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. However the asymptotic normality of the type of estimators first proposed in Worms and Worms (2014) was still lacking. We derive an asymptotic representation and the asymptotic normality of the larger class of estimators and consider their finite sample behaviour. Special attention is paid to the case of heavy censoring, i.e. where the amount of censoring in the tail is at least 50%. We obtain the asymptotic normality with a classical ? k rate where k denotes the number of top data used in the estimation, depending on the degree of censoring.

Introduction

Starting from [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF], the estimation of the extreme value index in a censorship framework is of growing interest. Suppose we observe a sample of n independent couples pZ i , δ i q 1ďiďn where Z i " minpX i , C i q and δ i " I XiďCi .

The i.i.d. samples pX i q iďn and pC i q iďn , of respective continuous distribution functions F and G, are samples from the variable of interest X and of the censoring variable C, measured on n individual items (insurance claims, hospitalized patients, ...). The variables X and C are supposed to be independent and, for convenience only, we will suppose in this work that they are non-negative. We will denote by Z 1,n ď . . . ď Z i,n ď . . . ď Z n,n the order statistics associated to the observed sample, and by pδ 1,n , . . . , δ n,n q the corresponding indicators of non-censorship. [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] presented a general method for adapting estimators of the extreme value index in this censorship framework. [START_REF] Worms | New estimators of the extreme value index under random right censoring, for heavy-tailed distributions[END_REF] proposed a more survival analysis-oriented approach restricted to the heavy tail case, while [START_REF] Diop | Nonparametric estimation of the conditional tail index and extreme quantiles under random censoring[END_REF] extended the framework to data with covariate information. [START_REF] Beirlant | Bias reduced tail estimation for censored Pareto type distributions[END_REF] and [START_REF] Beirlant | Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications[END_REF] proposed bias-reduced versions of two existing estimators. See also [START_REF] Brahimi | Necir Approximations to the tail index estimator of a heavy-tailed distribution under random censoring and application[END_REF], [START_REF] Brahimi | Nelson-Aalen tail product-limit process and extreme value index estimation under random censorship[END_REF] and [START_REF] Brahimi | Tail empirical process and a weighted extreme value index estimator for randomly right-censored data[END_REF] for other papers on the subject.

In this paper, we propose a new class of estimators that encompasses one of the estimators proposed in [START_REF] Worms | New estimators of the extreme value index under random right censoring, for heavy-tailed distributions[END_REF] and propose a novel approach to prove the asymptotic normality of these estimators which was unknown up to now for the case β " 0. We consider here that the distributions F and G are heavy-tailed, with positive and respective extreme value indices (EVI) γ 1 and γ 2 , i.e.

F pxq " 1 ´F pxq " x ´1{γ1 l F pxq and Ḡpyq " 1 ´Gpyq " y ´1{γ2 l G pyq, where l F and l G are slowly varying at infinity. Our target is the EVI γ 1 , which we try to recover from our randomly censored observations.

Denoting the distribution function of Z with H, by independence of X and C we readily obtain Hpzq " 1 ´Hpzq " z ´1{γ l H pzq, where l H " l F l G and the EVI γ of Z is related to those of X and C via the important relation 1{γ " 1{γ 1 `1{γ 2 . Further in this paper, we will denote by p the crucial quantity p " γ{γ 1 " γ 2 {pγ 1 `γ2 q Ps0, 1r, which has to be interpreted as the asymptotic proportion of non-censored observations in the tail.

We assume in this work that the slowly varying functions l F and l G satisfy the second order condition first proposed by Hall and Welsh (1985). This yields the so called "Hall-type" model, i.e. as x, y Ñ `8, F pxq " C 1 x ´1{γ1 `1 `D1 x ´β1 p1 `op1qq ˘(1)

Ḡpyq " C 2 y ´1{γ2 `1 `D2 y ´β2 p1 `op1qq ˘(2)

where β 1 , β 2 , C 1 ,C 2 are positive constants and D 1 , D 2 are real constants. Then, setting

C " C 1 C 2 , β ˚" minpβ 1 , β 2 q, and D ˚" $ & % D 1 if β 1 ă β 2 , D 2 if β 2 ă β 1 , D 1 `D2 if β 1 " β 2 ,
we have, as z Ñ 8,

Hpzq " Cz ´1{γ `1 `D˚z ´β˚p 1 `op1qq ˘.

(3)

Correspondingly, with H ´puq " inftz : Hpzq ě uu (0 ă u ă 1) the quantile function corresponding to H, we consider U H pxq " H ´p1 ´1{xq, the right-tail function of H, for which as x Ñ 8,

U H pxq " C γ x γ `1 `γD ˚C ´β˚γ x ´β˚γ p1 `op1qq ˘. (4) 
Let us now explain how we build our new family of estimators of γ 1 . For some real number β, consider the Box-Cox transform k ´β puq " ş u 1 t ´β´1 dt for u ą 1, with the case β " 0 leading to k 0 puq " logpuq. Based on the relation 

lim tÑ8 E r k ´β pX{tq | X ą t s " lim tÑ8 ż 8 1 s F putq s F ptq dk ´β puq " γ 1 1 `βγ 1 , (5) 

˙˙(7)

where k " k n denotes an integer sequence satisfying k n Ñ 8 and k n " opnq. With β " 0 we thus obtain the estimator

p γ pW q 1,k :" p T k p0q " k ÿ j"2 s F KM n pZ n´j`1,n q s F KM n pZ n´k,n q log ˆZn´j`1,n Z n´j,n ˙(8)
of γ 1 which was considered in [START_REF] Worms | New estimators of the extreme value index under random right censoring, for heavy-tailed distributions[END_REF] and [START_REF] Beirlant | Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications[END_REF]. In fact p γ pW q

1,k turns out to be very close to the estimator

ř k j"1 s F KM n pZ ń´j`1,n q s F KM n pZ n´k,n q log Zn´j`1,n
Zn´j,n defined in equation ( 12) of [START_REF] Worms | New estimators of the extreme value index under random right censoring, for heavy-tailed distributions[END_REF] based on ideas issued from the so-called Leurgans approach in survival regression analysis. The difference concerns a different way to circumvent the use of s F KM n at Z n,n : whether using left-limits or deleting s F KM n pZ n,n q as in p γ pW q 1,k .

Note that the statistics p T k pβq were used in [START_REF] Beirlant | Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications[END_REF] to obtain a bias-reduced version of the estimator p γ pW q 1,k :

p γ pBRq 1,k " p γ pW q 1,k ´p1 `β1 p γ pW q 1,k q 2 p1 `2β 1 p γ pW q 1,k q pβ 1 p γ pW q 1,k q 2 ˜p T k pβ 1 q ´p γ pW q 1,k 1 `β1 p γ pW q 1,k ¸, (9) 
where β 1 denotes the second order parameter of F in assumption (1). Now, it is clear from (5) that we can construct the following estimator of γ 1 when the tuning parameter β is supposed to be larger than ´1{γ 1 :

p γ 1,k pβq " p T k pβq 1 ´β p T k pβq . ( 10 
)
We will compare these estimators with the pseudo maximum likelihood estimator which was first proposed in the random censoring context by [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF] and [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF]:

p γ pHq 1,k " 1 p p n 1 k k ÿ i"1 log Z n´i`1,n Z n´k,n where p p n " 1 k k ÿ i"1 δ n´i`1,n . (11) 
In [START_REF] Beirlant | Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications[END_REF] a small sample simulation study was performed using all those available estimators and it was found that p γ pW q 1,k overall shows quite good bias and MSE performance. However, since no results on the asymptotic normality of this estimator were available yet, these authors proposed the use of a bootstrap algorithm to construct confidence intervals. In this paper we prove the asymptotic normality of p γ 1,k pβq in the case p `βγ ą 1 2 . Hence this paper provides the first complete proof of the asymptotic normality for p γ pW q 1,k in case p ą 1 2 , issued from an explicit asymptotic development stated in Theorem 1 of the next section. In the deterministic threshold case, this central limit result (for p γ pW q 1,k ) had already been obtained in Worms and Worms (2018), where a more general competing risks setting was considered, and using a different approach from the present proof.

The restriction p ą 1 2 is rather restrictive for instance in insurance problems such as those discussed in [START_REF] Beirlant | Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications[END_REF] where heavy censoring appears. The introduction of the class of estimators p γ 1,k pβq helps to circumvent this problem when considering β ą 0.

Finally, in the next section, we will see that our results also lead to the statement of the asymptotic normality of the bias-reduced estimator p γ pBRq 1,k , which was not known so far.

Our paper is organized as follows: in Section 2, we state and discuss the asymptotic normality result for p γ 1,k pβq and p γ pBRq 1,k . Section 3 is devoted to the proof. Technical aspects of the proof are postponed to the Appendix. In Section 4 we discuss the finite sample behavior of the different estimators p γ 1,k pβq with β ą ´1{γ 1 , and of p γ pBRq 1,k .

Results

Our first and main result states the asymptotic behavior of the statistics p T k pβq defined in (7). This result entails the asymptotic normality of the estimator p γ pW q 1,k of γ 1 by considering the particular case β " 0. The main condition is that the heaviness of the tail of the censoring variable C should be sufficiently high with respect to the one of the variable X. More precisely, introducing the notation p β " p `γβ " pp1 `γ1 βq, the condition is be that p β must be larger than 1{2 (i.e. γ 2 ą γ 1 {p1 `2γ 1 βq).

Theorem 1. Let conditions p1q and p2q hold. We assume further that p β ą 1 2 , and

? k pk{nq γβ˚nÑ8 ÝÑ λ, (12) 
and, if λ " 0, that n " Opk B n q for some large enough B ą 0. We then have, as n Ñ 8, ?

k ˆp T k pβq ´γ1 1 `γ1 β ˙" G n `λm β `oP p1q where G n d " γ p β 1 ? k k ÿ i"2 u p β ´1 i,k pppE i ´1q ´pI Uiďp ´pqq
with pE i q and pU i q denoting independent iid samples with, respectively, standard exponential and standard uniform distributions, and

m β " " ´γ2 β 1 D 1 C ´γβ1 p ´1 β pp β `γβ 1 q ´1 if β 1 ď β 2 , 0 if β 1 ą β 2 .
Therefore, as n Ñ 8,

? k ˆp T k pβq ´γ1 1 `γ1 β ˙d ÝÑ N pλm β , σ 2 β q where σ 2 β " γ 2 p 2 β p 2p β ´1 " γ 2 1 p 2p ´1 p 2 p 2 β 2p ´1 2p β ´1 .
Since G n is a sum of independent random variables, it is then easy, using Lyapunov's CLT and the delta-method, to derive the following asymptotic normality result for the family of estimators p γ 1,k pβq of γ 1 defined by (10).

