Alewyn P Burger 
email: apburger@sun.ac.za
  
Heiko Harborth 
email: h.harborth@tu-bs.de
  
Meinhard Möller 
email: meinhard.moeller@gmx.de
  
  
Regular Matchstick Graphs with Integral Edges

A matchstick graph is a planar graph drawn in the plane with noncrossing straight line edges of unit length. We start with a short history of a well-known matchstick graph, namely the Harborth graph. In the main part we consider r-regular matchstick graphs (r = 3, 4, or 5) being generalized in such a way that integral edges can be used instead of unit edges. We discuss the minimum numbers n 0 (r, d) of vertices of these matchstick graphs where d is the largest edge length and we ask for numbers n > n 0 (r, d) of vertices for which matchstick graphs do exist.

Introduction

A matchstick graph is a planar graph drawn in the plane with noncrossing straight line edges of unit length. Sometimes a special matchstick graph is mentioned as the "Harborth graph" (see for example Wikipedia). This graph is 4-regular, it has 52 vertices, and it can be puzzled with 104 matchsticks on a table (see Figure 1). It is an open problem since 1985 whether there exists a 4-regular matchstick graph having less than 52 vertices. In this paper at first we present some historical remarks on the genesis of matchstick graphs and on the name Harborth graph. Then we will discuss a generalization of matchstick graphs being proposed in [START_REF] Harborth | Match sticks in the plane[END_REF] where more than one matchstick in a straight line can be used for an edge, that is, we ask for a realization of a planar graph in the plane with noncrossing edges of integral lengths. In this paper we will refer to such realizations also as matchstick graphs. Let the largest length of an edge in a matchstick graph be denoted by diameter d. Then for an r-regular planar graph (r = 3, 4, or 5) we ask for the minimum number n 0 (r, d) of vertices of a matchstick graph. Moreover, we ask for numbers n ≥ n 0 (r, d) of vertices for which matchstick graphs do exist.

Historical remarks

In this section the second author gives a short account of the history of the Harborth graph: "When Paul Erdős in 1984 visited my university in Braunschweig he posed the problem to determine the smallest number p 0 (r) of points in the plane such that each point has distance 1 to exactly r other points. It was known that p 0 (r) ≤ 3 r/2 for r ≡ 0 (mod 2), 2 • 3 (r-1)/2 for r ≡ 1 (mod 2) with equality for r ≤ 4. In 1985 I could add a proof of p 0 (5) = 18 (see [START_REF] Harborth | Regular point sets with unit distances[END_REF]). However, a proof of equality remains still open for r ≥ 6.

Since for larger r there are more and more crossings of the unit edges, I proposed in 1985 to ask for the minimum number n 0 (r) of vertices of a plane r-regular unit distance graph, that is, at each vertex r endpoints of matchsticks are meeting and no two matchsticks cross each other. This variation immediately was restricted to r less than 6 since any planar graph has at least one vertex with degree less than 6 due to the Eulerian polyhedron formula.

Playing with matchsticks I found examples for r up to 4, especially for r = 4 with 52 vertices and 104 matchsticks (see Figure 1).

On July 29, 1987, in my lecture "matchsticks in the plane" at the "Strens Conference" in Calgary I presented a model of this graph. After the end of my lecture some participants asked me for a xerox copy of my transparency.

After attending two further conferences, IMU in Berkeley and the Fibonacci Conference in San Jose, in the middle of August 1987 I visited Gerhard Ringel in Santa Cruz. He was preparing his book "Pearls in Graph Theory" [START_REF] Hartsfield | Pearls in Graph Theory[END_REF] together with Nora Hartsfield. While we were discussing the chapter "Drawing of Graphs" a neighbor passed by and presented a copy of "Science News" (a weekly Newsmagazine of Science) and -surprise -my graph was on the title page as part of a report of the "Strens Conference" by Ivars Peterson.

Then three years later when in 1990 the Hartsfield/Ringel book appeared, one could find this graph on page 171 (Figure 8.4.11) as Harborth's graph."

3 Matchstick graphs with degree 3

Let us now consider generalized matchstick graphs, that is, plane realizations of r-regular graphs with noncrossing edges of integral lengths. For r = 3 we obtain the following minimum numbers n 0 (r, d) of vertices for diameter d. Proof. The graphs of the tetrahedron and of the triangular prism are the only 3-regular planar graphs having 4 and 6 vertices, respectively (see [START_REF] Read | Atlas of Graphs[END_REF]). Both are impossible with noncrossing unit edges so that n(3, 1) ≥ 8.

