nÑ8,

?
k

ˆ

pTkpβq ´
γ1

1` γ1β

˙

d
ÝÑ Npλmβ , σ

2
βq where σ2

β “
γ2

p2β

p

2pβ ´ 1
“ γ21

p

2p´ 1

p2

p2β

2p´ 1

2pβ ´ 1
.

Since Gn is a sum of independent random variables, it is then easy, using Lyapunov’s CLT and the
delta-method, to derive the following asymptotic normality result for the family of estimators pγ1,kpβq of γ1
defined by (10).

Corollary 1. Under the conditions of Theorem 1, as nÑ8,
?
kppγ1,kpβq ´ γ1q

d
ÝÑ Npλmγ1,β , σ

2
γ1,βq

where

σ2
γ1,β “

γ2

p2β

p

2pβ ´ 1
p1` βγ1q

4 “ γ21
p

2p´ 1
p1` βγ1q

2 2p´ 1

2pβ ´ 1

and

mγ1,β “

"

´γ2β1D1C
´γβ1p´1

β ppβ ` γβ1q
´1p1` βγ1q

2 if β1 ď β2,

0 if β1 ą β2.

Remark 1. Since pγ
pW q
1,k “ pTkp0q “ pγ1,kp0q, taking β “ 0 in Theorem 1 or in Corollary 1 entails the

asymptotic normality for pγ
pW q
1,k when p ą 1{2, i.e. when γ2 ą γ1. When β ą 0, the asymptotic normality

for pγ1,kpβq holds under the weaker assumption pβ ą 1{2, i.e. γ2 ą γ1{p1` 2γ1βq, and therefore allowing for
stronger censoring in the tail. On the other hand the restriction becomes worse for negative β.

When β1 ď β2 the absolute value of the asymptotic bias of pγ1,kpβq is increasing in β. For a bias comparison
for the case β1 ą β2 one needs third order assumptions. On the other hand the asymptotic variance of pγ1,kpβq
is decreasing in β as long as pβ ă 1 and is increasing as pβ ą 1. It is difficult to say anything in general

about the comparison of the asymptotic mean-squared error of pγ1,kpβq with respect to pγ
pW q
1,k . It is of course,

when β ą 0 and p gets close to the value 1{2, in favor of pγ1,kpβq, at least from a theoretical point of view.
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Remark 2. From Einmahl et al. (2008) it follows that the asymptotic variance of pγ
pHq
1,k is given by 1

k
γ2
1

p ,

which, for all 1{2 ă p ă 1 is lower than the asymptotic variance 1
k
pγ2

1

2p´1 of pγ
pW q
1,k .

On the other hand, in case β1 ď β2 it follows from Beirlant et al. (2016) that the absolute value of the

asymptotic bias of pγ
pHq
1,k equals pk{nqγβ˚ |mγ1,0|

1`γ1β1

1`γβ1
, which is larger than pk{nqγβ˚ |mγ1,0| stated in the

above theorem.

Remark 3. The asymptotic distribution of pγ
pW q
1,k in case p ď 1

2 , and in general of pγ1,kpβq in case pβ ď
1
2 ,

is not known. The authors conjecture that asymptotic normality still holds, however with a slower rate than
k´1{2, presumably k´p when p ă 1{2, but the method of proof outlined below could not be carried through in
that case.

Combining the asymptotic developments of pγ
pW q
1,k and pTkpβq for β “ β1, which are both weighted sums

of the same i.i.d. random variables ppEi ´ 1q ´ pIUiďp ´ pq, and relying on the two-dimensional Lyapunov’s
CLT and the delta-method, it is now possible to deduce the following asymptotic normality result for the

bias-reduced version of pγ
pW q
1,k introduced in Beirlant et al. (2018). The proof is omitted for brevity.

Corollary 2. Under the conditions of Theorem 1 and assuming that p ą 1{2, as nÑ8, we have
?
kppγ

pBRq
1,k ´ γ1q

d
ÝÑ Np0, σ2

pBRqq

where, with δ “ pβ1
´ p “ γβ1,

σ2
pBRq :“ γ21

p

2p´ 1

pp` δq2ppp` δq2 ` p1´ pq2 ` δ ` δ2q

δ2p2p´ 1` δqp2p´ 1` 2δq
.

Remark 4. While the asymptotic bias of pγ
pBRq
1,k is always 0, its asymptotic variance is in general larger than

those of the competing estimators.

3. Proof of Theorem 1

Let us introduce the following important notations with 1 ď i, j ď k:

ξj “ j log
Zn´j`1,n

Zn´j,n
and ui,k “

i

k ` 1
, (13)

as well as the ratios

yRF j “
sFKMn pZn´j`1,nq

sFKMn pZn´k,nq
and RFj “

sF pZn´j`1,nq

sF pZn´k,nq
. (14)

If we also define ξj,k,β “ ξj if β “ 0 and otherwise

ξj,k,β “ j

ˆ

k´β

ˆ

Zn´j`1,n

Zn´k,n

˙

´ k´β

ˆ

Zn´j,n
Zn´k,n

˙˙

“
j

β

˜

ˆ

Zn´j,n
Zn´k,n

˙´β

´

ˆ

Zn´j`1,n

Zn´k,n

˙´β
¸

then, from p7q, we have

pTkpβq :“
k
ÿ

j“2

sFKMn pZn´j`1,nq

sFKMn pZn´k,nq

ξj,k,β
j

where, using a Taylor expansion (of order 2) ,

ξj,k,β “
j

β

ˆ

exp
´β log

´

Zn´j,n
Zn´k,n

¯

´ exp
´β log

´

Zn´j`1,n
Zn´k,n

¯˙

“ ξj

ˆ

Zn´j`1,n

Zn´k,n

˙´β

` β
ξ2j
2j

˜

Z̃j,n
Zn´k,n

¸´β

, (15)

for some variables Z̃j,n satisfying Zn´j,n ď Z̃j,n ď Zn´j`1,n.

The overall objective is to appropriately use the relation between the variables ξj and standard exponential

order statistics E
pnq
j defined below, as well as between the ratios RFj and pZn´j`1,n{Zn´k,nq

´β and uniform
order statistics Vj,k (with mean uj,k) also defined below, in order to prove Theorem 1. Indeed, let pYiq denote
i.i.d. standard Pareto rv’s defined by Zi “ UHpYiq, and let

Ỹk´j`1,k “ Yn´j`1,n{Yn´k,n, Vj,k “ 1{Ỹk´j`1,k, and E
pnq
j “ j logpYn´j`1,n{Yn´j,nq, 1 ď j ď k. (16)
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It is then known that pV1,k, . . . , Vj,k, . . . , Vk,kq follows the distribution of the vector of order statistics of

a standard uniform random sample of size k, and that the variables pE
pnq
1 , . . . , E

pnq
k q are jointly equal in

distribution to a sample of size k of independent standard exponential rv’s.

Beirlant et. al. (2002) showed that the rv’s ξj and E
pnq
j are related as follows:

ξj “ ξ1j `Rn,j , where we define ξ1j “ pγ ` u
γβ˚
j,k bn,kqE

pnq
j , (17)

where bn,k is asymptotically equivalent to ´γ2β˚D˚C
´γβ˚

´

k`1
n`1

¯γβ˚
, as k, nÑ8 and k{nÑ 0. Properties

of the remainder term Rn,j will be detailed in Subsection 3.1 . Equation p17q thus implies that

ξj,k,β “ ξ1j,k,β `Rn,j,β , (18)

where

ξ1j,k,β “ ξ1j

ˆ

Zn´j`1,n

Zn´k,n

˙´β

(19)

Rn,j,β “ Rn,j

ˆ

Zn´j`1,n

Zn´k,n

˙´β

` β
ξ2j
2j

˜

Z̃j,n
Zn´k,n

¸´β

. (20)

We can now start breaking down pTkpβq ´
γ1

1`γ1β
into several terms by writing:

pTkpβq ´
γ1

1` γ1β
“

k
ÿ

j“2

yRF j
ξj,k,β
j

´
γ1

1` γ1β
“

˜

k
ÿ

j“2

yRF j
ξ1j,k,β
j

´
γ1

1` γ1β

¸

`

k
ÿ

j“2

yRF j
Rn,j,β
j

“

k
ÿ

j“2

˜

yRF j
RFj

´ 1

¸

RFj
ξ1j,k,β
j

`

˜

k
ÿ

j“2

RFj
ξ1j,k,β
j

´
γ

k ` 1

k
ÿ

j“2

u
pβ´1
j,k

¸

`

˜

γ

k ` 1

k
ÿ

j“2

u
pβ´1
j,k ´

γ

pβ

¸

`

k
ÿ

j“2

yRF j
Rn,j,β
j

“ T
p1q
k,n ` T

p2q
k,n `R

p0q
n `Rp1qn , (21)

with

T
p1q
k,n “

k
ÿ

j“2

´

log yRF j ´ logRFj

¯

RFj
ξ1j,k,β
j

`

k
ÿ

j“2

#

´ log
yRF j
RFj

´

˜

1´
yRF j
RFj

¸+

RFj
ξ1j,k,β
j

“ T
p1,1q
k,n ` T

p1,2q
k,n . (22)

The term T
p1,1q
k,n is introduced in order to make logarithms of the Kaplan-Meier product appear, leading to

manageable sums. Indeed, by definition of sFKMn we find that

log yRF j “
k
ÿ

i“j

δn´i`1,n log
`

i´1
i

˘

and logRFj “ ´
1

γ1

k
ÿ

i“j

ξi
i
`

ˆ

logRFj `
1

γ1
log

Zn´j`1,n

Zn´k,n

˙

.

Consequently, defining the following important notations

RFj,β “ RFj

ˆ

Zn´j`1,n

Zn´k,n

˙´β

i “ 2, . . . , k, (23)

and

Si,k,β “
1

i

i
ÿ

j“2

RFj,β
ξ1j
j
, i “ 2, . . . , k, (24)
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by inverting sums we obtain

T
p1,1q
k,n “

k
ÿ

i“2

„

1

γ1
pξi ´ γq `

`

δn´i`1,n i log
`

i´1
i

˘

` p
˘



Si,k,β ´
k
ÿ

j“2

ˆ

logRFj `
1

γ1
log

Zn´j`1,n

Zn´k,n

˙

RFj,β
ξ1j
j

“ T
p1,1,1q
k,n ´ T

p1,1,2q
k,n . (25)

To summarize,
pTkpβq ´

γ1
1` γ1β

“ T
p1,1,1q
k,n ´ T

p1,1,2q
k,n ` T

p1,2q
k,n ` T

p2q
k,n `R

p0q
n `Rp1qn . (26)

Introducing now the additional notations

ci “ 1` i log
i´ 1

i
, Ai,n “ ppE

pnq
i ´ 1q ´ pδn´i`1,n ´ pq, and Bi,n “

1

γ1
bn,ku

β˚γ
i,k E

pnq
i ,

and using p17q, one readily obtains the following formula for the main term T
p1,1,1q
k,n :

T
p1,1,1q
k,n “

k
ÿ

i“2

Ai,nSi,k,β `
k
ÿ

i“2

Bi,nSi,k,β `
k
ÿ

i“2

δn´i`1,nciSi,k,β `
1

γ1

k
ÿ

i“2

Rn,iSi,k,β . (27)

In the sequel, we will show that the variables Si,k,β can be approximated appropriately by γ
pβ

1
k`1u

pβ´1
i,k .