Corollary 1. Under the conditions of Theorem 1, as n Ñ 8, ? kpp γ 1,k pβq ´γ1 q

d ÝÑ N pλm γ1,β , σ 2 γ1,β q where σ 2 γ1,β " γ 2 p 2 β p 2p β ´1 p1 `βγ 1 q 4 " γ 2 1 p 2p ´1 p1 `βγ 1 q 2 2p ´1 2p β ´1 and m γ1,β " " ´γ2 β 1 D 1 C ´γβ1 p ´1 β pp β `γβ 1 q ´1p1 `βγ 1 q 2 if β 1 ď β 2 , 0 if β 1 ą β 2 . Remark 1. Since p γ pW q 1,k " p T k p0q " p γ 1,k p0q
, taking β " 0 in Theorem 1 or in Corollary 1 entails the asymptotic normality for p γ pW q 1,k when p ą 1{2, i.e. when γ 2 ą γ 1 . When β ą 0, the asymptotic normality for p γ 1,k pβq holds under the weaker assumption p β ą 1{2, i.e. γ 2 ą γ 1 {p1 `2γ 1 βq, and therefore allowing for stronger censoring in the tail. On the other hand the restriction becomes worse for negative β.

When β 1 ď β 2 the absolute value of the asymptotic bias of p γ 1,k pβq is increasing in β. For a bias comparison for the case β 1 ą β 2 one needs third order assumptions. On the other hand the asymptotic variance of p γ 1,k pβq is decreasing in β as long as p β ă 1 and is increasing as p β ą 1. It is difficult to say anything in general about the comparison of the asymptotic mean-squared error of p γ 1,k pβq with respect to p γ pW q 1,k . It is of course, when β ą 0 and p gets close to the value 1{2, in favor of p γ 1,k pβq, at least from a theoretical point of view.

Remark 2. From [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF] it follows that the asymptotic variance of p γ pHq 1,k is given by 1 k γ 2 1 p , which, for all 1{2 ă p ă 1 is lower than the asymptotic variance 1 k pγ 2 1 2p´1 of p γ pW q 1,k . On the other hand, in case β 1 ď β 2 it follows from [START_REF] Beirlant | Bias reduced tail estimation for censored Pareto type distributions[END_REF] that the absolute value of the asymptotic bias of p γ pHq 1,k equals pk{nq γβ˚| m γ1,0 | 1`γ1β1 1`γβ1 , which is larger than pk{nq γβ˚| m γ1,0 | stated in the above theorem.

Remark 3. The asymptotic distribution of p γ pW q 1,k in case p ď 1 2 , and in general of p γ 1,k pβq in case p β ď 1 2 , is not known. The authors conjecture that asymptotic normality still holds, however with a slower rate than k ´1{2 , presumably k ´p when p ă 1{2, but the method of proof outlined below could not be carried through in that case.

Combining the asymptotic developments of p γ pW q 1,k and p T k pβq for β " β 1 , which are both weighted sums of the same i.i.d. random variables ppE i ´1q ´pI Uiďp ´pq, and relying on the two-dimensional Lyapunov's CLT and the delta-method, it is now possible to deduce the following asymptotic normality result for the bias-reduced version of p γ pW q 1,k introduced in [START_REF] Beirlant | Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications[END_REF]. The proof is omitted for brevity.

Corollary 2. Under the conditions of Theorem 1 and assuming that p ą 1{2, as n Ñ 8, we have

? kpp γ pBRq 1,k ´γ1 q d ÝÑ N p0, σ 2 pBRq q where, with δ " p β1 ´p " γβ 1 , σ 2 pBRq :" γ 2 1 p 2p
´1 pp `δq 2 ppp `δq 2 `p1 ´pq 2 `δ `δ2 q δ 2 p2p ´1 `δqp2p ´1 `2δq .

Remark 4. While the asymptotic bias of p γ pBRq 1,k is always 0, its asymptotic variance is in general larger than those of the competing estimators.

Proof of Theorem 1

Let us introduce the following important notations with 1 ď i, j ď k:

ξ j " j log Z n´j`1,n Z n´j,n and u i,k " i k `1 , (13) 
as well as the ratios

y RF j " s F KM n pZ n´j`1,n q s F KM n pZ n´k,n q and RF j " s F pZ n´j`1,n q s F pZ n´k,n q . ( 14 
)
If we also define ξ j,k,β " ξ j if β " 0 and otherwise

ξ j,k,β " j ˆk´β ˆZn´j`1,n Z n´k,n ˙´k ´β ˆZn´j,n Z n´k,n ˙˙" j β ˜ˆZ n´j,n Z n´k,n ˙´β ´ˆZ n´j`1,n Z n´k,n ˙´β ţhen, from p7q, we have p T k pβq :" k ÿ j"2 s F KM n pZ n´j`1,n q s F KM n pZ n´k,n q ξ j,k,β j
where, using a Taylor expansion (of order 2) ,

ξ j,k,β " j β ˆexp ´β log ´Zn´j,n Z n´k,n ¯´exp ´β log ´Zn´j`1,n Z n´k,n ¯˙" ξ j ˆZn´j`1,n Z n´k,n ˙´β `β ξ 2 j 2j ˜Z j,n Z n´k,n ¸´β , (15) 
for some variables Zj,n satisfying Z n´j,n ď Zj,n ď Z n´j`1,n .

The overall objective is to appropriately use the relation between the variables ξ j and standard exponential order statistics E pnq j defined below, as well as between the ratios RF j and pZ n´j`1,n {Z n´k,n q ´β and uniform order statistics V j,k (with mean u j,k ) also defined below, in order to prove Theorem 1. Indeed, let pY i q denote i.i.d. standard Pareto rv's defined by Z i " U H pY i q, and let Ỹk´j`1,k " Y n´j`1,n {Y n´k,n , V j,k " 1{ Ỹk´j`1,k , and E pnq j " j logpY n´j`1,n {Y n´j,n q, 1 ď j ď k. (16)

It is then known that pV 1,k , . . . , V j,k , . . . , V k,k q follows the distribution of the vector of order statistics of a standard uniform random sample of size k, and that the variables pE pnq 1 , . . . , E pnq k q are jointly equal in distribution to a sample of size k of independent standard exponential rv's. [START_REF] Beirlant | On exponential representations of log spacings of order statistics[END_REF] showed that the rv's ξ j and E pnq j are related as follows: ξ j " ξ 1 j `Rn,j , where we define ξ

1 j " pγ `uγβj ,k b n,k qE pnq j , (17) 
where b n,k is asymptotically equivalent to ´γ2 β ˚D˚C ´γβ˚´k`1 n`1 ¯γβ˚, as k, n Ñ 8 and k{n Ñ 0. Properties of the remainder term R n,j will be detailed in Subsection 3.1 . Equation p17q thus implies that

ξ j,k,β " ξ 1 j,k,β `Rn,j,β , (18) 
where

ξ 1 j,k,β " ξ 1 j ˆZn´j`1,n Z n´k,n ˙´β (19) R n,j,β " R n,j ˆZn´j`1,n Z n´k,n ˙´β `β ξ 2 j 2j ˜Z j,n Z n´k,n ¸´β . ( 20 
)
We can now start breaking down p T k pβq ´γ1 1`γ1β into several terms by writing:

p T k pβq ´γ1 1 `γ1 β " k ÿ j"2 y RF j ξ j,k,β j ´γ1 1 `γ1 β " ˜k ÿ j"2 y RF j ξ 1 j,k,β j ´γ1 1 `γ1 β ¸`k ÿ j"2 y RF j R n,j,β j " k ÿ j"2 ˜y RF j RF j ´1¸R F j ξ 1 j,k,β j `˜k ÿ j"2 RF j ξ 1 j,k,β j ´γ k `1 k ÿ j"2 u p β ´1 j,k γ k `1 k ÿ j"2 u p β ´1 j,k ´γ p β ķ ÿ j"2 y RF j R n,j,β j " T p1q k,n `T p2q k,n `Rp0q n `Rp1q n , (21) 
with

T p1q k,n " k ÿ j"2 ´log y RF j ´log RF j ¯RF j ξ 1 j,k,β j `k ÿ j"2 # ´log y RF j RF j ´˜1 ´y RF j RF j ¸+ RF j ξ 1 j,k,β j " T p1,1q k,n `T p1,2q k,n . (22) 
The term T p1,1q k,n is introduced in order to make logarithms of the Kaplan-Meier product appear, leading to manageable sums. Indeed, by definition of s

F KM n we find that log y RF j " k ÿ i"j δ n´i`1,n log `i´1 i ˘and log RF j " ´1 γ 1 k ÿ i"j ξ i i `ˆlog RF j `1 γ 1 log Z n´j`1,n Z n´k,n ˙.
Consequently, defining the following important notations

RF j,β " RF j ˆZn´j`1,n Z n´k,n ˙´β i " 2, . . . , k, (23) 
and

S i,k,β " 1 i i ÿ j"2 RF j,β ξ 1 j j , i " 2, . . . , k, (24) 
by inverting sums we obtain

T p1,1q k,n " k ÿ i"2 " 1 γ 1 pξ i ´γq ``δ n´i`1,n i log `i´1 i ˘`p ˘ S i,k,β ´k ÿ j"2 ˆlog RF j `1 γ 1 log Z n´j`1,n Z n´k,n ˙RF j,β ξ 1 j j " T p1,1,1q k,n ´T p1,1,2q k,n . (25) 
To summarize,

p T k pβq ´γ1 1 `γ1 β " T p1,1,1q k,n ´T p1,1,2q k,n `T p1,2q k,n `T p2q k,n `Rp0q n `Rp1q n . (26) 
Introducing now the additional notations

c i " 1 `i log i ´1 i , A i,n " ppE pnq i ´1q ´pδ n´i`1,n ´pq, and B i,n " 1 γ 1 b n,k u β˚γ i,k E pnq i ,
and using p17q, one readily obtains the following formula for the main term

T p1,1,1q k,n : T p1,1,1q k,n " k ÿ i"2 A i,n S i,k,β `k ÿ i"2 B i,n S i,k,β `k ÿ i"2 δ n´i`1,n c i S i,k,β `1 γ 1 k ÿ i"2 R n,i S i,k,β . (27) 
In the sequel, we will show that the variables S i,k,β can be approximated appropriately by

γ p β 1 k`1 u p β ´1
i,k . Also, as it is explained in [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF], on one hand the parameter p " γ{γ 1 " γ2 γ1`γ2 is the limit of ppzq " Ppδ " 1|Z " zq as z Ñ 8, and on the other hand the original observations pZ i , δ i q iďn have the same distribution as the variables pZ 1 i , δ 1 i q iďn , where pZ 1 i q iďn is an independent copy of the sequence pZ i q iďn , δ 1 i " I UiďppZ 1 i q and pU i q iďn denotes some given i.i.d. sequence of standard uniform random variables (shortened to rv's), which are independent of the sequence pZ 1 i q iďn . We thus carry on the proof by considering from now on that the observations δ i and Z i are related by the formula

δ i " I UiďppZiq .
Mimicking what is done in [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF], we will later (see proof of Lemma 8) approximate the rv's δ n´i`1,n by i.i.d Bernoulli rv's I Uiďp .