It is a surprisingly challenging task to find the realization in Figure 2, which proves (a). This nonrigid graph is a projection of the unit cube into the plane with two missing vertical edges (to avoid crossings) and where two corresponding face diagonals are inserted to maintain r = 3. Figure 5:

n 0 (3, d) ≤ 6, d ≥ 2.
For (c) equality follows from the result in [START_REF] Harborth | Ganzzahlige planare Darstellungen der platonischen Körper[END_REF] that 17 is the minimum d of a plane integral representation of the tetrahedron graph (see Figure 4). 1: All integral tetrahedron graphs (a, b, c, i, j, k) with diameter smaller than 40, where a, b, c are the outside triangle edges and i, j, k are adjacent to edges a,b, to a,c, and to b,c, respectively.

For d ≥ 17 we did a computer search to find all 499 matchstick graphs of the tetrahedron with diameter at most 100. All examples with d < 40 are listed in Table 1. Figures 4 and5 are the drawings of the first two entries. This proves (c) and (d).

In general we may conjecture n 0 (3, d) = 4 for any d ≥ 68.

Problem 1. Prove that for any diameter d ≥ 68 there do exist matchstick graphs of the tetrahedron.

In this context the result of Almering [START_REF] Almering | Rational quadrilaterals[END_REF] may be mentioned that there exists a dense set of points in the plane with rational distances to the vertices of a given triangle with rational edge lengths.

Theorem 2. There exist 3-regular matchstick graphs for d ≥ 1 and all even n ≥ n 0 (3, d).

Proof. This follows from the two partial integral drawings in Figure 6: Compose s times the first part or s -1 times the first part and once the second part to obtain for s ≥ 2 a circular chain with n = 4s or n = 4s + 2 vertices, respectively. Then choose unit edges and at least one connecting edge of length d. 

Matchstick graphs with degree 4

The known results for the minimum order n 0 (4, d) are as follows. Proof. The upper bound of (a) follows from Figure 1 and the lower bound is given in [START_REF] Kurz | A lower bound for 4-regular planar unit distance graphs[END_REF]. The geometrical correctness of Figure 1 can be seen from Figure 7 for 28.956 • < α < 75.522 • . For a lower bound we have to consider the 4-regular graphs of small order. For n < 10 there exist only three such graphs (see [START_REF] Read | Atlas of Graphs[END_REF]), one for n = 6, n = 8, and n = 9 with 1,2, and 3 plane drawings, respectively, dependent on the choice of an outer face (see Figure 11).

We have determined by means of a computer search that none of the drawings in Figure 11 is possible as a matchstick graph with diameter at most 12, which proves the lower bounds in (b) and (c) and the equality in (e).

The smallest integral octahedron graph (Figure 11(a)) being presented in [START_REF] Harborth | Ganzzahlige planare Darstellungen der platonischen Körper[END_REF] already, proves the first case of (f) (see Figure 12). We have determined by a computer search all 22 primitive matchstick graphs of the octahedron j,k) of the octahedron graph with diameter at most 100, where the two triples are the inner and outer triangle and the six edges in between form triangles (a 1 , a 2 , a 3 ), (b 1 , b 2 , b 3 ), and (c 1 , c 2 , c 3 ). with diameter at most 100. These are listed in Table 2, and prove (f).

2: Primitive matchstick graphs (a 1 , b 1 , c 1 )(a 2 , a 3 , b 2 , b 3 , c 2 , c 3 )(i,
Since for d = 17 no octahedron matchstick graph does exist, (g) is proved from Figure 13. Proof. The results for d = 1 can be found in [START_REF] Winkler | New minimal (4, n)regular matchstick graphs[END_REF] and [START_REF] Winkler | On the existence of 4-regular matchstick graphs[END_REF]. There are several possibilities to obtain 4-regular matchstick graphs of order n by combining examples of lower orders (see Figure 14). For the operation in 14(c) two parts of drawings having two vertices of degree 2 (see Figures 8 and15) are needed, and the vertices of degree 2 in at least one part must be at flexible distance from each other, otherwise 3i has to be substituted by 6i and both distances have to be the same. Also, any two graphs from Figures 8 and 15 of orders, say, a and b can be combined by identifying two vertices of degree 2 from each graph so that another graph with two vertices of degree 2 is formed being of order n = a + b -1.