Also, as it is explained in Einmahl et al. (2008), on one hand the parameter p “ γ{γ1 “
γ2

γ1`γ2
is the

limit of ppzq “ Ppδ “ 1|Z “ zq as z Ñ 8, and on the other hand the original observations pZi, δiqiďn
have the same distribution as the variables pZ 1i, δ

1
iqiďn, where pZ 1iqiďn is an independent copy of the sequence

pZiqiďn, δ1i “ IUiďppZ1iq and pUiqiďn denotes some given i.i.d. sequence of standard uniform random variables
(shortened to rv’s), which are independent of the sequence pZ 1iqiďn. We thus carry on the proof by considering
from now on that the observations δi and Zi are related by the formula

δi “ IUiďppZiq.

Mimicking what is done in Einmahl et al. (2008), we will later (see proof of Lemma 8) approximate the
rv’s δn´i`1,n by i.i.d Bernoulli rv’s IUiďp.

The main goal will thus be to prove that the term
řk
i“2Ai,nSi,k,β above is (up to a bias term) close to

the main random term appearing in Theorem 1

γ

pβ

1

k ` 1

k
ÿ

i“2

tppEi ´ 1q ´ pIUiďp ´ pquu
pβ´1
i,k (28)

The other terms in p27q will be bias or remainder terms, noting that the coefficients ci are close to 0.

The second term T
p1,1,2q
k,n in p26q turns out to be adding to the bias since it only involves the slowly varying

function lF . The treatment of the third term T
p1,2q
k,n above is very important since it strongly participates to

the approximation of a ratio of the form sFKMn pxq{ sFKMn pyq by the ratio sF pxq{ sF pyq, for very large values of
x and y. Such approximation is delicate. Invoking results from survival analysis, we will show however that

T
p1,2q
k,n is a remainder term.

Next, T
p2q
k,n is decomposed using the variables pVj,kq introduced in p16q:

T
p2q
k,n “

γ

k ` 1

k
ÿ

j“2

´

V
pβ
j,k ´ u

pβ
j,k,

¯

u´1
j,k `

k
ÿ

j“2

V
pβ
j,k

ξ1j ´ γ

j
`

k
ÿ

j“2

´

RFj,β ´ V
pβ
j,k

¯ ξ1j
j
. (29)

According to the definition of ξ1j , we can see that the second term of this decomposition is close to
γ
k`1

řk
j“2pEj ´ 1qu

pβ´1
j,k . While this is part of the main term described in p28q, we will find in Proposi-

tion 3 that this term is neutralized by another part of T
p2q
k,n, so that T

p2q
k,n is just a bias term. Finally R

p0q
n and

R
p1q
n will also turn out to be remainder terms.

The rest of the section is organised as follows. In subsection 3.1, we set additional notations and state
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some preliminary approximation results needed in the sequel. In subsection 3.2 we state the asymptotic
results for all terms in (26) and conclude the proof.

3.1. Additional notations and important preliminary results

‚ First, in the sequel we will regularly work under the following event, for some α ą 1 arbitrary close to 1,

En,α “
 

@1 ď j ď k , α´1uj,k ď Vj,k ď αuj,k
(

, (30)

where uj,k and Vj,k are defined in p13q and p16q. According to Shorack and Wellner (1986) (chapter 8), for
every α ą 1 we have limnÑ8 PpEn,αq “ 1. In the proof section, working ”on the event En,α” will thus mean
stating bounds or results which are valid with an arbitrary large probability.

‚ Secondly, the remainder term Rn,j defined in the second-order exponential representation of the log-
spacings p17q satisfy, according to Theorem 2.1 in Beirlant et. al. (2002),

ˇ

ˇ

ˇ

řk
j“i

Rn,j
j

ˇ

ˇ

ˇ
“ oPpbn,k log`p

1
ui,k
qq. (31)

‚ Thirdly, under assumptions p1q and p2q, since Zi “ UHpYiq, one can show using p1q and p4q that

RFj,β “
sF pZn´j`1,nq

sF pZn´k,nq

ˆ

Zn´j`1,n

Zn´k,n

˙´β

“ V
pβ
j,k p1` Cj,k,βq, (32)

where Cj,k,β “ Y
´γβ˚
n´k,nDβC

´γβ˚pỸ
´γβ˚
k´j`1,k ´ 1qp1` oPp1qq and Dβ “ D´ γβD˚ with D “ ´ γ

γ1
D˚ if β2 ă β1,

D “ D1 ´
γ
γ1
D˚ if β1 ď β2.

‚ Finally, using Rényi representation (see for example p4.3q in Beirlant et. al. (2004)) and a Taylor ex-
pansion, one obtains that for every 2 ď j ď k,

V
pβ
j,k ´u

pβ
j,k, “ ´pβu

pβ
j,k,

˜

k
ÿ

i“j

E
pnq
i ´ 1

i

¸

´ pβu
pβ
j,k,

˜

k
ÿ

i“j

1

i
´ log

ˆ

k ` 1

j

˙

¸

`
p2β
2
Ṽ
pβ
j,k plogpVj,k{uj,kqq

2
, (33)

where Ṽj,k lies between Vj,k and uj,k. The combination of p32q and p33q thus means that the ratio RFj,β
will be appropriately approximated by the deterministic weights u

pβ
j,k,.

3.2. Asymptotics for the terms in (26) and conclusion of the proof

The first result stated concerns the term T
p1,1,1q
k,n , which contains the main term of the decomposition of

pTkpβq ´
γ1

1`γ1β
(see relations p27q and p28q).

Proposition 1. Under the conditions of Theorem 1, as nÑ8, we have

paq
?
k
řk
i“2Ai,nSi,k,β “ Gn ` λbβ ` oPp1q, where

bβ “ ´γ
p

pβ
p1´ pqpDγq˚β˚C

´γβ˚{ppβ ` γβ˚q and pDγq˚ “

$

&

%

γ1D1 if β1 ă β2
´γ2D2 if β2 ă β1
γ1D1 ´ γ2D2 if β1 “ β2

and Gn is equal in distribution to

γ

pβ

1
?
k

k
ÿ

i“2

u
pβ´1
i,k pppEi ´ 1q ´ pIUiďp ´ pqq ,

where pEiq and pδiq are independent iid samples with distributions standard exponential and standard

uniform. The variable Gn is asymptotically centred gaussian distributed with variance σ2
β “

γ2

p2β

p
2pβ´1 .

pbq
?
k
řk
i“2Bi,nSi,k,β “ λb˚ ` oPp1q , where b˚ “ ´γ

2 p
pβ
D˚β˚C

´γβ˚{ppβ ` γβ˚q.

pcq
řk
i“2 δn´i`1,nciSi,k,β “ oPpk

´1{2q

8



pdq
řk
i“2Rn,iSi,k,β “ oPpk

´1{2q

The following proposition concerns the terms R
p0q
n , R

p1q
n , T

p1,2q
k,n and T

p1,1,2q
k,n . The last two of these terms

result from the replacement of the ratios of Kaplan-Meier estimates yRF j by the ratios of the true survival
function values RFj .

Proposition 2. Under the conditions of Theorem 1, as nÑ8,

paq R
p0q
n “ opk´1{2q, pbq R

p1q
n “ oPpk

´1{2q, pcq T
p1,2q
k,n “ oPpk

´1{2q,

pdq T
p1,1,2q
k,n “ D1p1` oPp1qqZ

´β1

n´k,n

řk
j“2

ˆ

´

Zn´j`1,n

Zn´k,n

¯´β1

´ 1

˙

RFj,β
ξ1j
j `

řk
j“2Ln,jRFj,β

ξ1j
j , where

0 ď Ln,j ď D2
1pZ

´β1

n´j`1,n ´ Z
´β1

n´k,nq
2p1` oPp1qq.

Moreover, T
p1,1,2q
k,n “ bKM pk{nq

γβ˚`oPpk
´1{2q, where bKM is equal to ´ γ2

pβ
D1β1C

´γβ1{ppβ`γβ1q if β1 ď β2
and to 0 if β1 ą β2.

The last result concerns the behaviour of T
p2q
k,n : it turns out that it only generates a bias term.

Proposition 3. We have

T
p2q
k,n “´

pβ γ

k ` 1

k
ÿ

j“2

pE
pnq
j ´ 1q

˜

1

j

j
ÿ

i“2

u
pβ´1
i,k ´

1

pβ
u
pβ´1
j,k

¸

´
pβ γ

k ` 1

k
ÿ

j“2

pE
pnq
j ´ 1qu

pβ´1
j,k

˜

k
ÿ

i“j

E
pnq
i ´ 1

i

¸

`
bn,k
k ` 1

k
ÿ

j“2

u
pβ´1`γβ˚
j,k E

pnq
j `

bn,k
k ` 1

k
ÿ

j“2

1

uj,k
pV

pβ
j,k ´ u

pβ
j,k,qu

γβ˚
j,k E

pnq
j `

k
ÿ

j“2

V
pβ
j,kCj,k,β

ξ1j
j

´
pβ γ

k ` 1

k
ÿ

j“2

u
pβ´1
j,k

˜

k
ÿ

i“j

1

i
´ log

k ` 1

j

¸

E
pnq
j `

ppβq
2 γ

2pk ` 1q

k
ÿ

j“2

1

uj,k
Ṽ
pβ
j,k

ˆ

log

ˆ

Vj,k
uj,k

˙˙2

E
pnq
j . (34)

Moreover, under the conditions of Theorem 1, when nÑ8 we have

T
p2q
k,n “ b̃˚ pk{nq

γβ˚ ` oPpk
´1{2q,

where b̃˚ “ ´
γ2β˚C

´γβ˚

pβ`γβ˚
pD˚ `

Dβ
pβ
q.

The proofs of all these results can be found in the Appendix. Now, since

?
k

ˆ

pTkpβq ´
γ1

1` γ1β

˙

“
?
kT

p1,1,1q
k,n `

?
kT

p1,2q
k,n ´

?
kT

p1,1,2q
k,n `

?
kT

p1,1,3q
k,n `

?
kT

p2q
k,n `

?
kRp0qn `

?
kRp1qn

and assumption (12) holds, by combination of relation (27) and propositions 1, 2 and 3, we have proved that
Theorem 1 holds, i.e. that

?
k

ˆ

pTkpβq ´
γ1

1` γ1β

˙

“ Gn ` λmβ ` oPp1q
d
ÝÑ Npλmβ , σ

2
βq,

because it can be checked that bβ`b˚´bKM` b̃˚ is actually equal to the value mβ described in the statement
of Theorem 1.

4. Finite sample comparisons

In this section, we consider a comparison (using finite sample simulations) in terms of observed bias and

mean squared error (MSE) of the estimators considered in this paper : pγ
pHq
1,k , pγ

pW q
1,k “ pγ1,kp0q, pγ1,kpβq with

β ‰ 0, and pγ
pBRq
1,k . For pγ1,kpβq, we consider three different values of β (´1, 0.5 and 1.5). In the expression

of pγ
pBRq
1,k , the second order parameter β1 of F should be estimated. Instead, we proceed as in Beirlant et

al. (2018) (see equations p13q and p14q therein) by reparametrizing β1pγ
pW q
1,k by ´ρ1 and we consider two

different values of ρ1 (´1.5 and ´2) in the following formula

pγ
pBRq
1,k pρ1q “ pγ

pW q
1,k ´

p1´ ρ1q
2p1´ 2ρ1q

ρ21

˜

pTk
`

´ ρ1{pγ
pW q
1,k

˘

´
pγ
pW q
1,k

1´ ρ1

¸

.
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For the study of the sensitivity of this definition of pγ
pBRq
1,k pρ1q with respect to the choice of ρ1, we refer to

Beirlant et al. (2018).

We consider two classes of heavy-tailed distributions for the target and censoring variables X and C :

• Burrpθ, β, λq with d.f. 1´ p θ
θ`xβ

qλ, which extreme value index is 1
λβ .