The main goal will thus be to prove that the term ř k i"2 A i,n S i,k,β above is (up to a bias term) close to the main random term appearing in Theorem 1

γ p β 1 k `1 k ÿ i"2 tppE i ´1q ´pI Uiďp ´pqu u p β ´1 i,k (28) 
The other terms in p27q will be bias or remainder terms, noting that the coefficients c i are close to 0.

The second term T p1,1,2q k,n in p26q turns out to be adding to the bias since it only involves the slowly varying function l F . The treatment of the third term T p1,2q k,n above is very important since it strongly participates to the approximation of a ratio of the form s

F KM n pxq{ s F KM n
pyq by the ratio s F pxq{ s F pyq, for very large values of x and y. Such approximation is delicate. Invoking results from survival analysis, we will show however that T p1,2q k,n is a remainder term.

Next, T p2q k,n is decomposed using the variables pV j,k q introduced in p16q:

T p2q k,n " γ k `1 k ÿ j"2 ´V p β j,k ´up β j,k, ¯u´1 j,k `k ÿ j"2 V p β j,k ξ 1 j ´γ j `k ÿ j"2 ´RF j,β ´V p β j,k ¯ξ1 j j . ( 29 
)
According to the definition of ξ 1 j , we can see that the second term of this decomposition is close to

γ k`1 ř k j"2 pE j ´1qu p β ´1 j,k .
While this is part of the main term described in p28q, we will find in Proposition 3 that this term is neutralized by another part of T p2q k,n , so that T p2q k,n is just a bias term. Finally R p0q n and R p1q n will also turn out to be remainder terms.

The rest of the section is organised as follows. In subsection 3.1, we set additional notations and state some preliminary approximation results needed in the sequel. In subsection 3.2 we state the asymptotic results for all terms in (26) and conclude the proof.

Additional notations and important preliminary results

' First, in the sequel we will regularly work under the following event, for some α ą 1 arbitrary close to 1,

E n,α " @1 ď j ď k , α ´1u j,k ď V j,k ď αu j,k ( , (30) 
where u j,k and V j,k are defined in p13q and p16q. According to [START_REF] Shorack | Empirical processes with applications in statistics[END_REF] (chapter 8), for every α ą 1 we have lim nÑ8 PpE n,α q " 1. In the proof section, working "on the event E n,α " will thus mean stating bounds or results which are valid with an arbitrary large probability.

' Secondly, the remainder term R n,j defined in the second-order exponential representation of the logspacings p17q satisfy, according to Theorem 2.1 in [START_REF] Beirlant | On exponential representations of log spacings of order statistics[END_REF],

ˇˇř k j"i Rn,j j ˇˇ" o P pb n,k log `p 1 u i,k qq. (31) 
' Thirdly, under assumptions p1q and p2q, since Z i " U H pY i q, one can show using p1q and p4q that

RF j,β " s F pZ n´j`1,n q s F pZ n´k,n q ˆZn´j`1,n Z n´k,n ˙´β " V p β j,k p1 `Cj,k,β q, ( 32 
)
where

C j,k,β " Y ´γβn ´k,n D β C ´γβ˚p Ỹ ´γβk ´j`1,k ´1qp1 `oP p1qq and D β " D ´γβD ˚with D " ´γ γ1 D ˚if β 2 ă β 1 , D " D 1 ´γ γ1 D ˚if β 1 ď β 2 .
' Finally, using Rényi representation (see for example p4.3q in [START_REF] Beirlant | Estimation of the extreme value index and extreme quantiles under random censoring[END_REF]) and a Taylor expansion, one obtains that for every 2 ď j ď k,

V p β j,k ´up β j,k, " ´pβ u p β j,k, ˜k ÿ i"j E pnq i ´1 i ¸´p β u p β j,k, ˜k ÿ i"j 1 i ´log ˆk `1 j ˙¸`p 2 β 2 Ṽ p β j,k plogpV j,k {u j,k qq 2 , ( 33 
)
where Ṽj,k lies between V j,k and u j,k . The combination of p32q and p33q thus means that the ratio RF j,β will be appropriately approximated by the deterministic weights u p β j,k, .

Asymptotics for the terms in (26) and conclusion of the proof

The first result stated concerns the term T p1,1,1q k,n

, which contains the main term of the decomposition of p T k pβq ´γ1 1`γ1β (see relations p27q and p28q).

Proposition 1. Under the conditions of Theorem 1, as n Ñ 8, we have

paq ? k ř k i"2 A i,n S i,k,β " G n `λb β `oP p1q, where b β " ´γ p p β p1 ´pqpDγq ˚β˚C ´γβ˚{ pp β `γβ ˚q and pDγq ˚" $ & % γ 1 D 1 if β 1 ă β 2 ´γ2 D 2 if β 2 ă β 1 γ 1 D 1 ´γ2 D 2 if β 1 " β 2 and G n is equal in distribution to γ p β 1 ? k k ÿ i"2 u p β ´1 i,k pppE i ´1q ´pI Uiďp ´pqq ,
where pE i q and pδ i q are independent iid samples with distributions standard exponential and standard uniform. The variable G n is asymptotically centred gaussian distributed with variance σ

2 β " γ 2 p 2 β p 2p β ´1 . pbq ? k ř k i"2 B i,n S i,k,β " λb ˚`o P p1q , where b ˚" ´γ2 p p β D ˚β˚C ´γβ˚{ pp β `γβ ˚q. pcq ř k i"2 δ n´i`1,n c i S i,k,β " o P pk ´1{2 q pdq ř k i"2 R n,i S i,k,β " o P pk ´1{2 q
The following proposition concerns the terms

R p0q n , R p1q n , T p1,2q k,n and T p1,1,2q k,n
. The last two of these terms result from the replacement of the ratios of Kaplan-Meier estimates y RF j by the ratios of the true survival function values RF j .

Proposition 2. Under the conditions of Theorem 1, as n Ñ 8, paq

R p0q n " opk ´1{2 q, pbq R p1q n " o P pk ´1{2 q, pcq T p1,2q k,n " o P pk ´1{2 q, pdq T p1,1,2q k,n " D 1 p1 `oP p1qqZ ´β1 n´k,n ř k j"2 ˆ´Zn´j`1,n Z n´k,n ¯´β1 ´1˙R F j,β ξ 1 j j `řk j"2 L n,j RF j,β ξ 1 j j ,
where

0 ď L n,j ď D 2 1 pZ ´β1 n´j`1,n ´Z´β1 n´k,n q 2 p1 `oP p1qq. Moreover, T p1,1,2q k,n " b KM pk{nq γβ˚`o P pk ´1{2 q, where b KM is equal to ´γ2 p β D 1 β 1 C ´γβ1 {pp β `γβ 1 q if β 1 ď β 2 and to 0 if β 1 ą β 2 .
The last result concerns the behaviour of T p2q k,n : it turns out that it only generates a bias term. Proposition 3. We have

T p2q k,n " ´pβ γ k `1 k ÿ j"2 pE pnq j ´1q ˜1 j j ÿ i"2 u p β ´1 i,k ´1 p β u p β ´1 j,k ¸´p β γ k `1 k ÿ j"2 pE pnq j ´1qu p β ´1 j,k ˜k ÿ i"j E pnq i ´1 i bn,k k `1 k ÿ j"2 u p β ´1`γβj ,k E pnq j `bn,k k `1 k ÿ j"2 1 u j,k pV p β j,k ´up β j,k, qu γβj ,k E pnq j `k ÿ j"2 V p β j,k C j,k,β ξ 1 j j ´pβ γ k `1 k ÿ j"2 u p β ´1 j,k ˜k ÿ i"j 1 i ´log k `1 j ¸Epnq j `pp β q 2 γ 2pk `1q k ÿ j"2 1 u j,k Ṽ p β j,k ˆlog ˆVj,k u j,k ˙˙2 E pnq j . (34) 
Moreover, under the conditions of Theorem 1, when n Ñ 8 we have

T p2q k,n " b˚p k{nq γβ˚`o P pk ´1{2 q,
where b˚"

´γ2 β˚C ´γβ pβ `γβ˚p D ˚`D β p β q.
The proofs of all these results can be found in the Appendix. Now, since 

? k ˆp T k pβq ´γ1 1 `γ1 β ˙" ? kT p1,
k ˆp T k pβq ´γ1 1 `γ1 β ˙" G n `λm β `oP p1q d ÝÑ N pλm β , σ 2 β q,
because it can be checked that b β `b˚´bKM `b ˚is actually equal to the value m β described in the statement of Theorem 1.

Finite sample comparisons

In this section, we consider a comparison (using finite sample simulations) in terms of observed bias and mean squared error (MSE) of the estimators considered in this paper : 1,k by ´ρ1 and we consider two different values of ρ 1 (´1.5 and ´2) in the following formula

p γ pHq 1,k , p γ pW q 1,k " p γ 1,k p0q, p γ 1,
p γ pBRq 1,k pρ 1 q " p γ pW q 1,k ´p1 ´ρ1 q 2 p1 ´2ρ 1 q ρ 2 1 ˜p T k `´ρ 1 {p γ pW q 1,k ˘´p γ pW q 1,k 1 ´ρ1 ¸.
For the study of the sensitivity of this definition of p γ pBRq 1,k pρ 1 q with respect to the choice of ρ 1 , we refer to [START_REF] Beirlant | Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications[END_REF].

We consider two classes of heavy-tailed distributions for the target and censoring variables X and C :

• Burrpθ, β, λq with d.f. 1 ´p θ θ`x β q λ , which extreme value index is 1 λβ .

• Fréchetpγq with d.f. expp´x ´1{γ q, which extreme value index is γ.

For each considered distribution, 2000 random samples of length n " 500 were generated ; median bias and MSE of the above-mentioned estimators are plotted against different values of k n , the number of excesses used.

We considered two cases : a Burr distribution censored by another Burr distribution (Fig. 1), a Fréchet distribution censored by another Fréchet distribution (Fig. 2). In each case, we considered a situation with p ą 1{2, which corresponds to weak censoring in the tail, and the reverse situation with p ă 1{2, which corresponds to strong censoring. In the Burr case, we also considered situations with β 1 ă β 2 , and reverse situations with β 1 ą β 2 . Indeed, for Fréchet distibutions, β 1 is always larger that β 2 in the case p ą 1{2 and β 1 is always lower that β 2 in the case p ă 1{2. Bias Bias Bias Bias This small simulation study shows that the MSE of p γ 1,k pβq is globally decreasing with lower values of β, even when the condition p β ą 1 2 for the above asymptotic normality result is not met, as in the case with β " ´1 and p ă 1 2 . This is probably due to the decreasing bias with decreasing β, the bias being the dominating component in the MSE.
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On the other hand p γ pBRq 1,k overall reduces the MSE for most k, except in the heavy censoring Fréchet case. The non-optimal behavior for small values of k is a well-known characteristic of bias reduced estimators. In [START_REF] Beirlant | Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications[END_REF] a penalized bias reduction technique was proposed to remedy this fact.

Appendix

Useful Lemmas

Some of the following ten Lemmas are used several times in the proof of Propositions 1, 2 and 3.

Lemma 1. For any integer i ě 2 and every k ě i , we have

c i " 1 `i log i ´1 i P " ´1 i , 0  (35) k ÿ j"i 1 j ´log k `1 i P " 0, 1 i  (36)
Moreover, for any given a Ps0, 1r, there exist some positive constants C 1 ă C 2 such that, for all 2 ď i ď k

d i,k " ˜1 i i ÿ j"2 u ´a j,k ´1 1 ´a u ´a i,k ¸P " ´C2 u i,k pk `1q 1´a , ´C1 u i,k pk `1q 1´a  , (37) 
as well as, if a ă 0,

d i,k " ˜1 i i ÿ j"2 u ´a j,k ´1 1 ´a u ´a i,k ¸P " ´1 u i,k pk `1q , ´a u i,k pk `1q  . ( 38 
)
Lemma 2. For any a ă 1, we have, as n Ñ 8,

1 k k ÿ j"1 u ´a j,k Ñ 1 1 ´a , (39) 
and, under assumptions p1q and p2q,

1 k k ÿ j"1 u ´a j,k ξ j P ÝÑ γ 1 ´a , (40) 
(equation p40q also holds for ξ 1 j instead of ξ j ) and, if X j denotes either E j , E j ´1 or |E j ´1|, where pE j q are standard exponential iid random variables, then we have

1 k k ÿ j"1 u ´a j,k X j P ÝÑ EpX 1 q 1 ´a , as n Ñ `8. ( 41 
)
Lemma 3. For any a ą 1, we have, as n Ñ 8,

k ÿ j"1 j ´a Ñ ζpaq as k Ñ `8, ( 42 
)
where ζ is the Riemann Zeta function. Moreover, for any δ ą 0, under p1q and p2q,

1 k a`δ k ÿ j"1 u ´a j,k ξ j P ÝÑ 0, as n Ñ `8, (43) 
(equation p43q also holds for ξ 1 j instead of ξ j ) and, if pX j q is a sequence of i.i.d. random variables such that Ep|X 1 |q ă `8, then

1 k a`δ k ÿ j"1 u ´a j,k X j P ÝÑ 0, as n Ñ `8. ( 44 
)
Lemma 4. If pV j,k q 1ďjďk are the order statistics of k standard uniform random variables then, for any 0 ă δ ă 1 and a ą 0, we have, as k Ñ 8,

? k max 2ďjďk |V a j,k ´ua j,k | u a´1{2´δ{2 j,k " O P p1q. ( 45 
)
Lemma 5. If pE j q are standard exponential iid random variables, then max 2ďjďk |E j | " O P plog kq.

Lemma 6. (See de [START_REF] De Haan | Extreme Value Theory : an Introduction[END_REF] Proposition B.1.9) Suppose f P RV α . If x ą 0 and δ 1 , δ 2 ą 0 are given, then there exists t 0 " t 0 pδ 1 , δ 2 q such that for any t ě t 0 satisfying tx ě t 0 , we have p1 ´δ1 qx α minpx δ2 , x ´δ2 q ă f ptxq f ptq ă p1 `δ1 qx α maxpx δ2 , x ´δ2 q.

If x ě 1, then there exists t 0 " t 0 p q such that for every t ě t 0 ,

p1 ´ qx α´ ă f ptxq f ptq ă p1 ` qx α` . ( 46 
)
Lemma 7. If pE i q iďk are standard exponential iid random variables, then if p β ą 1{2, as n Ñ 8,

1 ? k k ÿ i"3 pE i ´1q # 1 i i´1 ÿ j"2 u p β ´1 j,k pE j ´1q + P ÝÑ 0, ( 47 
) 1 k k ÿ i"3 pE i ´1q # 1 i i´1 ÿ j"2 u p β `d´1 j,n E j + P ÝÑ 0 pfor any d ě 0q (48) 1 k k ÿ i"3 u β˚γ i,k E i # 1 i i´1 ÿ j"2 u p β ´1 j,k pE j ´1q + P ÝÑ 0. ( 49 
) 1 ? k k ÿ i"4 pE i ´1q # 1 i i´1 ÿ l"3 pE l ´1q ˜1 l l´1 ÿ j"2 u p β ´1 j,k E j ¸+ P ÝÑ 0 (50) Lemma 8. With δ n´i`1,n and E pnq j
being respectively defined in the introduction and in equation p16q, if p β ą 1{2 then, we have, under assumptions p1q and p2q, as n Ñ 8,

1 ? k k ÿ i"2 pδ n´i`1,n ´pq # 1 i i´1 ÿ j"2 u p β ´1 j,k pE pnq j ´1q + P ÝÑ 0 (51) 1 k k ÿ i"2 pδ n´i`1,n ´pq # 1 i i´1 ÿ j"2 u p β `d´1 j,n E pnq j + P ÝÑ 0 pfor any d ě 0q. ( 52 
) 1 ? k k´1 ÿ i"3 pδ n´i`1,n ´pq ˜1 i i´1 ÿ j"2 u p β ´1 j,k E pnq j ¸˜k ÿ l"i`1 E pnq l ´1 l ¸" 1 ? k k ÿ i"4 pE pnq i ´1q # 1 i i´1 ÿ l"3 pδ n´l`1,n ´pq ˜1 l l´1 ÿ j"2 u p β ´1 j,k E pnq j ¸+ P ÝÑ 0 (53) 1 ? k k ÿ i"4 pδ n´i`1,n ´pq # 1 i i´1 ÿ l"3 pE pnq l ´1q ˜1 l l´1 ÿ j"2 u p β ´1 j,k E pnq j ¸+ P ÝÑ 0 (54)
Lemma 9. Let ppzq " Ppδ " 1|Z " zq. Under the Hall model (conditions p1q and p2q),

p ˝UH pxq " p `pp1 ´pqpDγq ˚β˚C ´γβ˚x´γβ˚p 1 `op1qq. ( 55 
)
Moreover, p55q and p12q imply that

1 ? k k ÿ i"2 u p β ´1 i,k pp ˝UH pn{iq ´pq Ñ λα β , (56) 
where α β " 1 p β `γβ˚p p1 ´pqpDγq ˚β˚C ´γβ˚.

Lemma 10. Using the notations introduced earlier, we have, under assumptions p1q and p2q and if p β ą 1{2, as n Ñ 8, ? k

k ÿ i"2 A i,n 1 i ˜i ÿ j"2 pV p β j,k ´up β j,k q E pnq j j ¸P ÝÑ 0.
We now prove one after the other the Propositions 1, 2 and 3, then we will deal with the proofs of the different Lemmas in subsections 5.5 to 5.9.

Proof of Proposition 1

Proof of part paq

This subsection is devoted to the study of ř k i"2 A i,n S i,k,β , which we divide in three parts, using statement p32q :

I 1,n `I2,n `I3,n " k ÿ i"2 A i,n ˜1 i i ÿ j"2 u p β j,k ξ 1 j j ¸`k ÿ i"2 A i,n ˜1 i i ÿ j"2 pV p β j,k ´up β j,k q ξ 1 j j ¸`k ÿ i"2 A i,n ˜1 i i ÿ j"2 V p β j,k C j,k,β ξ 1 j j ¸.
From I 1,n will come the asymptotically gaussian part of ř k i"2 A i,n S i,k,β , plus a bias term, and the other two I 2,n and I 3,n will be remainder terms. We will first give details about I 1,n , and then come back to I 2,n and I 3,n later. In order to deal with I 1,n , we begin by using relation p17q to write ξ 1 j as γ `γpE

pnq j ´1q `uγβj ,k b n,k E pnq j , which divides I 1,n in three different terms I 1,n " I p1q 1,n `Ip2q 1,n `Ip3q 1,n .
Our first task will be to deal with the main term of the theorem, I p1q 1,n . Recalling that A i,n " ppE pnq i ´1q ṕδ n´i`1,n ´pq, where δ i " I UiďppZiq with pU i q uniformly distributed and independent of pZ i q and U n´i`1,n denotes the uniform variable associated to δ n´i`1,n , this first term is equal to