• Fréchetpγq with d.f. expp´x´1{γq, which extreme value index is γ.

For each considered distribution, 2000 random samples of length n “ 500 were generated ; median bias
and MSE of the above-mentioned estimators are plotted against different values of kn, the number of excesses
used.

We considered two cases : a Burr distribution censored by another Burr distribution (Fig.1), a Fréchet
distribution censored by another Fréchet distribution (Fig.2). In each case, we considered a situation with
p ą 1{2, which corresponds to weak censoring in the tail, and the reverse situation with p ă 1{2, which
corresponds to strong censoring. In the Burr case, we also considered situations with β1 ă β2, and reverse
situations with β1 ą β2. Indeed, for Fréchet distibutions, β1 is always larger that β2 in the case p ą 1{2 and
β1 is always lower that β2 in the case p ă 1{2.
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Figure 1: Comparison of bias and MSE for pγ
pHq

1,k , pγ
pW q

1,k “ pγ1,kp0q, pγ1,kpβq and pγ
pBRq

1,k pρ1q for a Burr distribution censored by

another Burr distribution : (a) β1 “ 2 ă β2 “ 4 and p ą 1{2, (b) β1 “ 2 ă β2 “ 5 and p ă 1{2, (c) β1 “ 5 ą β2 “ 2 and
p ą 1{2, (d) β1 “ 4 ą β2 “ 2 and p ă 1{2

.
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(a) Fréchetp1{4q censored by Fréchetp1{2q
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(b) Fréchetp1{2q censored by Fréchetp1{4q

Figure 2: Comparison of bias and MSE for pγ
pHq

1,k , pγ
pW q

1,k “ pγ1,kp0q, pγ1,kpβq and pγ
pBRq

1,k pρ1q for a Fréchet distribution censored by

another Fréchet distribution : (a) β1 “ 4 ą β2 “ 2 and p ą 1{2, (b) β1 “ 2 ă β2 “ 4 and p ă 1{2.
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This small simulation study shows that the MSE of pγ1,kpβq is globally decreasing with lower values of
β, even when the condition pβ ą

1
2 for the above asymptotic normality result is not met, as in the case

with β “ ´1 and p ă 1
2 . This is probably due to the decreasing bias with decreasing β, the bias being the

dominating component in the MSE.

On the other hand pγ
pBRq
1,k overall reduces the MSE for most k, except in the heavy censoring Fréchet case.

The non-optimal behavior for small values of k is a well-known characteristic of bias reduced estimators. In
Beirlant et al. (2018) a penalized bias reduction technique was proposed to remedy this fact.
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5. Appendix

5.1. Useful Lemmas

Some of the following ten Lemmas are used several times in the proof of Propositions 1, 2 and 3.

Lemma 1. For any integer i ě 2 and every k ě i , we have

ci “ 1` i log
i´ 1

i
P

„

´
1

i
, 0



(35)

k
ÿ

j“i

1

j
´ log

k ` 1

i
P

„

0,
1

i



(36)

Moreover, for any given a Ps0, 1r, there exist some positive constants C1 ă C2 such that, for all 2 ď i ď k

di,k “

˜

1

i

i
ÿ

j“2

u´aj,k ´
1

1´ a
u´ai,k

¸

P

„

´
C2

ui,kpk ` 1q1´a
,´

C1

ui,kpk ` 1q1´a



, (37)

as well as, if a ă 0,

di,k “

˜

1

i

i
ÿ

j“2

u´aj,k ´
1

1´ a
u´ai,k

¸

P

„

´
1

ui,kpk ` 1q
,

´a

ui,kpk ` 1q



. (38)

Lemma 2. For any a ă 1, we have, as nÑ8,

1

k

k
ÿ

j“1

u´aj,k Ñ
1

1´ a
, (39)

and, under assumptions p1q and p2q,

1

k

k
ÿ

j“1

u´aj,k ξj
P
ÝÑ

γ

1´ a
, (40)

(equation p40q also holds for ξ1j instead of ξj) and, if Xj denotes either Ej, Ej ´ 1 or |Ej ´ 1|, where pEjq
are standard exponential iid random variables, then we have

1

k

k
ÿ

j“1

u´aj,k Xj
P
ÝÑ

EpX1q

1´ a
, as nÑ `8. (41)

Lemma 3. For any a ą 1, we have, as nÑ8,

k
ÿ

j“1

j´a Ñ ζpaq as k Ñ `8, (42)

where ζ is the Riemann Zeta function. Moreover, for any δ ą 0, under p1q and p2q,

1

ka`δ

k
ÿ

j“1

u´aj,k ξj
P
ÝÑ 0, as nÑ `8, (43)

(equation p43q also holds for ξ1j instead of ξj) and, if pXjq is a sequence of i.i.d. random variables such that
Ep|X1|q ă `8, then

1

ka`δ

k
ÿ

j“1

u´aj,k Xj
P
ÝÑ 0, as nÑ `8. (44)

Lemma 4. If pVj,kq1ďjďk are the order statistics of k standard uniform random variables then, for any
0 ă δ ă 1 and a ą 0, we have, as k Ñ8,

?
k max

2ďjďk

|V aj,k ´ u
a
j,k|

u
a´1{2´δ{2
j,k

“ OPp1q. (45)

Lemma 5. If pEjq are standard exponential iid random variables, then max2ďjďk |Ej | “ OPplog kq.
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Lemma 6. (See de Haan and Ferreira (2006) Proposition B.1.9)
Suppose f P RVα. If x ą 0 and δ1, δ2 ą 0 are given, then there exists t0 “ t0pδ1, δ2q such that for any t ě t0
satisfying tx ě t0, we have

p1´ δ1qx
α minpxδ2 , x´δ2q ă

fptxq

fptq
ă p1` δ1qx

α maxpxδ2 , x´δ2q.

If x ě 1, then there exists t0 “ t0pεq such that for every t ě t0,

p1´ εqxα´ε ă
fptxq

fptq
ă p1` εqxα`ε. (46)

Lemma 7. If pEiqiďk are standard exponential iid random variables, then if pβ ą 1{2, as nÑ8,

1
?
k

k
ÿ

i“3

pEi ´ 1q

#

1

i

i´1
ÿ

j“2

u
pβ´1
j,k pEj ´ 1q

+

P
ÝÑ 0, (47)

1

k

k
ÿ

i“3

pEi ´ 1q

#

1

i

i´1
ÿ

j“2

u
pβ`d´1
j,n Ej

+

P
ÝÑ 0 pfor any d ě 0q (48)

1

k

k
ÿ

i“3

u
β˚γ
i,k Ei

#

1

i

i´1
ÿ

j“2

u
pβ´1
j,k pEj ´ 1q

+

P
ÝÑ 0. (49)

1
?
k

k
ÿ

i“4

pEi ´ 1q

#

1

i

i´1
ÿ

l“3

pEl ´ 1q

˜

1

l

l´1
ÿ

j“2

u
pβ´1
j,k Ej

¸+

P
ÝÑ 0 (50)

Lemma 8. With δn´i`1,n and E
pnq
j being respectively defined in the introduction and in equation p16q, if

pβ ą 1{2 then, we have, under assumptions p1q and p2q, as nÑ8,

1
?
k

k
ÿ

i“2

pδn´i`1,n ´ pq

#

1

i

i´1
ÿ

j“2

u
pβ´1
j,k pE

pnq
j ´ 1q

+

P
ÝÑ 0 (51)

1

k

k
ÿ

i“2

pδn´i`1,n ´ pq

#

1

i

i´1
ÿ

j“2

u
pβ`d´1
j,n E

pnq
j

+

P
ÝÑ 0 pfor any d ě 0q. (52)

1
?
k

k´1
ÿ

i“3

pδn´i`1,n ´ pq

˜

1

i

i´1
ÿ

j“2

u
pβ´1
j,k E

pnq
j

¸˜

k
ÿ

l“i`1

E
pnq
l ´ 1

l

¸

“

1
?
k

k
ÿ

i“4

pE
pnq
i ´ 1q

#

1

i

i´1
ÿ

l“3

pδn´l`1,n ´ pq

˜

1

l

l´1
ÿ

j“2

u
pβ´1
j,k E

pnq
j

¸+

P
ÝÑ 0 (53)

1
?
k

k
ÿ

i“4

pδn´i`1,n ´ pq

#

1

i

i´1
ÿ

l“3

pE
pnq
l ´ 1q

˜

1

l

l´1
ÿ

j“2

u
pβ´1
j,k E

pnq
j

¸+

P
ÝÑ 0 (54)

Lemma 9. Let ppzq “ Ppδ “ 1|Z “ zq. Under the Hall model (conditions p1q and p2q),

p ˝ UHpxq “ p` pp1´ pqpDγq˚β˚C
´γβ˚x´γβ˚p1` op1qq. (55)

Moreover, p55q and p12q imply that

1
?
k

k
ÿ

i“2

u
pβ´1
i,k pp ˝ UHpn{iq ´ pq Ñ λαβ , (56)

where αβ “
1

pβ`γβ˚
pp1´ pqpDγq˚β˚C

´γβ˚ .

Lemma 10. Using the notations introduced earlier, we have, under assumptions p1q and p2q and if pβ ą 1{2,
as nÑ8,

?
k

k
ÿ

i“2

Ai,n
1

i

˜

i
ÿ

j“2

pV
pβ
j,k ´ u

pβ
j,kq

E
pnq
j

j

¸

P
ÝÑ 0.
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We now prove one after the other the Propositions 1, 2 and 3, then we will deal with the proofs of the
different Lemmas in subsections 5.5 to 5.9.

5.2. Proof of Proposition 1

5.2.1. Proof of part paq

This subsection is devoted to the study of
řk
i“2Ai,nSi,k,β , which we divide in three parts, using statement

p32q :

I1,n`I2,n`I3,n “
k
ÿ

i“2

Ai,n

˜

1

i

i
ÿ

j“2

u
pβ
j,k

ξ1j
j

¸

`

k
ÿ

i“2

Ai,n

˜

1

i

i
ÿ

j“2

pV
pβ
j,k ´ u

pβ
j,kq

ξ1j
j

¸

`

k
ÿ

i“2

Ai,n

˜

1

i

i
ÿ

j“2

V
pβ
j,kCj,k,β

ξ1j
j

¸

.

From I1,n will come the asymptotically gaussian part of
řk
i“2Ai,nSi,k,β , plus a bias term, and the other two

I2,n and I3,n will be remainder terms. We will first give details about I1,n, and then come back to I2,n and I3,n

later. In order to deal with I1,n, we begin by using relation p17q to write ξ1j as γ`γpE
pnq
j ´1q`u

γβ˚
j,k bn,kE

pnq
j ,

which divides I1,n in three different terms I1,n “ I
p1q
1,n ` I

p2q
1,n ` I

p3q
1,n.

Our first task will be to deal with the main term of the theorem, I
p1q
1,n. Recalling that Ai,n “ ppE

pnq
i ´1q´

pδn´i`1,n ´ pq, where δi “ IUiďppZiq with pUiq uniformly distributed and independent of pZiq and Un´i`1,n

denotes the uniform variable associated to δn´i`1,n, this first term is equal to

I
p1q
1,n “

γ

k ` 1

k
ÿ

i“2

Ai,n

˜

1

i

i
ÿ

j“2

u
pβ´1
j,k

¸

“
γ

pβ

1

k ` 1

k
ÿ

i“2

u
pβ´1
i,k

´

ppE
pnq
i ´ 1q ´ pIUn´i`1,nďp ´ pq

¯

´
γ

pβ

1

k ` 1

k
ÿ

i“2

u
pβ´1
i,k

`

IUn´i`1,nďppZn´i`1,nq ´ IUn´i`1,nďp

˘

`
γ

k ` 1

k
ÿ

i“2

Ai,ndi,k

“ Wk,n `Bk,n `Rk,n

where we define di,k “
1
i

ři
j“2 u

pβ´1
j,k ´ 1

pβ
u
pβ´1
i,k . To sum up what we have found so far,

k
ÿ

i“2

Ai,nSi,k,β “ pWk,n `Bk,n `Rk,nq ` pI
p2q
1,n ` I

p3q
1,nq ` I2,n ` I3,n.