I p1q 1,n " γ k `1 k ÿ i"2 A i,n ˜1 i i ÿ j"2 u p β ´1 j,k " γ p β 1 k `1 k ÿ i"2 u p β ´1 i,k ´ppE pnq i ´1q ´pI Un´i`1,nďp ´pq γ p β 1 k `1 k ÿ i"2 u p β ´1 i,k `IUn´i`1,nďppZn´i`1,nq ´IUn´i`1,nďp ˘`γ k `1 k ÿ i"2 A i,n d i,k " W k,n `Bk,n `Rk,n
where we define

d i,k " 1 i ř i j"2 u p β ´1 j,k ´1 p β u p β ´1 i,k .
To sum up what we have found so far,

k ÿ i"2 A i,n S i,k,β " pW k,n `Bk,n `Rk,n q `pI p2q 1,n `Ip3q 1,n q `I2,n `I3,n .
Introducing a sequence pE i q of independent standard exponential variables, independent of the sequence pZ i q, we can write that

W k,n d " γ p β 1 k `1 k ÿ i"2 u p β ´1 i,k pppE i ´1q ´pI Uiďp ´pqq and B k,n d " ´γ p β 1 k `1 k ÿ i"2 u p β ´1 i,k `IUiďppZn´i`1,nq ´IUiďp ˘,
We prove easily that Varp ? kW k,n q is equivalent to the variance σ 2 β defined in the statement of Theorem 1, and that, using Lyapunov's CLT, we have

? kW k,n d ÝÑ N p0, σ 2 β q. Let us now deal with the term B k,n d " B p1q k,n `Bp2q k,n , where B p1q k,n " ´γ p β 1 k `1 k ÿ i"2 u p β ´1 i,k `IUiďp˝U H pYn´i`1,nq ´IUiďp˝U H pn{iq Bp2q k,n " ´γ p β 1 k `1 k ÿ i"2 u p β ´1 i,k `IUiďp˝U H pn{iq ´IUiďp ˘.
Following the method used for the treatment of the terms T 1,k and T 2,k in [START_REF] Einmahl | Statistics of extremes under random censoring[END_REF], and using the LLN result found for instance in [START_REF] Chow | Probability theory. Independence, interchangeability, martingales[END_REF] 

? k|R k,n | ď ? k cγ pk `1q p β `1 k ÿ i"2 |A i,n | 1 u i,k ď Op1qk ´pp β ´1{2´δq 1 k k ÿ i"2 |A i,n |u δ´1 i,k , for a given δ ą 0. But |A i,n | ď p|E pnq i ´1|`1 ď E pnq i `2
, and therefore, taking δ small enough, ? kR k,n " o P p1q according to properties p41q and p39q (in Lemma 2, with a " 1 ´δ) and to the assumption p β ą 1{2. When p β ą 1, the treatment is similar, using p38q instead of p37q. We have thus finished to prove that ? kI p1q 1,n converges in distribution to N pλb β , σ 2 β q. All the remaining terms in this subsection will now be proved to be negligible.

Let us now consider the second term I p2q 1,n of I 1,n . Separating j ă i and j " i, we have

I p2q 1,n " γ k `1 k ÿ i"3 A i,n 1 i ˜i´1 ÿ j"2 u p β ´1 j,k pE pnq j ´1q ¸`γ pk `1q 2 k ÿ i"2 A i,n u p β ´2 i,k pE pnq i ´1q.
The first term is shown to be o P pk

´1{2 n q by separating A i,n in its pE pnq i ´1q and pδ n´i`1,n ´pq parts and relying on properties p47q and p51q stated in Lemmas 7 and 8. The second one is easy to handle using p44q and p β ą 1{2 ; it is then omitted.

Similarly, the third term I p3q 1,n of I 1,n is, again seperating j ă i and j " i,

I p3q 1,n " b n,k k `1 k ÿ i"3 A i,n 1 i ˜i´1 ÿ j"2 u p β `γβ˚´1 j,k E pnq j ¸`b n,k pk `1q 2 k ÿ i"2 A i,n u p β ´2`γβi ,k E pnq i . Since ? kb n,k converges to a constant, the first term is o P pk ´1{2 n
q by using properties p48q and p52q (with d " γβ ˚) stated in Lemmas 7 and 8. Again, the second one is easy to handle using p44q. Now that we have finished with I 1,n , we turn to the term I 2,n . The decomposition of ξ 1 j in p17q and the fact that ? kb n,k converges imply that

? kI 2,n " γ ? k k ÿ i"2 A i,n 1 i ˜i ÿ j"2 pV p β j,k ´up β j,k q E pnq j j ¸`Op1q k ÿ i"2 A i,n 1 i ˜i ÿ j"2 pV p β j,k ´up β j,k qu γβj ,k E pnq j j ¸.
The first term of the right-hand side is very tedious and delicate to deal with, so we delayed its treatment by stating in Lemma 10 that it tends to 0 in probability when p β ą 1{2; the proof of this statement is detailed in subsection 5.8. Let us then turn to the second term, and prove that it tends to 0, and so will ? kI 2,n as well. Applying p45q with a " p β , we have, for δ ą 0 sufficiently small such that " pp β ´δ `γβ ˚q{2 is positive,

ˇˇˇˇk ÿ i"2 A i,n 1 i ˜i ÿ j"2 pV p β j,k ´up β j,k qu γβj ,k E pnq j j ¸ˇˇˇˇď O P p1qk ´ ˜1 k k ÿ i"2 |A i,n |u δ{2´1 i ¸˜1 k 3{2´ k ÿ j"2 u ´3{2`p β `γβ˚´δ j,k E pnq j ¸,
and we conclude using properties p39q and p41q with a " 1 ´δ{2 as well as property p44q with a " 3{2 ´2 .

It remains to consider the last term I 3,n of ř k i"2 A i,n S i,k,β , and to prove that it is o P pk ´1{2 n q. According to the definition of C j,k,β in relation p32q and using the fact that ? kY ´γβn ´k,n " ? k pk{nq γβ˚p Y n´k,n {pn{kqq ´γβc onverges (thanks to assumption p12q), we have

? kI 3,n " O P p1q k ÿ i"2 A i,n ˜1 i i ÿ j"2 V p β j,k pV γβj ,k ´1q ξ 1 j j ¸" O P p1q ´Ip1q 3,n ´Ip2q 3,n `Ip3q 3,n ´Ip4q 3,n ¯,
where

I p1q 3,n " 1 k`1 ř k i"2 A i,n ´1 i ř i j"2 u p β `γβ˚´1 j,k ξ 1 j Īp2q 3,n " 1 k`1 ř k i"2 A i,n ´1 i ř i j"2 u p β ´1 j,k ξ 1 j Īp3q 3,n " 1 k`1 ř k i"2 A i,n ´1 i ř i j"2 pV p β `γβj ,k ´up β `γβj ,k qu ´1 j,k ξ 1 j Īp4q 3,n " 1 k`1 ř k i"2 A i,n ´1 i ř i j"2 pV p β j,k ´up β j,k qu ´1 j,k ξ 1 j ¯.
Relying on property p45q (stated in Lemma 4, and applied to a " p β `γβ ˚) and on the fact that

|A i,n | ď E pnq i
`2, we deduce that, for some given δ ą 0,

|I p3q 3,n | ď O P p1q ˜1 k k ÿ i"2 pE pnq i `2qu ´1`δ{2 i,k ¸˜1 k 3{2 k ÿ j"2 u ´3{2`p β ´δ j,k ξ 1 j ¸.
Hence, properties p39q, p41q and p43q imply that I p3q 3,n tends to 0. Completely similarly, we have I p4q 3,n " o P p1q. Let us prove that I p2q 3,n also tends to 0 (I p1q 3,n is handled similarly). Separating the cases j ă i and j " i and using the definition of ξ 1 j in relation p17q yield

I p2q 3,n " γ k `1 k ÿ i"3 A i,n 1 i i´1 ÿ j"2 u p β ´1 j,k E pnq j `bn,k k `1 k ÿ i"3 A i,n 1 i i´1 ÿ j"2 u p β `γβ˚´1 j,k E pnq j `1 pk `1q 2 k ÿ i"2 A i,n u p β ´2 i,k ξ 1 i .
The convergence to 0 of the first (resp. the second) term is due to properties p48q and p52q with d " 0 (resp. d " γβ ˚) in Lemmas 7 and 8. For the third term, we use

|A i,n | ď E pnq i
`2 with Lemma 5 to write, for some given δ ą 0, ˇˇˇˇ1

pk `1q 2 k ÿ i"2 A i,n u p β ´2 i,k ξ 1 j ˇˇˇˇď O P p1q plog kq 2 k δ ˜1 k 2´δ k ÿ i"2 u p β ´2 i,k ¸.
The right-hand side tends to 0 according to p42q, for 0 ă δ ă p β . This concludes the proof for the term

ř k i"2 A i,n S i,k,β .

Proof of part pbq

Recall that

B i,n " 1 γ1 b n,k u β˚γ i,k E pnq i .
Since Z i " U H pY i q, using Potter-Bounds p6q for p s F ˝UH qU ´β H P RV ´pβ and working on the event E n,α defined in p30q, which satisfies lim nÑ8 PpE n,α q " 1, we have, for ą 0 (remind that the sign of b n,k is not known),

b ´1 n,k k ÿ i"2 B i,n S i,k ď p1 ` q α p β ´ γ 1 1 k `1 k ÿ i"2 u β˚γ i,k E pnq i ˜1 i i ÿ j"2 u p β ´1´ j,k ξ 1 j ¸.
We are going to prove below that this upper bound, when multiplied by ? kb n,k , tends to a quantity arbitrary close to b ˚λ (for small and α close to 1). A very similar job can be done for the lower bound issued from the application of lower Potter-bounds for p s F ˝UH qU ´β H and from the lower bound in the definition of E n,α , and hence we will have proved that Let us prove that the limit of the first term

? k ř k i"2 B i,n S i
T p1q B,n " ? kb n,k p1` qα p β ´ p k`1 ř k i"2 u β˚γ i,k E pnq i ´1 i ř i j"2 u p β ´1´ j,k ¯,
as n Ñ 8, is arbitrarily close to b ˚λ (taking sufficiently small and α sufficiently close to 1). Indeed, if p β ď 1, inequality p37q (applied with a " 1 ´pβ ` ) implies that, for some positive constants C 1 and C 2 ,

p k`1 ř k i"2 u γβi ,k E pnq i ´1 i ř i j"2 u p β ´1´ j,k ¯ď p p β 1 k`1 ř k i"2 u γβ˚`p β ´1´ i,k E pnq i ´C1 p pk`1q p β ´ `1 ř k i"2 u γβ˚´1 i,k E pnq i ě p p β 1 k`1 ř k i"2 u γβ˚`p β ´1´ i,k E pnq i ´C2 p pk`1q p β ´ `1 ř k i"2 u γβ˚´1 i,k E pnq i .
Using p41q with a " 1 ´pβ ´γβ ˚` for the first term and a " 1 ´γβ ˚for the second one, as well as the

fact that b n,k is equivalent to ´γ2 β ˚D˚C ´γβ˚´k`1 n`1
¯γβ˚, we obtain via assumption (12) the desired limit b ˚λ, by making tend to 0 and α tend to 1, since ´γ2 β ˚D˚C ´γβ˚p p β 1 p β `γβ˚" b ˚. In the case p β ą 1, the treatment is similar, using p38q instead of p37q above.