Introducing a sequence pEiq of independent standard exponential variables, independent of the sequence
pZiq, we can write that

Wk,n
d
“

γ

pβ

1

k ` 1

k
ÿ

i“2

u
pβ´1
i,k pppEi ´ 1q ´ pIUiďp ´ pqq and Bk,n

d
“ ´

γ

pβ

1

k ` 1

k
ÿ

i“2

u
pβ´1
i,k

`

IUiďppZn´i`1,nq ´ IUiďp
˘

,

We prove easily that Varp
?
kWk,nq is equivalent to the variance σ2

β defined in the statement of Theorem 1,

and that, using Lyapunov’s CLT, we have
?
kWk,n

d
ÝÑ Np0, σ2

βq.

Let us now deal with the term Bk,n
d
“ B

p1q
k,n `B

p2q
k,n, where

B
p1q
k,n “ ´

γ

pβ

1

k ` 1

k
ÿ

i“2

u
pβ´1
i,k

`

IUiďp˝UHpYn´i`1,nq ´ IUiďp˝UHpn{iq
˘

B
p2q
k,n “ ´

γ

pβ

1

k ` 1

k
ÿ

i“2

u
pβ´1
i,k

`

IUiďp˝UHpn{iq ´ IUiďp
˘

.

Following the method used for the treatment of the terms T1,k and T2,k in Einmahl et al. (2008), and using

the LLN result found for instance in Chow and Teicher (1997) page 356, we can prove that
?
kB

p1q
k,n

P
ÝÑ 0

and that (using p56q, wherein constant αβ is defined)
?
kB

p2q
k,n

P
ÝÑ ´

γ
pβ
λαβ “ λbβ .

Concerning now the last term Rk,n of I
p1q
1,n, if pβ ă 1, according to inequality p37q in Lemma 1, there

14



exists some constant c ą 0 such that

?
k|Rk,n| ď

?
k

cγ

pk ` 1qpβ`1

k
ÿ

i“2

|Ai,n|
1

ui,k
ď Op1qk´ppβ´1{2´δq 1

k

k
ÿ

i“2

|Ai,n|u
δ´1
i,k ,

for a given δ ą 0. But |Ai,n| ď p|E
pnq
i ´1|`1 ď E

pnq
i `2, and therefore, taking δ small enough,

?
kRk,n “ oPp1q

according to properties p41q and p39q (in Lemma 2, with a “ 1´ δ) and to the assumption pβ ą 1{2. When

pβ ą 1, the treatment is similar, using p38q instead of p37q. We have thus finished to prove that
?
kI
p1q
1,n

converges in distribution to Npλbβ , σ
2
βq. All the remaining terms in this subsection will now be proved to be

negligible.

Let us now consider the second term I
p2q
1,n of I1,n. Separating j ă i and j “ i, we have

I
p2q
1,n “

γ

k ` 1

k
ÿ

i“3

Ai,n
1

i

˜

i´1
ÿ

j“2

u
pβ´1
j,k pE

pnq
j ´ 1q

¸

`
γ

pk ` 1q2

k
ÿ

i“2

Ai,nu
pβ´2
i,k pE

pnq
i ´ 1q.

The first term is shown to be oPpk
´1{2
n q by separating Ai,n in its pE

pnq
i ´ 1q and pδn´i`1,n ´ pq parts and

relying on properties p47q and p51q stated in Lemmas 7 and 8. The second one is easy to handle using p44q
and pβ ą 1{2 ; it is then omitted.

Similarly, the third term I
p3q
1,n of I1,n is, again seperating j ă i and j “ i,

I
p3q
1,n “

bn,k
k ` 1

k
ÿ

i“3

Ai,n
1

i

˜

i´1
ÿ

j“2

u
pβ`γβ˚´1
j,k E

pnq
j

¸

`
bn,k

pk ` 1q2

k
ÿ

i“2

Ai,nu
pβ´2`γβ˚
i,k E

pnq
i .

Since
?
kbn,k converges to a constant, the first term is oPpk

´1{2
n q by using properties p48q and p52q (with

d “ γβ˚) stated in Lemmas 7 and 8. Again, the second one is easy to handle using p44q.

Now that we have finished with I1,n, we turn to the term I2,n. The decomposition of ξ1j in p17q and the

fact that
?
kbn,k converges imply that

?
kI2,n “ γ

?
k
k
ÿ

i“2

Ai,n
1

i

˜

i
ÿ

j“2

pV
pβ
j,k ´ u

pβ
j,kq

E
pnq
j

j

¸

`Op1q
k
ÿ

i“2

Ai,n
1

i

˜

i
ÿ

j“2

pV
pβ
j,k ´ u

pβ
j,kqu

γβ˚
j,k

E
pnq
j

j

¸

.

The first term of the right-hand side is very tedious and delicate to deal with, so we delayed its treatment by
stating in Lemma 10 that it tends to 0 in probability when pβ ą 1{2; the proof of this statement is detailed

in subsection 5.8. Let us then turn to the second term, and prove that it tends to 0, and so will
?
kI2,n as

well. Applying p45q with a “ pβ , we have, for δ ą 0 sufficiently small such that ε “ ppβ ´ δ ` γβ˚q{2 is
positive,
ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“2

Ai,n
1

i

˜

i
ÿ

j“2

pV
pβ
j,k ´ u

pβ
j,kqu

γβ˚
j,k

E
pnq
j

j

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď OPp1qk
´ε

˜

1

k

k
ÿ

i“2

|Ai,n|u
δ{2´1
i

¸ ˜

1

k3{2´ε

k
ÿ

j“2

u
´3{2`pβ`γβ˚´δ
j,k E

pnq
j

¸

,

and we conclude using properties p39q and p41q with a “ 1´ δ{2 as well as property p44q with a “ 3{2´ 2ε.

It remains to consider the last term I3,n of
řk
i“2Ai,nSi,k,β , and to prove that it is oPpk

´1{2
n q. According to

the definition of Cj,k,β in relation p32q and using the fact that
?
kY

´γβ˚
n´k,n “

?
k pk{nq

γβ˚ pYn´k,n{pn{kqq
´γβ˚

converges (thanks to assumption p12q), we have

?
kI3,n “ OPp1q

k
ÿ

i“2

Ai,n

˜

1

i

i
ÿ

j“2

V
pβ
j,k pV

γβ˚
j,k ´ 1q

ξ1j
j

¸

“ OPp1q
´

I
p1q
3,n ´ I

p2q
3,n ` I

p3q
3,n ´ I

p4q
3,n

¯

,

where

I
p1q
3,n “ 1

k`1

řk
i“2Ai,n

´

1
i

ři
j“2 u

pβ`γβ˚´1
j,k ξ1j

¯

I
p2q
3,n “ 1

k`1

řk
i“2Ai,n

´

1
i

ři
j“2 u

pβ´1
j,k ξ1j

¯

I
p3q
3,n “ 1

k`1

řk
i“2Ai,n

´

1
i

ři
j“2pV

pβ`γβ˚
j,k ´ u

pβ`γβ˚
j,k qu´1

j,kξ
1
j

¯

I
p4q
3,n “ 1

k`1

řk
i“2Ai,n

´

1
i

ři
j“2pV

pβ
j,k ´ u

pβ
j,kqu

´1
j,kξ

1
j

¯

.
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Relying on property p45q (stated in Lemma 4, and applied to a “ pβ ` γβ˚) and on the fact that |Ai,n| ď

E
pnq
i ` 2, we deduce that, for some given δ ą 0,

|I
p3q
3,n| ď OPp1q

˜

1

k

k
ÿ

i“2

pE
pnq
i ` 2qu

´1`δ{2
i,k

¸ ˜

1

k3{2

k
ÿ

j“2

u
´3{2`pβ´δ
j,k ξ1j

¸

.

Hence, properties p39q, p41q and p43q imply that I
p3q
3,n tends to 0. Completely similarly, we have I

p4q
3,n “ oPp1q.

Let us prove that I
p2q
3,n also tends to 0 (I

p1q
3,n is handled similarly). Separating the cases j ă i and j “ i and

using the definition of ξ1j in relation p17q yield

I
p2q
3,n “

γ

k ` 1

k
ÿ

i“3

Ai,n
1

i

i´1
ÿ

j“2

u
pβ´1
j,k E

pnq
j `

bn,k
k ` 1

k
ÿ

i“3

Ai,n
1

i

i´1
ÿ

j“2

u
pβ`γβ˚´1
j,k E

pnq
j `

1

pk ` 1q2

k
ÿ

i“2

Ai,nu
pβ´2
i,k ξ1i.

The convergence to 0 of the first (resp. the second) term is due to properties p48q and p52q with d “ 0 (resp.

d “ γβ˚) in Lemmas 7 and 8. For the third term, we use |Ai,n| ď E
pnq
i ` 2 with Lemma 5 to write, for some

given δ ą 0,
ˇ

ˇ

ˇ

ˇ

ˇ

1

pk ` 1q2

k
ÿ

i“2

Ai,nu
pβ´2
i,k ξ1j

ˇ

ˇ

ˇ

ˇ

ˇ

ď OPp1q
plog kq2

kδ

˜

1

k2´δ

k
ÿ

i“2

u
pβ´2
i,k

¸

.

The right-hand side tends to 0 according to p42q, for 0 ă δ ă pβ . This concludes the proof for the term
řk
i“2Ai,nSi,k,β .

5.2.2. Proof of part pbq

Recall that Bi,n “
1
γ1
bn,ku

β˚γ
i,k E

pnq
i . Since Zi “ UHpYiq, using Potter-Bounds p6q for p sF ˝ UHqU

´β
H P

RV´pβ and working on the event En,α defined in p30q, which satisfies limnÑ8 PpEn,αq “ 1, we have, for ε ą 0
(remind that the sign of bn,k is not known),

b´1
n,k

k
ÿ

i“2

Bi,nSi,k ď p1` εq
αpβ´ε

γ1

1

k ` 1

k
ÿ

i“2

u
β˚γ
i,k E

pnq
i

˜

1

i

i
ÿ

j“2

u
pβ´1´ε
j,k ξ1j

¸

.

We are going to prove below that this upper bound, when multiplied by
?
kbn,k, tends to a quantity arbitrary

close to b˚λ (for ε small and α close to 1). A very similar job can be done for the lower bound issued from

the application of lower Potter-bounds for p sF ˝UHqU
´β
H and from the lower bound in the definition of En,α,

and hence we will have proved that
?
k
řk
i“2Bi,nSi,k,β tends to b˚λ, as announced. Using p17q to split ξ1j

into three parts γ`γpE
pnq
j ´1q`u

γβ˚
j,k bn,kE

pnq
j , we obtain a decomposition of

?
kbn,k times the upper bound

above into three terms T
p1q
B,n ` T

p2q
B,n ` T

p3q
B,n.