Secondly, in order to prove that

T p2q B,n " ? kb n,k p1` qα p β ´ p k`1 ř k i"2 u β˚γ i,k E pnq i ´1 i ř i j"2 u p β ´1´ j,k pE pnq j
´1q tends to 0, we separate the terms j " i (easy to handle and omitted) and j ă i : in the latter case, we use property p49q in Lemma 7 (with p β ´1 ´ instead of p β ´1) and the fact that ? kb n,k converges.

Finally, let us prove that

T p3q B,n " ? kb 2 n,k p1` qα p β ´ p k`1 ř k i"2 u β˚γ i,k E pnq i ´1 i ř i j"2 u p β `β˚γ´1´ j,k E pnq i ¯tends
(the case β ă 0 is very similar and thus ommited),

|R p1q n | ď O P p1qo P pb n,k q k ÿ i"2 RF i i ´1 log `p 1 u i,k q `OP p1q k ÿ j"2 RF j ξ 2 j j 2 ˆZn´j,n Z n´k,n
˙´β .

Now, using the fact that Z i " U H pY i q, Potter bounds p6q applied to s F ˝UH P RV ´p and U ´β H " RV ´γβ enable us to write that for any given ą 0,

|R p1q n | ď o P pb n,k q k ÿ i"2 V p´ i,k i ´1 log `p 1 u i,k q `OP p1q k ÿ j"2 V p´ j,k ξ 2 j j 2 pV j`1,k q γβ´ .
Working on the event E n,α which satisfies lim nÑ8 PpE n,α q " 1, for every α ą 1, and using the fact that ? kb n,k converges, imply that

? k|R p1q n | ď o P p1q 1 k `1 k ÿ i"2 u p´ ´1 i,k log `p 1 u i,k q `1 k 3{2 k ÿ i"2 u p β ´2 ´2 i,k ξ 2 j .
We conclude by p39q and p43q with p β ą 1{2.

Proof of part pcq

Let us now deal with the term T p1,2q k,n , which is defined in relation ( 22) and is a delicate part of the proof, and the only one which will require survival analysis arguments. We start by applying the bounds 0 ď ´logp1 ´xq ´x ď x 2 {p1 ´xq p@x ă 1q to x " 1 ´y RF j {RF j for every j ě 2 (which ensures that y RF j ą 0 and so x ă 1), yielding

0 ď T p1,2q k,n ď k ÿ j"2 RF j y RF j ˜1 ´y RF j RF j ¸2 RF j,β ξ 1 j j .
We then rely on the so-called Daniels bounds proved in [START_REF] Gill | Censoring and Stochastic Integrals[END_REF] (page 39) and Zhou (1991) (Theorem 2.2), which state that both s F KM n ptq{ s F ptq and its inverse are bounded in probability uniformly for t ă Z n,n . Since the index j is at least equal to 2, this implies that sup jě2 RF j { y RF j " O P p1q. Then (as in the previous subsection 5.3.1) using the fact that Z i " U H pY i q, Potter bounds applied to p s F ˝UH qU ´β H P RV ´pβ enable us to write that for any given ą 0,

0 ď T p1,2q k,n ď O P p1q k ÿ j"2 ˜y RF j RF j ´1¸2 u p β ´1´ j,k
pV j,k {u j,k q p β ´ ξ 1 j .

Now, Theorem 2.1 in [START_REF] Gill | Large Sample Behaviour of the Product-Limit Estimator on the Whole Line[END_REF] 

a property which will be applied to t " Z n´j`1,n for every 2 ď j ď k below. Now writing y RF j {RF j ´1 " p s F pZ n´k,n q{ s F KM n pZ n´k,n qqpW n´j`1 ´Wn´k q where W i " p s F KM n pZ i,n q ´s F pZ i,n qq{ s F pZ i,n q, the combination of the crucial statement (57) with the fact that h ´2 is nondecreasing, leads to the following bound, working on the set E n,α ,

0 ď T p1,2q k,n ď O P p1q 1 n 1 k `1 k ÿ j"2 p s HpZ n´j`1,n qq ´1´ u p β ´1´ j,k ξ 1 j .
Applying then Potter-bounds p6q to the function p s H ´1´ q ˝UH P RV 1` then implies that, on the set E n,α , we have, for any δ ą 0,

0 ď ? kT p1,2q k,n ď O P p1qp s HpZ n´k,n qq ´1´ ˆk n ˙k´δ . « 1 k 3{2´δ k ÿ j"2 u p β ´2´3 j,k ξ j ff .
First, due to p43q in Lemma 3, the expression in brackets in the right-hand side of the previous relation is o P p1q when p β ą 1{2, as soon as δ and are sufficiently small so that p β ą 1{2 `δ `3 . Therefore, since s HpZ n´k,n q{pk{nq P Ñ 1 as n Ñ 8, all that is left to prove is that pn{kq k ´δ Ñ 0 as n Ñ 8. This is true when assumption (12) holds with λ ‰ 0, since the latter quantity is equivalent to λ ´2δ pn{kq ´2γβ˚δ , which indeed converges to 0 for sufficiently small. When assumption (12) holds with λ " 0, then we use the additional assumption that n " Opk b q for some b ą 1, which immediately yields pn{kq k ´δ Ñ 0 for small enough. Part pbq of Proposition 2 is thus proved.

Proof of part pdq

Recall that T 

{p´D 1 q r T p1,1,2,1q k,n " Z ´β1 n´k,n k ÿ j"2 ˜1 ´ˆZ n´j`1,n Z n´k,n ˙´β1 ¸RF j,β ξ 1 j j .
Using lower and upper Potter-bounds for U ´β1 H P RV ´γβ1 and p F ˝UH qU ´β H P RV ´pβ yields, for ą 0,

? kZ ´β1 n´k,n # 1 ´ k `1 k ÿ j"2 V p β ´1` j,k ξ 1 j ´p1 ` q 2 k `1 k ÿ j"2 V γβ1`p β ´1´2 j,k ξ 1 j + ď ? k r T p1,1,2,1q k,n ď ? kZ ´β1 n´k,n # 1 ` k `1 k ÿ j"2 V p β ´1´ j,k ξ 1 j ´p1 ´ q 2 k `1 k ÿ j"2 V γβ1`p β ´1`2 j,k ξ 1 j + But Z ´β1 n´k,n " C ´γβ1 p1 `op1qqp k n q γβ1
(the constant C appears in formula p4q), so ? kZ ´β1 n´k,n tends to 0 when β 1 ą β 2 (due to p12q) and, when β 1 ď β 2 , ? kZ ´β1 n´k,n is equivalent to λC ´γβ˚" λC ´γβ1 . Moreover, using p30q with lim nÑ8 PpE n,α q " 1 and property p40q, we prove that

1 k ř k j"2 V p β ´1`γβ1˘2 j,k ξ 1 j tends to γ p β `γβ1˘2 and 1 k ř k j"2 V p β ´1˘ j,k
ξ 1 j tends to γ p β ˘ . After some simplifications, we prove that

? kT p1,1,2,1q k,n tends to b KM , in Porbability, by making Ñ 0. Finally, concerning T p1,1,2,2q k,n " ř k j"2 L n,j RF j,β ξ 1 j j , where 0 ď L n,j ď D 2 1 pZ ´β1 n´j`1,n ´Z´β1 
n´k,n q 2 p1 `oP p1qq, we use Potter-bounds as previously to find that , for any given ą 0,

? k|T p1,1,2,2q k,n | ď Op1q ? kZ ´2β1 n´k,n k ÿ j"2 ´p1 ` qV γβ1´ j,k ´1¯2 V p β ´ j,k ξ 1 j j
and we proceed as for T p1,1,2,1q k,n to prove that ? kT p1,1,2,2q k,n tends to 0, in Probability.

Proof of Proposition 3

Let us first establish formula p34q. Recall that (see p29q)

T p2q k,n " γ k `1 k ÿ i"2 ´V p β j,k ´up β j,k, ¯u´1 j,k `k ÿ i"2 V p β j,k ξ 1 j ´γ j `k ÿ i"2 ´RF j,β ´V p β j,k ¯ξ1 j j .
The definition of ξ 1 j as well as decompositions p17q and p32q yield

T p2q k,n " γ k `1 k ÿ j"2 1 u j,k pV p β j,k ´up β j,k, qE pnq j `γ k `1 k ÿ j"2 u p β ´1 j,k pE pnq j ´1q `bn,k k `1 k ÿ j"2 u p β ´1`γβj ,k E pnq j `bn,k k `1 k ÿ j"2 1 u j,k pV p β j,k ´up β j,k, qu γβj ,k E pnq j `k ÿ j"2 V p β j,k C j,k,β ξ 1 j j .
The last three terms of the right-hand side are left unchanged. By applying decomposition p33q to the first term, we obtain the desired decomposition p34q. In particular, we can see that the second term of the right-hand side above vanishes. Now, in order to prove the asymptotic result for T p2q k,n , we rely of course on the development p34q in 7 different terms. These terms will be treated separately, one at a time.