Let us prove that the limit of the first term T
p1q
B,n “

?
kbn,kp1`εqα

pβ´ε p
k`1

řk
i“2u

β˚γ
i,k E

pnq
i

´

1
i

ři
j“2 u

pβ´1´ε
j,k

¯

,

as n Ñ 8, is arbitrarily close to b˚λ (taking ε sufficiently small and α sufficiently close to 1). Indeed, if
pβ ď 1, inequality p37q (applied with a “ 1´ pβ ` ε) implies that, for some positive constants C1 and C2,

p
k`1

řk
i“2 u

γβ˚
i,k E

pnq
i

´

1
i

ři
j“2 u

pβ´1´ε
j,k

¯

ď
p
pβ

1
k`1

řk
i“2 u

γβ˚`pβ´1´ε
i,k E

pnq
i ´ C1

p

pk`1qpβ´ε`1

řk
i“2 u

γβ˚´1
i,k E

pnq
i

ě
p
pβ

1
k`1

řk
i“2 u

γβ˚`pβ´1´ε
i,k E

pnq
i ´ C2

p

pk`1qpβ´ε`1

řk
i“2 u

γβ˚´1
i,k E

pnq
i .

Using p41q with a “ 1 ´ pβ ´ γβ˚ ` ε for the first term and a “ 1 ´ γβ˚ for the second one, as well as the

fact that bn,k is equivalent to ´γ2β˚D˚C
´γβ˚

´

k`1
n`1

¯γβ˚
, we obtain via assumption (12) the desired limit

b˚λ, by making ε tend to 0 and α tend to 1, since ´γ2β˚D˚C
´γβ˚ p

pβ
1

pβ`γβ˚
“ b˚. In the case pβ ą 1, the

treatment is similar, using p38q instead of p37q above.

Secondly, in order to prove that T
p2q
B,n “

?
kbn,kp1`εqα

pβ´ε p
k`1

řk
i“2u

β˚γ
i,k E

pnq
i

´

1
i

ři
j“2 u

pβ´1´ε
j,k pE

pnq
j ´ 1q

¯

tends to 0, we separate the terms j “ i (easy to handle and omitted) and j ă i : in the latter case, we use
property p49q in Lemma 7 (with pβ ´ 1´ ε instead of pβ ´ 1) and the fact that

?
kbn,k converges.

Finally, let us prove that T
p3q
B,n “

?
kb2n,kp1`εqα

pβ´ε p
k`1

řk
i“2u

β˚γ
i,k E

pnq
i

´

1
i

ři
j“2 u

pβ`β˚γ´1´ε
j,k E

pnq
i

¯

tends
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to 0. Using the fact that
?
kb2n,k tends to 0, we bound this term from above by :

oPp1q

˜

1

k ` 1

k
ÿ

i“2

u
β˚γ´1
i,k E

pnq
i

¸˜

1

k ` 1

k
ÿ

i“2

u
pβ`β˚γ´1´ε
i,k E

pnq
i

¸

.

We conclude the treatment of this term by using p41q.

5.2.3. Proof of parts pcq and pdq

By the definition of Si,k,β in p24q, and the inequality p35q in Lemma 1, use of Potter-bounds for pF̄ ˝

UHqU
´β
H P RV´pβ yields that, for ε ą 0,

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“2

δn´i`1,nciSi,k

ˇ

ˇ

ˇ

ˇ

ˇ

ď p1` εq
k
ÿ

i“2

1

i2

i
ÿ

j“2

V
pβ´ε
j,k

ξ1j
j
.

Now, working on the event En,α, which satisfies limnÑ8 PpEn,αq “ 1, we have, for ε ą 0 and δ ą 0,
ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“2

δn´i`1,nciSi,k,β

ˇ

ˇ

ˇ

ˇ

ˇ

ď αpβ´εp1` εq
k
ÿ

i“2

1

i2
u
pβ´ε
i,k

i
ÿ

j“2

ξ1j
j
ď cst

˜

1

k2´δ

k
ÿ

i“2

u
pβ´2´ε
i,k

¸ ˜

1

k

k
ÿ

j“2

uδ´1
j,k ξ

1
j

¸

.

Using p42q and p40q, we see that this expression is lower than OPp1q ˆ k´pβ`ε`δ, so that part pcq is proved
as soon as pβ ą 1{2, since δ and ε can be chosen arbitrarily small.

Finally, the definition of Si,k,β in p24q on one hand, and the relation p31q satisfied by the remainder term
Rn,i on the other hand, imply that (by inverting sums)

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“2

Rn,iSi,k,β

ˇ

ˇ

ˇ

ˇ

ˇ

ď oPpbn,kq
k
ÿ

j“2

RFj,β
ξ1j
j

log`p1{uj,kq.

As usual, Potter-bounds for pF̄ ˝ UHqU
´β
H P RV´pβ yield that, for ε ą 0, on the event En,α, we have

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“2

Rn,iSi,k

ˇ

ˇ

ˇ

ˇ

ˇ

ď oPpbn,kq
1

k ` 1

k
ÿ

j“2

u
pβ´1´ε
j,k ξ1j log`p1{uj,kq.

Now property p40q and the fact that
?
kbn,k converges conclude the proof.

5.3. Proof of Proposition 2

5.3.1. Proof of parts paq and pbq

Concerning the remainder term R
p0q
n , since 1

pβ
“

ş1

0
upβ´1du “

řk
j“2

şuj`1,k

uj,k
upβ´1du` u

pβ
2,k{pβ , we obtain

R
p0q
n “

γ
k`1

řk
j“2u

pβ´1
j,k ´

γ
pβ

“ γ
řk
j“2

şuj`1,k

uj,k
pu
pβ´1
j,k ´ upβ´1qdu´ γ2pβ

pβpk`1qpβ
.

Using the mean value theorem leads to

?
k|Rp0qn | ď γp1´ pβq

?
k

1

pk ` 1q2

k
ÿ

j“2

u
pβ´2
j,k `Opk1{2´pβ q.

and we conclude using property p42q and the condition pβ ą 1{2.

Recall that R
p1q
n “

řk
j“2

yRF j
Rn,j,β
j , where Rn,j,β is defined in p20q. We write yRF j “

řj
i“2p

yRF i´yRF i´1q,

where we note yRF 1 “ 0. Hence, inverting sums, we obtain

Rp1qn “

k
ÿ

i“2

pyRF i ´yRF i´1q

k
ÿ

j“i

Rn,j
j

ˆ

Zn´j`1,n

Zn´k,n

˙´β

`
β

2

k
ÿ

i“2

yRF j
ξ2j
j2

˜

Z̃j,n
Zn´k,n

¸´β

,

where Zn´j,n ď Z̃j,n ď Zn´j`1,n.

The definition of sFKMn implies that yRF i ´ yRF i´1 “ yRF i
δn´i`2,n

i´1 , for i ą 2. Thus, using p31q and

supjě2
yRF j{RFj “ OPp1q (see the proof of part pcq below for details), we have, if we suppose β ě 0
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(the case β ă 0 is very similar and thus ommited),

|Rp1qn | ď OPp1qoPpbn,kq
k
ÿ

i“2

RFi
i´ 1

log`p
1

ui,k
q `OPp1q

k
ÿ

j“2

RFj
ξ2j
j2

ˆ

Zn´j,n
Zn´k,n

˙´β

.

Now, using the fact that Zi “ UHpYiq, Potter bounds p6q applied to sF ˝ UH P RV´p and U´βH “ RV´γβ
enable us to write that for any given ε ą 0,

|Rp1qn | ď oPpbn,kq
k
ÿ

i“2

V p´εi,k

i´ 1
log`p

1

ui,k
q `OPp1q

k
ÿ

j“2

V p´εj,k

ξ2j
j2
pVj`1,kq

γβ´ε.

Working on the event En,α which satisfies limnÑ8 PpEn,αq “ 1, for every α ą 1, and using the fact that
?
kbn,k converges, imply that

?
k|Rp1qn | ď oPp1q

1

k ` 1

k
ÿ

i“2

up´ε´1
i,k log`p

1

ui,k
q `

1

k3{2

k
ÿ

i“2

u
pβ´2ε´2
i,k ξ2j .

We conclude by p39q and p43q with pβ ą 1{2.

5.3.2. Proof of part pcq

Let us now deal with the term T
p1,2q
k,n , which is defined in relation (22) and is a delicate part of the

proof, and the only one which will require survival analysis arguments. We start by applying the bounds
0 ď ´ logp1´xq´x ď x2{p1´xq p@x ă 1q to x “ 1´yRF j{RFj for every j ě 2 (which ensures that yRF j ą 0
and so x ă 1), yielding

0 ď T
p1,2q
k,n ď

k
ÿ

j“2

RFj
yRF j

˜

1´
yRF j
RFj

¸2

RFj,β
ξ1j
j
.

We then rely on the so-called Daniels bounds proved in Gill (1980) (page 39) and Zhou (1991) (Theorem
2.2), which state that both sFKMn ptq{ sF ptq and its inverse are bounded in probability uniformly for t ă Zn,n.

Since the index j is at least equal to 2, this implies that supjě2RFj{yRF j “ OPp1q. Then (as in the previous

subsection 5.3.1) using the fact that Zi “ UHpYiq, Potter bounds applied to p sF ˝ UHqU
´β
H P RV´pβ enable

us to write that for any given ε ą 0,

0 ď T
p1,2q
k,n ď OPp1q

k
ÿ

j“2

˜

yRF j
RFj

´ 1

¸2

u
pβ´1´ε
j,k pVj,k{uj,kq

pβ´ε ξ1j .

Now, Theorem 2.1 in Gill (1983) applied to the function hptq “ p sHptqqp1`εq{2 guarantees that

sup
tăZn,n

?
nhptq

ˇ

ˇ

ˇ

ˇ

sFKMn ptq ´ sF ptq
sF ptq

ˇ

ˇ

ˇ

ˇ

“ OPp1q, (57)

a property which will be applied to t “ Zn´j`1,n for every 2 ď j ď k below. Now writing yRF j{RFj ´ 1 “
p sF pZn´k,nq{ sF

KM
n pZn´k,nqqpWn´j`1´Wn´kq where Wi “ p sF

KM
n pZi,nq´ sF pZi,nqq{ sF pZi,nq, the combination

of the crucial statement (57) with the fact that h´2 is nondecreasing, leads to the following bound, working
on the set En,α,

0 ď T
p1,2q
k,n ď OPp1q

1

n

1

k ` 1

k
ÿ

j“2

p sHpZn´j`1,nqq
´1´εu

pβ´1´ε
j,k ξ1j .

Applying then Potter-bounds p6q to the function p sH´1´εq ˝ UH P RV1`ε then implies that, on the set En,α,
we have, for any δ ą 0,

0 ď
?
kT

p1,2q
k,n ď OPp1qp sHpZn´k,nqq

´1´ε

ˆ

k

n

˙

k´δ.

«

1

k3{2´δ

k
ÿ

j“2

u
pβ´2´3ε
j,k ξj

ff

.

First, due to p43q in Lemma 3, the expression in brackets in the right-hand side of the previous relation is
oPp1q when pβ ą 1{2, as soon as δ and ε are sufficiently small so that pβ ą 1{2 ` δ ` 3ε. Therefore, since

sHpZn´k,nq{pk{nq
P
Ñ 1 as nÑ8, all that is left to prove is that pn{kqεk´δ Ñ 0 as nÑ8. This is true when

assumption (12) holds with λ ‰ 0, since the latter quantity is equivalent to λ´2δpn{kqε´2γβ˚δ, which indeed
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converges to 0 for ε sufficiently small. When assumption (12) holds with λ “ 0, then we use the additional
assumption that n “ Opkbq for some b ą 1, which immediately yields pn{kqεk´δ Ñ 0 for ε small enough.
Part pbq of Proposition 2 is thus proved.

5.3.3. Proof of part pdq

Recall that T
p1,1,2q
k,n “

řk
j“2

´

logRFj `
1
γ1

log
Zn´j`1,n

Zn´k,n

¯

RFj,β
ξ1j
j . Assumption p1q implies that

sF pztq
sF ptq

“ z´1{γ1
`

1`D1t
´β1pz´β1 ´ 1qp1` otp1qq

˘

.

Hence,

logRFj `
1

γ1
log

Zn´j`1,n

Zn´k,n
“ log

´

1`D1pZ
´β1

n´j`1,n ´ Z
´β1

n´k,nqp1` okp1qq
¯

“ D1pZ
´β1

n´j`1,n ´ Z
´β1

n´k,nqp1` okp1qq ` Ln,j ,

where 0 ď Ln,j ď D2
1pZ

´β1

n´j`1,n ´ Z
´β1

n´k,nq
2p1` okp1qq. Consequently,

T
p1,1,2q
k,n “ D1p1` oPp1qqZ

´β1

n´k,n

k
ÿ

j“2

˜

ˆ

Zn´j`1,n

Zn´k,n

˙´β1

´ 1

¸

RFj,β
ξ1j
j
`

k
ÿ

j“2

Ln,jRFj,β
ξ1j
j

“ T
p1,1,2,1q
k,n ` T

p1,1,2,2q
k,n .

Now, in order to prove that
?
kT

p1,1,2,1q
k,n tends to λbKM , which is defined in the statement of Proposition

2, we deal with the following non-negative quantity, which is equivalent in probability to T
p1,1,2,1q
k,n {p´D1q

rT
p1,1,2,1q
k,n “ Z´β1

n´k,n

k
ÿ

j“2

˜

1´

ˆ

Zn´j`1,n

Zn´k,n

˙´β1
¸

RFj,β
ξ1j
j
.

Using lower and upper Potter-bounds for U´β1

H P RV´γβ1
and pF̄ ˝ UHqU

´β
H P RV´pβ yields, for ε ą 0,

?
kZ´β1

n´k,n

#

1´ ε

k ` 1

k
ÿ

j“2

V
pβ´1`ε
j,k ξ1j ´

p1` εq2

k ` 1

k
ÿ

j“2

V
γβ1`pβ´1´2ε
j,k ξ1j

+

ď
?
k rT

p1,1,2,1q
k,n ď

?
kZ´β1

n´k,n

#

1` ε

k ` 1

k
ÿ

j“2

V
pβ´1´ε
j,k ξ1j ´

p1´ εq2

k ` 1

k
ÿ

j“2

V
γβ1`pβ´1`2ε
j,k ξ1j

+

But Z´β1

n´k,n “ C´γβ1p1` op1qqp kn q
γβ1 (the constant C appears in formula p4q), so

?
kZ´β1

n´k,n tends to 0 when

β1 ą β2 (due to p12q) and, when β1 ď β2,
?
kZ´β1

n´k,n is equivalent to λC´γβ˚ “ λC´γβ1 . Moreover, using

p30q with limnÑ8 PpEn,αq “ 1 and property p40q, we prove that 1
k

řk
j“2V

pβ´1`γβ1˘2ε
j,k ξ1j tends to γ

pβ`γβ1˘2ε

and 1
k

řk
j“2V

pβ´1˘ε
j,k ξ1j tends to γ

pβ˘ε
. After some simplifications, we prove that

?
kT

p1,1,2,1q
k,n tends to bKM ,

in Porbability, by making εÑ 0.

Finally, concerning T
p1,1,2,2q
k,n “

řk
j“2Ln,jRFj,β

ξ1j
j , where 0 ď Ln,j ď D2

1pZ
´β1

n´j`1,n ´ Z
´β1

n´k,nq
2p1` oPp1qq,

we use Potter-bounds as previously to find that , for any given ε ą 0,

?
k|T

p1,1,2,2q
k,n | ď Op1q

?
kZ´2β1

n´k,n

k
ÿ

j“2

´

p1` εqV γβ1´ε
j,k ´ 1

¯2

V
pβ´ε
j,k

ξ1j
j

and we proceed as for T
p1,1,2,1q
k,n to prove that

?
kT

p1,1,2,2q
k,n tends to 0, in Probability.

5.4. Proof of Proposition 3

Let us first establish formula p34q. Recall that (see p29q)

T
p2q
k,n “

γ

k ` 1

k
ÿ

i“2

´

V
pβ
j,k ´ u

pβ
j,k,

¯

u´1
j,k `

k
ÿ

i“2

V
pβ
j,k

ξ1j ´ γ

j
`

k
ÿ

i“2

´

RFj,β ´ V
pβ
j,k

¯ ξ1j
j
.
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The definition of ξ1j as well as decompositions p17q and p32q yield

T
p2q
k,n “

γ

k ` 1

k
ÿ

j“2

1

uj,k
pV

pβ
j,k ´ u

pβ
j,k,qE

pnq
j `

γ

k ` 1

k
ÿ

j“2

u
pβ´1
j,k pE

pnq
j ´ 1q

`
bn,k
k ` 1

k
ÿ

j“2

u
pβ´1`γβ˚
j,k E

pnq
j `

bn,k
k ` 1

k
ÿ

j“2

1

uj,k
pV

pβ
j,k ´ u

pβ
j,k,qu

γβ˚
j,k E

pnq
j `

k
ÿ

j“2

V
pβ
j,kCj,k,β

ξ1j
j
.

The last three terms of the right-hand side are left unchanged. By applying decomposition p33q to the
first term, we obtain the desired decomposition p34q. In particular, we can see that the second term of the
right-hand side above vanishes.

Now, in order to prove the asymptotic result for T
p2q
k,n, we rely of course on the development p34q in 7

different terms. These terms will be treated separately, one at a time.

paq Concerning the first term, when pβ ă 1, relation p37q implies that
ˇ

ˇ

ˇ

ˇ

ˇ

pβγ

k ` 1

k
ÿ

j“2

pE
pnq
j ´ 1q

˜

1

j

j
ÿ

i“2

u
pβ´1
i,k ´

1

pβ
u
pβ´1
j,k

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď Opk´pβ q
1

k

k
ÿ

j“2

|E
pnq
j ´1|u´1

j,k ď Opkδ´pβ q
1

k

k
ÿ

j“2

|E
pnq
j ´1|uδ´1

j,k .

Property p41q yields that this quantity is oPpk
´1{2q when pβ ą 1{2 for δ small enough. When pβ ą 1,

we use p38q instead of p37q above.

pbq Concerning the second term
γpβ
k`1

řk
j“2pE

pnq
j ´ 1qu

pβ´1
j,k

ˆ

řk
i“j

E
pnq
i ´1

i

˙

, separating i “ j from i ě j ` 1

in the sum yields that it is equal to

γpβ
pk ` 1q2

k
ÿ

j“2

pE
pnq
j ´ 1q2u

pβ´2
j,k `

γpβ
k ` 1

k
ÿ

i“3

pE
pnq
i ´ 1q

˜

1

i

i´1
ÿ

j“2

u
pβ´1
j,k pE

pnq
j ´ 1q

¸

.

Properties p44q and p47) prove that this quantity is oPpk
´1{2q when pβ ą 1{2.

pcq The third term in formula p34q is a bias term. Indeed, the expression of bn,k and property p41q show
that

?
kbn,k

1

k ` 1

k
ÿ

j“2

u
pβ´1`γβ˚
j,k E

pnq
j “ ´

γ2b˚D˚C
´γb˚

pβ ` γb˚
p1` oPp1qq

?
k

ˆ

k

n

˙γβ˚

,

which yields a part of the bias term appearing in the statement of Proposition 3.

pdq The fourth term is Rk,n “
bn,k
k`1

řk
j“2pV

pβ
j,k ´ u

pβ
j,k,qu

γβ˚´1
j,k E

pnq
j . Since

?
kbn,k “ Op1q, we have,

|Rk,n| ď Op1q
?
k max

2ďjďk

|V
pβ
j,k ´ u

pβ
j,k,|

u
pβ´1{2´δ{2
j,k

1

k2

k
ÿ

j“2

u
pβ`γβ˚´3{2´δ{2
j,k E

pnq
j ,

and properties p45q and p44q imply that
?
kRk,n “ oPp1q.

peq The fifth term Bk,n “
řk
j“2 V

pβ
j,kCj,kβ

ξ1j
j “ p1`oPp1qqY

´γβ˚
n´k,nDβC

´γβ˚B̃k,n will provide the second bias

term, where we have noted B̃k,n “
řk
j“2 V

pβ
j,k pV

γβ˚
j,k ´ 1q

ξ1j
j , which is equal to the sum of 2 terms

B̃
p1q
k,n “

1

k ` 1

k
ÿ

j“2

u
pβ´1
j,k pu

γβ˚
j,k ´ 1qξ1j and B̃

p2q
k,n “

k
ÿ

j“2

´

V
pβ
j,k pV

γβ˚
j,k ´ 1q ´ u

pβ
j,kpu

γβ˚
j,k ´ 1q

¯ ξ1j
j
.

Property p40q shows that B̃
p1q
k,n converges to γ

pβ`γβ˚
´

γ
pβ
“

´γ2β˚
pβppβ`γβ˚q

. On the other hand, we obviously

have

|B̃
p2q
k,n| ď

1

k ` 1

k
ÿ

j“2

|V
pβ`γβ˚
j,k ´ u

pβ`γβ˚
j,k |u´1

j,k ξ
1
j `

1

k ` 1

k
ÿ

j“2

|V
pβ
j,k ´ u

pβ
j,k|u

´1
j,k ξ

1
j .
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If we show that 1
k`1

řk
j“2 |V

a
j,k´u

a
j,k|u

´1
j,k ξ

1
j tends to 0 for a “ pβ and a “ pβ`γβ˚, then, since Y

´γβ˚
n´k,n

is equivalent to
`

k
n

˘γβ˚
, according to p12q we will have proved that Bk,n “ ´

γ2Dββ˚C
´γβ˚

pβppβ`γβ˚q

`

k
n

˘γβ˚
`

oPp
1?
k
q. To do so, we write

1

k ` 1

k
ÿ

j“2

|V aj,k ´ u
a
j,k|u

´1
j,k ξ

1
j ď Op1q

?
k max

2ďjďk

|V aj,k ´ u
a
j,k|

u
a´1{2´δ{2
j,k

1

k3{2

k
ÿ

j“2

u
a´3{2´δ{2
j,k ξ1j .

Since a “ pβ or pβ`γβ˚ are both ą 1{2, properties p43q and p45q conclude the proof for the fifth term.

pfq The absolute value of the sixth term is shown, thanks to inequality p36q, to be lower than

pβ γ
1

pk ` 1q2

k
ÿ

j“2

u
pβ´2
j,k |E

pnq
j |.

Use of p44q with a “ 2´ pβ and assumption pβ ą 1{2 yields that this term is oPpk
´1{2q.

pgq Finally, we deal with the seventh and last term Rk,n “
ppβq

2 γ
2pk`1q

řk
j“2

1
uj,k

Ṽ
pβ
j,k plogpVj,k{uj,kqq

2
E
pnq
j , where

Ṽj,k lies between Vj,k and uj,k. On the event En,α, we have

|Rk,n| ď cst max
2ďjďk

|E
pnq
j |

log k

log k

k ` 1

k
ÿ

j“2

1

uj,k
Ṽ
pβ
j,k plogpVj,k{uj,kqq

2
ď OPp1q

log k

k ` 1

k
ÿ

j“2

u
pβ´3
j,k pVj,k ´ uj,kq

2,

where the mean value theorem and Lemma 5 were used for the second bound. Therefore, for δ ą 0,

|Rk,n| ď oPp1q

˜

?
k max

2ďjďk

|Vj,k ´ uj,k|

u
1{2´δ{2
j,k

¸2
kδ

pk ` 1q2

k
ÿ

j“2

u
pβ´2´δ
j,k .

and properties p42q and p45q (with a “ 1) yield
?
kRk,n “ oPp1q.