paq Concerning the first term, when p β ă 1, relation p37q implies that

ˇˇˇˇpβ γ k `1 k ÿ j"2 pE pnq j ´1q ˜1 j j ÿ i"2 u p β ´1 i,k ´1 p β u p β ´1 j,k ¸ˇˇˇˇď Opk ´pβ q 1 k k ÿ j"2 |E pnq j ´1|u ´1 j,k ď Opk δ´p β q 1 k k ÿ j"2 |E pnq j ´1|u δ´1 j,k .
Property p41q yields that this quantity is o P pk ´1{2 q when p β ą 1{2 for δ small enough. When p β ą 1, we use p38q instead of p37q above.

pbq Concerning the second term

γp β k`1 ř k j"2 pE pnq j ´1qu p β ´1 j,k ˆřk i"j E pnq i ´1 i ˙, separating i " j from i ě j `1
in the sum yields that it is equal to

γp β pk `1q 2 k ÿ j"2 pE pnq j ´1q 2 u p β ´2 j,k `γp β k `1 k ÿ i"3 pE pnq i ´1q ˜1 i i´1 ÿ j"2 u p β ´1 j,k pE pnq j ´1q ¸.
Properties p44q and p47) prove that this quantity is o P pk ´1{2 q when p β ą 1{2.

pcq The third term in formula p34q is a bias term. Indeed, the expression of b n,k and property p41q show that ?

kb n,k 1 k `1 k ÿ j"2 u p β ´1`γβj ,k E pnq j " ´γ2 b ˚D˚C ´γbp β `γb ˚p1 `oP p1qq ? k ˆk n ˙γβ˚,
which yields a part of the bias term appearing in the statement of Proposition 3.

pdq The fourth term is R k,n " b n,k k`1 ř k j"2 pV p β j,k ´up β j,k, qu γβ˚´1 j,k E pnq j . Since ? kb n,k " Op1q, we have, |R k,n | ď Op1q ? k max 2ďjďk |V p β j,k ´up β j,k, | u p β ´1{2´δ{2 j,k 1 k 2 k ÿ j"2 u p β `γβ˚´3{2´δ{2 j,k E pnq j ,
and properties p45q and p44q imply that

? kR k,n " o P p1q. peq The fifth term B k,n " ř k j"2 V p β j,k C j,kβ ξ 1 j j " p1 `oP p1qqY ´γβn ´k,n D β C ´γβ˚B k,n
will provide the second bias term, where we have noted Bk,n "

ř k j"2 V p β j,k pV γβj ,k ´1q ξ 1 j j , which is equal to the sum of 2 terms Bp1q k,n " 1 k `1 k ÿ j"2 u p β ´1 j,k pu γβj ,k ´1qξ 1 j and Bp2q k,n " k ÿ j"2 ´V p β j,k pV γβj ,k ´1q ´up β j,k pu γβj ,k ´1q ¯ξ1 j j .
Property p40q shows that Bp1q k,n converges to γ p β `γβ˚´γ p β " ´γ2 βp β pp β `γβ˚q . On the other hand, we obviously have

| Bp2q k,n | ď 1 k `1 k ÿ j"2 |V p β `γβj ,k ´up β `γβj ,k |u ´1 j,k ξ 1 j `1 k `1 k ÿ j"2 |V p β j,k ´up β j,k |u ´1 j,k ξ 1 j .
and is independent of pE i ´1q, so the variance of the left-hand side of p50q is lower than a constant times k ´2 ř k i"4 u ´1´2p1´p β q i,k

, where 1 `2p1 ´pβ q ă 2 when p β ą 1{2. The proof is then over via relation p42q.

Proof of Lemma 8

First, let us recall that δ i " I UiďppZiq with pU i q uniformly distributed and independent of the Z i 's. Then, let us settle the following notations. First, the difference δ n´i`1,n ´p will be systematically cut in three terms The first of these terms will be the less negligible one, but the easiest to deal with. The second one will still be simple to handle, but leads to non-centered factors. The third one, ∆ p3q i , will be the "smallest", but the most difficult to deal with, since it is correlated with the observations pZ i q (and therefore with the variables E pnq j ). In the sequel, cst will design an absolute positive constant which varies from line to line.

We start by proving p51q. Setting W in " 1 i ř i´1 j"2 u p β ´1 j,k pE pnq j ´1q and A pmq n

" k ´1{2 ř k i"3 ∆ pmq i
W in , we intend to prove that VpA p1q n q and VpA p2q n q go to 0 as n Ñ 8, and that A p3q n converges to 0 in probability. Concerning first A p1q n , we note that the variables ∆ p1q i are i.i.d. centered and independent of the variables pE pnq j q and thus of the centered W in : therefore, the product ∆ p1q i W in is centered and uncorrelated with ∆ p1q i 1 W i 1 n for any i ‰ i 1 , and consequently

VpA p1q n q " 1 k k ÿ i"3 Vp∆ p1q i W in q " 1 k k ÿ i"3 pp1 ´pqVpW in q ď cst k 2 k ÿ i"3 u ´1´2p1´p β q i,k nÑ8
ÝÑ 0 because 1 `2p1 ´pβ q ă 2 when p β ą 1{2. Above we have bounded VpW in q with similar tools as those used in the proof of Lemma 7, by a constant times 1 k`1 u ´1´2p1´p β q i,k

.

Concerning now A p2q n , we note that the variables ∆ p2q i

are not centered but are still independent, and independent of the W in . Since W in is centered, the products ∆ p2q i W in are still centered but are now correlated, since, for i 1 ă i, Covp∆ p2q i W in , ∆ p2q i 1 W i 1 n q " Ep∆ p2q i qEp∆ p2q i 1 qEpW in W i 1 n q ‰ 0.

Using relation p55q of Lemma 9, both the variance and the absolute value of the expectation of ∆ p2q i turn out to be lower than cst pi{nq γβ˚, which, due to assumption p12q, is itself lower than cst k ´1{2 . On the other hand, we have, for i 1 ă i, CovpW in , W i 1 n q " EpW i 1 n W in q " i 1 i E `W 2 i 1 n ˘`E ˜Wi 1 n .

1 i i´1 ÿ j"i 1 u p β ´1 j,k pE pnq j ´1q ¸" i 1 i E `W 2 i 1 n
Therefore,

we may write that (using the bound Ep∆ p2q i q ď cst k ´1{2 in the second term below, but simply bounding |∆ p2q i | by 1 in the first term)

VpA p2q n q " 1 k k ÿ i"3 E ´p∆ p2q i q 2 W 2 in ¯`2 k k ÿ i"4 i´1 ÿ i 1 "3 Ep∆ p2q i qEp∆ p2q i 1 qCovpW in , W i 1 n q ď 1 k k ÿ i"3 E `W 2 in ˘`cst k 2 k ÿ i"4 i´1 ÿ i 1 "3 E `W 2 i 1 n ˘ď cst k 2 k ÿ i"3 u ´1´2p1´p β q i,k
and this converges to 0 when p β ą 1{2, as desired.

In order to finish the proof of p51q, we have to justify that the last part, A We prove easily, using p41q and p44q, that the first term of the right-hand side is o P p1{ ? kq. The second term is split in two by separating the cases j `1 ď l ď i and i `1 ď l ď k. We obtain the following two terms Inverting the sum in i and the sum in l, we see that ? kR 1 2,n tends to 0 thanks to properties p50q and p53q in Lemmas 7 and 8. Now, inverting the sum in l and the sum in j yields

R 1 1,n " k ÿ i"3 A i,n 1 i i ÿ l"3 E pnq l ´1 l ˜l´1 ÿ j"2 u p β j,k, E pnq j j ¸.
Separating finally the cases l " i and l ă i, we obtain the following two terms : 

R 2 1,n " ř k i"3 A i,n E pnq i ´1 i 2 ˆři´1 j"2 u p β j,k, E pnq j j ˙, R 2 
ÿ i"3 1 i 2 i´1 ÿ j"2 u p β ´1 j,k ,
and the right-hand side tends to 0 using p37q (or p38q) and p42q.

  k pβq with β ‰ 0, and p γ pBRq 1,k . For p γ 1,k pβq, we consider three different values of β (´1, 0.5 and 1.5). In the expression of p γ pBRq 1,k , the second order parameter β 1 of F should be estimated. Instead, we proceed as in Beirlant et al. (2018) (see equations p13q and p14q therein) by reparametrizing β 1 p γ pW q
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 1 Figure 1: Comparison of bias and MSE for p γ pHq 1,k , p γ pW q1,k " p γ 1,k p0q, p γ 1,k pβq and p γ pBRq 1,k pρ 1 q for a Burr distribution censored by another Burr distribution : (a) β 1 " 2 ă β 2 " 4 and p ą 1{2, (b) β 1 " 2 ă β 2 " 5 and p ă 1{2, (c) β 1 " 5 ą β 2 " 2 and p ą 1{2, (d) β 1 " 4 ą β 2 " 2 and p ă 1{2 .

Figure 2 :

 2 Figure 2: Comparison of bias and MSE for p γ pHq 1,k , p γ pW q1,k " p γ 1,k p0q, p γ 1,k pβq and p γ pBRq 1,k pρ 1 q for a Fréchet distribution censored by another Fréchet distribution : (a) β 1 " 4 ą β 2 " 2 and p ą 1{2, (b) β 1 " 2 ă β 2 " 4 and p ă 1{2.

  ,k,β tends to b ˚λ, as announced. Using p17q to split ξ

"

  I Uiďp˝U H pn{iq ´IUiďp , ∆ p3q i " I Uiďp˝U H pYn´i`1,nq ´IUiďp˝U H pn{iq .

p3qnˇˇI

  , converges to 0 in probability. Our proof is based on the important fact that, for any value p Ps1{2, p β s, Uiďp˝U H pYn´i`1,nq ´IUiďp˝U H pn{iq ˇˇu p´1

  applied to the function hptq " p s

					Hptqq p1` q{2 guarantees that
	sup tăZn,n	?	n hptq ˇˇˇs F KM n	ptq ´s F ptq s F ptq	ˇˇˇ" O P p1q,

  tends to 0 thanks to properties p50q and p54q in Lemmas 7 and 8. We now conclude the proof of this lemma by proving that ? kR 2 1,n tends to 0. Since |A i,n | ď E

		2,n	"	ř k i"4 A i,n	1 i	ř i´1 l"3	E	pnq l l	´1	ˆřl´1 j"2 u j,k, p β	j j E pnq	˙.
	?	kR 2 2,n pnq i	`2,
				Ep|R 2 1,n |q ď Op1q	k 1	k		

to 0. Using the fact that ?

kb 2 n,k tends to 0, we bound this term from above by :

We conclude the treatment of this term by using p41q.