5.5. Proof of Lemma 1

Lemma 1 contains a number of different statements, the third and fourth ones being the most relevant
in the context of this paper.

Relation (35) is a simple consequence of the inequality ´x2 ď logp1 ´ xq ` x ď 0 (@x P r0, 1{2s)

applied to x “ 1{i. Then, since Upjq :“
řk
i“j 1{i “ 1

k`1

řk
i“j 1{ui,k, relation (36) comes from the fact that

logppk ` 1q{jq “
řk
i“j

şui`1,k

ui,k
x´1dx is included in the interval

”

1
k`1

řk
i“j 1{ui`1,k ,

1
k`1

řk
i“j 1{ui,k

ı

“

”

Upjq ´ 1{j ` 1
k`1 , Upjq

ı

Ă rUpjq ´ 1{j, Upjqs .

The spirit of the proof of relation (37) is similar : for a given 0 ă a ă 1, setting ∆i,k “ ui,kdi,k and
noting that u1´ai,k {p1´ aq “

şui,k
0

u´adu, we have

∆i,k “
1

k ` 1

i
ÿ

j“2

u´aj,k ´
1

1´ a
u1´ai,k “

i
ÿ

j“2

ż uj,k

uj´1,k

pu´aj,k ´ u
´aq du´ u1´a1,k {p1´ aq

“

i
ÿ

j“2

u1´aj,k

ż 1

1´1{j

p1´ t´aq dt´
1

p1´ aqpk ` 1q1´a

“
1

p1´ aqpk ` 1q1´a

«

i
ÿ

j“2

j1´a

˜

ˆ

1´
1

j

˙1´a

´

ˆ

1´
1´ a

j

˙

¸

´ 1

ff

Applying, for each j, the Taylor formula of order 2 to the function xÑ p1´ xq1´a ´ p1´ p1´ aqxq between
0 and 1{j (which is lower than 1{2) leads to the following bounds

´1´ ap1´ aq2a
i
ÿ

j“2

j´1´a ď p1´ aqpk ` 1q1´a∆i,k ď ´1´
ap1´ aq

2

i
ÿ

j“2

j´1´a
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and therefore we have shown that, when 0 ă a ă 1, statement (37) holds for instance with the constants
C1 “ 1{p1 ´ aq and C2 “ r1 ` ap1 ´ aq2apζp1 ` aq ´ 1qs{p1 ´ aq. This means in particular that the values
di,k are always negative, which is a fact often used in the proofs of this paper.

The proof of (38) when a ă 0 is performed similarly : we come up to

di,k “ ´
1

ui,kp1´ aqpk ` 1q1´a
´

a

2pk ` 1q´a
1

i

i
ÿ

j“2

j´1´ap1´ cjq
´1´a

where cj are values between 0 and 1{j for each 2 ď j ď i (thus lower than 1{2). The second term in the
right-hand side of the formula above being positive, and since pk ` 1q1´a ą k ` 1, we have proved the lower
bound for di,k. For the upper bound, we bound the right-hand side above by zero plus the positive value

p´a{pk` 1qq 1i
ři
j“2u

´1´a
j,k . Distinguishing the cases a ă ´1, a “ ´1 and ´1 ă a ă 0 then leads easily to the

desired upper bound.

5.6. Proof of Lemma 7

We first deal with (47). Letting Wj´1 denote 1
j

řj´1
i“2 u

pβ´1
i,k pEi ´ 1q, we remark that Ej ´ 1 and Wj´1

are independent and centered, and it is easy to check that the products pEj ´ 1qWj´1 (j “ 3 . . . k) are

then centered and uncorrelated. Therefore, it suffices to prove that 1
k

řk
j“3 EpW 2

j´1q (which is equal to the

variance of the left-hand side of (47)) converges to 0. By construction, EpW 2
j´1q “

1
j2

řj´1
i“2 u

2ppβ´1q
i,k . If

pβ ď 1, by using the inequality (37) with a “ 2p1 ´ pβq P r0, 1r, we have 1
j

řj´1
i“2 u

2ppβ´1q
i,k ď 1

2pβ´1u
2ppβ´1q
j´1,k .

If pβ ą 1, we have simply (via ui,k ď uj´1,k) 1
j

řj´1
i“2 u

2ppβ´1q
i,k ď u

2ppβ´1q
j´1,k . We can thus deduce that

EpW 2
j´1q ď

cst
j u

2ppβ´1q
j´1,k ď cst

k u
2pβ´3
j´1,k . Finally, we obtain that our quantity of interest 1

k

řk
j“3 EpW 2

j´1q is

lower than a constant times 1
k2

řk
j“3 u

2pβ´3
j´1,k , which converges to 0 because pβ ą 1{2.

Concerning (48), defining now Wj´1 as 1
j

řj´1
i“2 u

pβ`d´1
i Ei, the difference with the previous case is that

Wj´1 is not centred. However the products pEj´1qWj´1 are still uncorrelated, and it again suffices to prove

the convergence to 0 of the variance of the left-hand side of (48), which is now equal to 1
k2

řk
j“3 EpW 2

j´1q.
By the Cauchy-Schwarz inequality, we have here

EpW 2
j´1q ď E

«˜

1

j

j´1
ÿ

i“2

u
2ppβ´1q
i,k

¸˜

1

j

j´1
ÿ

i“2

E2
i

¸ff

ď
2

j

j´1
ÿ

i“2

u
2ppβ´1q
i,k ď cst u

2ppβ´1q
j´1,k

where the last inequality was shown in the treatment of (47) above. Therefore, we deduce that 1
k2

řk
j“3 EpW 2

j´1q

is lower than a constant times 1
k2

řk´1
j“2 u

2ppβ´1q
j,k , which is Opk´1q since pβ ą 1{2.

Concerning (49), we invert the two sums and then, we have to deal with

1

k2

k
ÿ

j“2

u
pβ´1
j,k pEj ´ 1q

#

k
ÿ

i“j`1

u
γβ˚´1
i,k Ei

+

.

Defining now Wj`1 as
řk
i“j`1 u

γβ˚´1
i,k Ei which is independent of Ej´1, it is easy to check that pEj´1qWj`1

(j “ 2 . . . k) are then centred and uncorrelated. Therefore, it suffices to prove the convergence to 0 of the

variance of the left-hand side of p49q, which is equal to 1
k4

řk
j“2 u

2ppβ´1q
j,k EpW 2

j`1q. By the Cauchy-Schwarz
inequality, we have

EpW 2
j`1q ď 2pk ´ jq

k
ÿ

i“j`1

u
2pγβ˚´1q
i,k ď k

k
ÿ

i“j`1

u
2pγβ˚´1q
i,k .

Inverting the two sums we deduce that 1
k4

řk
j“2 u

2ppβ´1q
j,k EpW 2

j`1q is lower than 1
k3

řk
i“3 u

2γβ˚´2
i,k

´

ři´1
j“2 u

2ppβ´1q
j,k

¯

,

which is lower than cst
k3

řk
i“3 u

2γβ˚´2
i,k i u

2ppβ´1q
i,k ď cst

k4

řk
i“3 u

´4`ε
i,k (ε ą 0), which converges to 0.

Concerning finally (50), the method developed above works similarly. By noting W 1
l,n “ l´1

řl´1
j“2 u

pβ´1
j,k Ej

and Wi,n “ i´1
ři´1
l“3pEl ´ 1qW 1

l,n, the variables W 1
l,n are not centred but their variance can be shown to be

lower than a constant times u
2ppβ´1q
l,k . Since W 1

l,n and El ´ 1 are independent, the variables pEl ´ 1qW 1
l,n

are centred and uncorrelated, and thus Wi,n has a variance lower than a constant times k´1u
´1´2p1´pβq
i,k ,
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and is independent of pEi ´ 1q, so the variance of the left-hand side of p50q is lower than a constant times

k´2
řk
i“4 u

´1´2p1´pβq
i,k , where 1` 2p1´ pβq ă 2 when pβ ą 1{2. The proof is then over via relation p42q.

5.7. Proof of Lemma 8

First, let us recall that δi “ IUiďppZiq with pUiq uniformly distributed and independent of the Zi’s. Then,
let us settle the following notations. First, the difference δn´i`1,n ´ p will be systematically cut in three
terms

δn´i`1,n ´ p
d
“ ∆

p1q
i `∆

p1q
i `∆

p1q
i where

$

’

&

’

%

∆
p1q
i “ IUiďp ´ p,

∆
p2q
i “ IUiďp˝UHpn{iq ´ IUiďp,

∆
p3q
i “ IUiďp˝UHpYn´i`1,nq ´ IUiďp˝UHpn{iq.

The first of these terms will be the less negligible one, but the easiest to deal with. The second one will still

be simple to handle, but leads to non-centered factors. The third one, ∆
p3q
i , will be the ”smallest”, but the

most difficult to deal with, since it is correlated with the observations pZiq (and therefore with the variables

E
pnq
j ). In the sequel, cst will design an absolute positive constant which varies from line to line.

We start by proving p51q. Setting Win “
1
i

ři´1
j“2 u

pβ´1
j,k pE

pnq
j ´ 1q and A

pmq
n “ k´1{2

řk
i“3 ∆

pmq
i Win, we

intend to prove that VpAp1qn q and VpAp2qn q go to 0 as n Ñ 8, and that A
p3q
n converges to 0 in probability.

Concerning first A
p1q
n , we note that the variables ∆

p1q
i are i.i.d. centered and independent of the variables

pE
pnq
j q and thus of the centered Win : therefore, the product ∆

p1q
i Win is centered and uncorrelated with

∆
p1q
i1 Wi1n for any i ‰ i1, and consequently

VpAp1qn q “
1

k

k
ÿ

i“3

Vp∆p1qi Winq “
1

k

k
ÿ

i“3

pp1´ pqVpWinq ď
cst

k2

k
ÿ

i“3

u
´1´2p1´pβq
i,k

nÑ8
ÝÑ 0

because 1` 2p1´ pβq ă 2 when pβ ą 1{2. Above we have bounded VpWinq with similar tools as those used

in the proof of Lemma 7, by a constant times 1
k`1u

´1´2p1´pβq
i,k .

Concerning now A
p2q
n , we note that the variables ∆

p2q
i are not centered but are still independent, and

independent of theWin. SinceWin is centered, the products ∆
p2q
i Win are still centered but are now correlated,

since, for i1 ă i,

Covp∆
p2q
i Win,∆

p2q
i1 Wi1nq “ Ep∆p2qi qEp∆

p2q
i1 qEpWinWi1nq ‰ 0.

Using relation p55q of Lemma 9, both the variance and the absolute value of the expectation of ∆
p2q
i turn

out to be lower than cst pi{nqγβ˚ , which, due to assumption p12q, is itself lower than cst k´1{2. On the other
hand, we have, for i1 ă i,

CovpWin,Wi1nq “ EpWi1nWinq “
i1

i
E
`

W 2
i1n

˘

` E

˜

Wi1n.
1

i

i´1
ÿ

j“i1

u
pβ´1
j,k pE

pnq
j ´ 1q

¸

“
i1

i
E
`

W 2
i1n

˘

Therefore, we may write that (using the bound Ep∆p2qi q ď cst k´1{2 in the second term below, but simply

bounding |∆
p2q
i | by 1 in the first term)

VpAp2qn q “
1

k

k
ÿ

i“3

E
´

p∆
p2q
i q

2W 2
in

¯

`
2

k

k
ÿ

i“4

i´1
ÿ

i1“3

Ep∆p2qi qEp∆
p2q
i1 qCovpWin,Wi1nq

ď
1

k

k
ÿ

i“3

E
`

W 2
in

˘

`
cst

k2

k
ÿ

i“4

i´1
ÿ

i1“3

E
`

W 2
i1n

˘

ď
cst

k2

k
ÿ

i“3

u
´1´2p1´pβq
i,k

and this converges to 0 when pβ ą 1{2, as desired.

In order to finish the proof of p51q, we have to justify that the last part, A
p3q
n , converges to 0 in probability.

Our proof is based on the important fact that, for any value p̃ Ps1{2, pβs,

1
?
k

k
ÿ

i“3

|∆
p3q
i | u

p̃´1
i,k “

1
?
k

k
ÿ

i“3

ˇ

ˇIUiďp˝UHpYn´i`1,nq ´ IUiďp˝UHpn{iq
ˇ

ˇ up̃´1
i,k

P
ÝÑ 0. (58)
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This result is very close to the one stating that
?
kB

p1q
k,n “ oPp1q in subsection 5.2.1, it is proved completely

similarly, therefore details are omitted. Therefore, in view of relation p58q, convergence in probability to 0

of A
p3q
n will follow from the following statement : for every A ą 0,

P
ˆ

max
3ďiďk

|Win{u
p̃´1
i,k | ą A

˙

nÑ8
ÝÑ 0. (59)

Considering the sum of independent variables Si “
ři´1
j“2 j

pβ´1pEj ´ 1q (where Ej denote iid standard

exponential variables), we have Win{u
p̃´1
i,k

d
“ kp̃´pβSi{i

p̃, and therefore, application of the Hájek-Rényi
maximal inequality (see for instance Section 7.4 of Chow and Teicher (1997)) leads to

P
ˆ

max
3ďiďk

|Win{u
p̃´1
i,k | ą A

˙

ď pAkpβ´p̃q´2
k
ÿ

i“2

Eppipβ´1pEi ´ 1qq2q

i2p̃
“

1

A2
k´2ppβ´p̃q

k
ÿ

i“2

i´2`2ppβ´p̃q

which goes to 0 as n Ñ 8, since 0 ă pβ ´ p̃ ă 1{2, and this proves (59). This ends the justification of
relation (51).

Concerning now relation p52q, we again divide δn´i`1,n ´ p in three parts as above, and the ∆
p3q
i part is

proved by combining relation (58) with Lemma 5; the other two parts are easy to deal with.

Concerning relation p54q, we proceed similarly as for p51q, defining now

Win “
1

i

i´1
ÿ

j“3

pE
pnq
j ´ 1q

˜

1

j

j´1
ÿ

l“2

u
pβ´1
j,k E

pnq
l

¸

and Apmqn “ k´1{2
k
ÿ

i“4

∆
pmq
i Win for m “ 1, 2, 3.

These variables Win are still centered, and their variance and covariances can be bounded in exactly the same

way as were those of 1
i

ři´1
j“2pE

pnq
j ´1qu

pβ´1
j,k : therefore, convergence to 0 of the variances of the corresponding

terms A
p1q
n and A

p2q
n is proved as above. And since Win also possesses an appropriate martingale structure

to which the Hájek-Rényi maximal inequality can be applied, convergence in probability to 0 of A
p3q
n holds,

and so does p54q.

Concerning finally relation p53q, we write its left-hand side as the sum of the following three expressions,

noting W 1
ln “

1
l

řl´1
j“2 u

pβ´1
j,k E

pnq
j ,

Ap1qn “
1
?
k

k
ÿ

i“4

pE
pnq
i ´ 1q

#

1

i

i´1
ÿ

l“3

∆
p1q
i W 1

ln

+

, Ap2qn “
1
?
k

k
ÿ

i“4

pE
pnq
i ´ 1q

#

1

i

i´1
ÿ

l“3

∆
p2q
i W 1

ln

+

and

Ap3qn “
1
?
k

k´1
ÿ

i“3

∆
p3q
i

˜

1

i

i´1
ÿ

j“2

u
pβ´1
j,k E

pnq
j

¸˜

k
ÿ

l“i`1

E
pnq
l ´ 1

l

¸

.

As sums of centered and uncorrelated terms, the quantities A
p1q
n and A

p2q
n can be handled similarly as

previously (with a bit more efforts for A
p2q
n ), and their variances shown to go to zero. Concerning now A

p3q
n ,

setting S̃i “
řk
l“i`1pE

pnq
l ´ 1q{l and Win “

1
i

ři´1
j“2 u

pβ´1
j,k pE

pnq
j ´ 1q, we have, for p̃ Ps1{2, pβr,

|Ap3qn | ď max
3ďiďk´1

u1´p̃i,k |WinS̃i|.
1
?
k

k´1
ÿ

i“3

|∆
p3q
i |u

p̃´1
i,k ` max

3ďiďk´1
|S̃i|.

cst
?
k

k´1
ÿ

i“3

|∆
p3q
i |u

pβ´1
i,k

In view of statements (58) and (59), we thus have to prove that maxiďk |S̃i| is bounded in probability . But

since maxiďk |S̃i| ď |Sk| ` maxiďk |Si| where Si “
ři
l“1pE

pnq
l ´ 1q{l, and VpSkq “

řk
l“1 1{l2 ď π2{6, the

Markov inequality and the usual maximal inequality of Kolmogorov yield the desired result, for any A ą 0,
Prmax3ďiďk´1 |S̃i| ą As ď 8VpSkq{A2 ď cst{A2, which is as small as desired.

5.8. Proof of Lemma 10

Formula p33q yields

k
ÿ

i“2

Ai,n
1

i

˜

i
ÿ

j“2

pV
pβ
j,k ´ u

pβ
j,k,q

E
pnq
j

j

¸

“ R1,n `R2,n `R3,n,
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with

R1,n “ ´pβ
řk
i“2Ai,n

1
i

ři
j“2 u

pβ
j,k,

ˆ

řk
l“j

pE
pnq
l ´1q

l

˙

E
pnq
j

j

R2,n “ ´pβ
řk
i“2Ai,n

1
i

ři
j“2 u

pβ
j,k,

´

řk
l“j

1
l ´ log k`1

j

¯

E
pnq
j

j

R3,n “
p2β
2

řk
i“2Ai,n

1
i

ři
j“2 Ṽ

pβ
j,k

´

log
Vj,k
uj,k

¯2 E
pnq
j

j ,

where Ṽj,k lies between Vj,k and uj,k. The main term is R1,n, but we consider R2,n and R3,n first. Inequality
p36q in Lemma 1 implies that, for δ ą 0,

?
k|R2,n| ď Op1q

˜

1

k

k
ÿ

i“2

|Ai,n|u
δ´1
i,k

¸ ˜

1

k3{2

k
ÿ

j“2

u
pβ´2´δ
j,k E

pnq
j

¸

.

Hence
?
kR2,n tends to 0 thanks to p41q and p44q, with pβ ą 1{2. Now, concerning R3,n, we proceed as in

the proof of Proposition 3 part pgq. Using the mean value theorem, Lemma 5 and then applying property
p45q (with a “ 1), then, working on the event En,α defined in p30q, we have, for δ ą 0,

?
k|R3,n| ď oPp1q

˜

1

k

k
ÿ

i“2

|Ai,n|u
δ´1
i,k

¸ ˜

kδ

k3{2

k
ÿ

j“2

u
pβ´2´2δ
j,k

¸

,

and we conclude using p41q and p42q. We thus have to deal with the first term R1,n, and we start by
separating the cases l “ j and l ą j to obtain

R1,n “ ´pβ

k
ÿ

i“2

Ai,n
1

i

i
ÿ

j“2

u
pβ
j,k,

pE
pnq
j ´ 1q

j

E
pnq
j

j
´ pβ

k
ÿ

i“2

Ai,n
1

i

i
ÿ

j“2

u
pβ
j,k,

˜

k
ÿ

l“j`1

pE
pnq
l ´ 1q

l

¸

E
pnq
j

j
.

We prove easily that the first term of the right-hand side is oPp1{
?
kq, using p41q and p44q. For the second

term, we separate the cases j “ i and j ă i and obtain

k´1
ÿ

i“2

Ai,n
1

i
u
pβ
i,k

˜

k
ÿ

l“i`1

pE
pnq
l ´ 1q

l

¸

E
pnq
i

i
`

k
ÿ

i“3

Ai,n
1

i

i´1
ÿ

j“2

u
pβ
j,k,

E
pnq
j

j

˜

k
ÿ

l“j`1

pE
pnq
l ´ 1q

l

¸

.

We prove easily, using p41q and p44q, that the first term of the right-hand side is oPp1{
?
kq. The second term

is split in two by separating the cases j ` 1 ď l ď i and i` 1 ď l ď k. We obtain the following two terms

R11,n “
řk
i“3Ai,n

1
i

ři´1
j“2 u

pβ
j,k,

E
pnq
j

j

ˆ

ři
l“j`1

E
pnq
l ´1

l

˙

R12,n “
řk´1
i“3 Ai,n

1
i

ři´1
j“2 u

pβ
j,k,

E
pnq
j

j

ˆ

řk
l“i`1

E
pnq
l ´1

l

˙

.

Inverting the sum in i and the sum in l, we see that
?
kR12,n tends to 0 thanks to properties p50q and p53q

in Lemmas 7 and 8. Now, inverting the sum in l and the sum in j yields

R11,n “
k
ÿ

i“3

Ai,n
1

i

i
ÿ

l“3

E
pnq
l ´ 1

l

˜

l´1
ÿ

j“2

u
pβ
j,k,

E
pnq
j

j

¸

.

Separating finally the cases l “ i and l ă i, we obtain the following two terms :

R21,n “
řk
i“3Ai,n

E
pnq
i ´1

i2

ˆ

ři´1
j“2 u

pβ
j,k,

E
pnq
j

j

˙

,

R22,n “
řk
i“4Ai,n

1
i

ři´1
l“3

E
pnq
l ´1

l

ˆ

řl´1
j“2 u

pβ
j,k,

E
pnq
j

j

˙

.

?
kR22,n tends to 0 thanks to properties p50q and p54q in Lemmas 7 and 8. We now conclude the proof of

this lemma by proving that
?
kR21,n tends to 0. Since |Ai,n| ď E

pnq
i ` 2,

Ep|R21,n|q ď Op1q
1

k

k
ÿ

i“3

1

i2

i´1
ÿ

j“2

u
pβ´1
j,k ,

and the right-hand side tends to 0 using p37q (or p38q) and p42q.
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5.9. Elements of proof for the other lemmas

Concerning Lemmas 2 and 3, relation p39q is just the convergence of a Riemann sum, (42) is just one
definition of the Zeta function, statements (40) and (43) have been proved in Lemma 2 of Worms and Worms
(2014) respectively for 0 ă a ă 1 and a ą 1 (for (40), the treatment of the case a ď 0 is similar). Property
(41) is a simple application of the triangular law of large numbers, whereas property (44) is deduced easily
from p39q. Details are omitted.

Lemma 5 is a simple consequence of the fact that the exponential distribution admit a finite exponential
moment. Proof of Lemma 9 is omitted (see Beirlant et al. (2016) for (55)).

Lemma 4 is based on the fact that the uniform empirical quantile process based on a uniform sample of
size k satisfies

?
k sup1{pk`1qďtďk{pk`1q

ˇ

ˇpΓ´1
k ptq ´ tq{t

1{2´δ{2
ˇ

ˇ “ OPp1q (see, for example, Shorack and Wellner

(1986) sections 10.3 and 11.5). Since Γ´1
k ptq “ Vj,k, for j´1

k ď t ď j
k , this yields relation p45q for a “ 1.

From the mean value theorem and working on the event En,α defined in p30q, relation p45q for a general
a ą 0 follows easily.
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