5.2.3. Proof of parts pcq and pdq By the definition of S i,k,β in p24q, and the inequality p35q in Lemma 1, use of Potter-bounds for p F ŰH qU ´β H P RV ´pβ yields that, for ą 0, ˇˇˇˇk ÿ

i"2 δ n´i`1,n c i S i,k ˇˇˇˇď p1 ` q

Now, working on the event E n,α , which satisfies lim nÑ8 PpE n,α q " 1, we have, for ą 0 and δ ą 0,

Using p42q and p40q, we see that this expression is lower than O P p1q ˆk´p β ` `δ , so that part pcq is proved as soon as p β ą 1{2, since δ and can be chosen arbitrarily small.

Finally, the definition of S i,k,β in p24q on one hand, and the relation p31q satisfied by the remainder term R n,i on the other hand, imply that (by inverting sums)

RF j,β ξ 1 j j log `p1{u j,k q.

As usual, Potter-bounds for p F ˝UH qU ´β H P RV ´pβ yield that, for ą 0, on the event E n,α , we have

Now property p40q and the fact that ? kb n,k converges conclude the proof. 

Proof of

p β pk`1q p β . Using the mean value theorem leads to

and we conclude using property p42q and the condition p β ą 1{2.

, where R n,j,β is defined in p20q. We write y RF j "

where we note y RF 1 " 0. Hence, inverting sums, we obtain k q. To do so, we write

Since a " p β or p β `γβ ˚are both ą 1{2, properties p43q and p45q conclude the proof for the fifth term.

pf q The absolute value of the sixth term is shown, thanks to inequality p36q, to be lower than

Use of p44q with a " 2 ´pβ and assumption p β ą 1{2 yields that this term is o P pk ´1{2 q.

pgq Finally, we deal with the seventh and last term R k,n "

, where Ṽj,k lies between V j,k and u j,k . On the event E n,α , we have

where the mean value theorem and Lemma 5 were used for the second bound. Therefore, for δ ą 0,

. and properties p42q and p45q (with a " 1) yield ? kR k,n " o P p1q.

Proof of Lemma 1

Lemma 1 contains a number of different statements, the third and fourth ones being the most relevant in the context of this paper.

Relation ( 35) is a simple consequence of the inequality ´x2 ď logp1 ´xq `x ď 0 (@x P r0, 1{2s) applied to x " 1{i. Then, since U pjq :"

x ´1dx is included in the interval

The spirit of the proof of relation ( 37) is similar : for a given 0 ă a ă 1, setting ∆ i,k " u i,k d i,k and noting that u 1´a i,k {p1 ´aq "

Applying, for each j, the Taylor formula of order 2 to the function x Ñ p1 ´xq 1´a ´p1 ´p1 ´aqxq between 0 and 1{j (which is lower than 1{2) leads to the following bounds

and therefore we have shown that, when 0 ă a ă 1, statement (37) holds for instance with the constants C 1 " 1{p1 ´aq and C 2 " r1 `ap1 ´aq2 a pζp1 `aq ´1qs{p1 ´aq. This means in particular that the values d i,k are always negative, which is a fact often used in the proofs of this paper. The proof of (38) when a ă 0 is performed similarly : we come up to

where c j are values between 0 and 1{j for each 2 ď j ď i (thus lower than 1{2). The second term in the right-hand side of the formula above being positive, and since pk `1q 1´a ą k `1, we have proved the lower bound for d i,k . For the upper bound, we bound the right-hand side above by zero plus the positive value p´a{pk `1qq

. Distinguishing the cases a ă ´1, a " ´1 and ´1 ă a ă 0 then leads easily to the desired upper bound.

Proof of Lemma 7

We first deal with (47). Letting W j´1 denote

i,k pE i ´1q, we remark that E j ´1 and W j´1 are independent and centered, and it is easy to check that the products pE j ´1qW j´1 (j " 3 . . . k) are then centered and uncorrelated. Therefore, it suffices to prove that 1 k ř k j"3 EpW 2 j´1 q (which is equal to the variance of the left-hand side of ( 47)) converges to 0. By construction, EpW 2 j´1 q " 1 j 2

. If p β ď 1, by using the inequality (37) with a " 2p1 ´pβ q P r0, 1r, we have

j´1,k . We can thus deduce that EpW 2 j´1 q ď cst j u

j´1,k . Finally, we obtain that our quantity of interest

j´1,k , which converges to 0 because p β ą 1{2.

Concerning (48), defining now W j´1 as 1 j ř j´1 i"2 u p β `d´1 i E i , the difference with the previous case is that W j´1 is not centred. However the products pE j ´1qW j´1 are still uncorrelated, and it again suffices to prove the convergence to 0 of the variance of the left-hand side of (48), which is now equal to 1 k 2 ř k j"3 EpW 2 j´1 q. By the Cauchy-Schwarz inequality, we have here

where the last inequality was shown in the treatment of (47) above. Therefore, we deduce that 1

, which is Opk ´1q since p β ą 1{2.

Concerning (49), we invert the two sums and then, we have to deal with

Defining now W j`1 as

, it is easy to check that pE j ´1qW j`1 (j " 2 . . . k) are then centred and uncorrelated. Therefore, it suffices to prove the convergence to 0 of the variance of the left-hand side of p49q, which is equal to

EpW 2 j`1 q. By the Cauchy-Schwarz inequality, we have

.

Inverting the two sums we deduce that 1

( ą 0), which converges to 0.

Concerning finally (50), the method developed above works similarly. By noting W 1 l,n " l ´1 ř l´1 j"2 u p β ´1 j,k E j and W i,n " i ´1 ř i´1 l"3 pE l ´1qW 1 l,n , the variables W 1 l,n are not centred but their variance can be shown to be lower than a constant times u

. Since W 1 l,n and E l ´1 are independent, the variables pE l ´1qW 1 l,n are centred and uncorrelated, and thus W i,n has a variance lower than a constant times k ´1u

This result is very close to the one stating that ? kB p1q k,n " o P p1q in subsection 5.2.1, it is proved completely similarly, therefore details are omitted. Therefore, in view of relation p58q, convergence in probability to 0 of A p3q n will follow from the following statement : for every A ą 0,

Considering the sum of independent variables S i " ř i´1 j"2 j p β ´1pE j ´1q (where E j denote iid standard exponential variables), we have W in {u p´1 i,k d " k p´p β S i {i p, and therefore, application of the Hájek-Rényi maximal inequality (see for instance Section 7.4 of [START_REF] Chow | Probability theory. Independence, interchangeability, martingales[END_REF]) leads to

which goes to 0 as n Ñ 8, since 0 ă p β ´p ă 1{2, and this proves ( 59). This ends the justification of relation ( 51).

Concerning now relation p52q, we again divide δ n´i`1,n ´p in three parts as above, and the ∆

part is proved by combining relation (58) with Lemma 5; the other two parts are easy to deal with.

Concerning relation p54q, we proceed similarly as for p51q, defining now

W in for m " 1, 2, 3.

These variables W in are still centered, and their variance and covariances can be bounded in exactly the same way as were those of

: therefore, convergence to 0 of the variances of the corresponding terms A p1q n and A p2q n is proved as above. And since W in also possesses an appropriate martingale structure to which the Hájek-Rényi maximal inequality can be applied, convergence in probability to 0 of A p3q n holds, and so does p54q.

Concerning finally relation p53q, we write its left-hand side as the sum of the following three expressions, noting

As sums of centered and uncorrelated terms, the quantities A ´1q{l and W in "

´1q, we have, for p Ps1{2, p β r,

In view of statements ( 58) and ( 59), we thus have to prove that max

´1q{l, and VpS k q " ř k l"1 1{l 2 ď π 2 {6, the Markov inequality and the usual maximal inequality of Kolmogorov yield the desired result, for any A ą 0, Prmax 3ďiďk´1 | Si | ą As ď 8VpS k q{A 2 ď cst{A 2 , which is as small as desired.

Proof of Lemma 10

Formula p33q yields

where Ṽj,k lies between V j,k and u j,k . The main term is R 1,n , but we consider R 2,n and R 3,n first. Inequality p36q in Lemma 1 implies that, for δ ą 0,

Hence ? kR 2,n tends to 0 thanks to p41q and p44q, with p β ą 1{2. Now, concerning R 3,n , we proceed as in the proof of Proposition 3 part pgq. Using the mean value theorem, Lemma 5 and then applying property p45q (with a " 1), then, working on the event E n,α defined in p30q, we have, for δ ą 0,

and we conclude using p41q and p42q. We thus have to deal with the first term R 1,n , and we start by separating the cases l " j and l ą j to obtain

We prove easily that the first term of the right-hand side is o P p1{ ? kq, using p41q and p44q. For the second term, we separate the cases j " i and j ă i and obtain 5.9. Elements of proof for the other lemmas

Concerning Lemmas 2 and 3, relation p39q is just the convergence of a Riemann sum, ( 42) is just one definition of the Zeta function, statements (40) and ( 43) have been proved in Lemma 2 of [START_REF] Worms | New estimators of the extreme value index under random right censoring, for heavy-tailed distributions[END_REF] respectively for 0 ă a ă 1 and a ą 1 (for (40), the treatment of the case a ď 0 is similar). Property (41) is a simple application of the triangular law of large numbers, whereas property (44) is deduced easily from p39q. Details are omitted.

Lemma 5 is a simple consequence of the fact that the exponential distribution admit a finite exponential moment. Proof of Lemma 9 is omitted (see [START_REF] Beirlant | Bias reduced tail estimation for censored Pareto type distributions[END_REF] for ( 55)).

Lemma 4 is based on the fact that the uniform empirical quantile process based on a uniform sample of size k satisfies ? k sup 1{pk`1qďtďk{pk`1q ˇˇpΓ ´1 k ptq ´tq{t 1{2´δ{2 ˇˇ" O P p1q (see, for example, [START_REF] Shorack | Empirical processes with applications in statistics[END_REF] sections 10.3 and 11.5). Since Γ ´1 k ptq " V j,k , for j´1 k ď t ď j k , this yields relation p45q for a " 1. From the mean value theorem and working on the event E n,α defined in p30q, relation p45q for a general a ą 0 follows easily.