So for d ≥ 2, two copies of Figure 8 can be identified to give a graph of order 10 + 10 -1 = 19. Then by using the operation in Figure 14(c) to combine this graph with another copy of Figure 8, gives graphs of order n = 19+10-2+3i = 27+3i. The same operation applied to Figure 8 Figure 10 proves (e).

It may be remarked that there are many nice small matchstick graphs as for example in Figure 17 Proof. The nonexistence of (a) was open for many years and it was finally proved in [START_REF] Almering | Rational quadrilaterals[END_REF].

(d -1) (a) n = 18, d ≥ 2, (d -1) (d) (b) n = 7, d ≥ 4, (d -1) (d) (d -1) (d) (c) n = 12, d ≥ (d -1) (d -1) (d) (d) (d) n = 9, d ≥ 4. (d) 
There exists only one planar 5-regular graph for each of the orders 12 and 16. The case (c) was proved in [START_REF] Harborth | Ganzzahlige planare Darstellungen der platonischen Körper[END_REF] by showing that 159 is the smallest d for the icosahedron graph (see Figure 18 

Final remark

In general it can be of interest to determine for any given planar graph its minimum diameter d of a plane integer realization which exists for cubic planar graphs [START_REF] Geelen | Straight line embeddings of cubic planar graphs with integer edge lengths[END_REF] and which is conjectured in [START_REF] Kemnitz | Plane integral drawings of planar graphs[END_REF] to exist for all planar graphs.
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 1 Figure 1: The Harborth graph.

Theorem 1 .

 1 (a) n 0 (3, 1) = 8, (b) n 0 (3, d) ≤ 8 for d ≥ 2, (c) n 0 (3, d) = 6 for 2 ≤ d ≤ 16, 18 ≤ d ≤ 21, and d ∈ {25, 27, 29, 31, 33, 36, 45, 47, 53, 67}, (d) n 0 (3, d) = 4 for 17 ≤ d ≤ 100 but excluding values in (c).
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 213 Figure 2: n 0 (3, 1) = 8.

  Figure 4: n 0 (3, 1) = 8.
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 6 Figure 6: Partial integral drawings for graphs with even order at least n 0 (3, d).

Theorem 3 .

 3 (a) 34 ≤ n 0 (4, 1) ≤ 52, (b) 10 ≤ n 0 (4, 3) ≤ n 0 (4, 2) ≤ 18, (c) 10 ≤ n 0 (4, 5) ≤ n 0 (4, 4) ≤ 12, (d) n 0 (4, d) ≤ 10 for d ≥ 6, (e) n 0 (4, d) = 10 for 6 ≤ d ≤ 12, (f ) n 0 (4, d) = 6 for d ∈ {13

FigureFigure 8 :

 8 Figure Geometrical correctness of the Harborth graph (Figure 1). The upper bound in (b) follows from Figure 8 where the mirror image has to be added. This is possible for d = 2 also since cos α = 0.25, β = 300 • -2α, γ = 180 •β, and δ = 2γ + 2.60 • > 180. The upper bound in (c) follows from Figure 9. The general upper bound of (d) follows from Figure 10. With a = -4 + d cos α and b = -√ 15 + d sin α it follows a 2 + b 2 = d 2 + 31 -2d( √ 15 sin α + 4 cos α) = (d -5) 2 if √ 15 sin α + 4 cos α = 3 d . From this α is determined for any d ≥ 6 since 4.75 < √ 15 sin α + 4 cos α < 5.6
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 910 Figure 9: n 0 (4, 5) ≤ n 0 (4, 4) ≤ 12.
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 11 Figure 11: Drawings of 4-regular planar graphs.
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Figure 13 :Problem 2 .Theorem 4 .

 1324 Figure 12: n 0 (4, 13) ≤ 6.

  and the flexible Figure 15(a) determines n = 10+18-2+3i = 26+3i. The operation in Figure 14(c) with two copies of Figure 15(a) gives n = 18 + 18 -2 + 3i = 34+3i. If in Figure 15(a) the 9 vertices to the right of the 8 vertices at the top are added correspondingly to the left and if then the two vertices of degree 2 are identified then we have a graph of order n = 8 + 9 + 9 -1 = 25. Let in this case the two triangles incident to the identified vertex be substituted by equilateral triangles of edge length 2. If then the edge midpoints in one or in both triangles become new vertices and if they are connected pairwise then n = 25 + 3 = 28 or n = 25 + 6 = 31 are obtained. It remains to construct a graph of order 24 which follows from n = 10 + 10 -2 + 6i = 18 + 6i using the operation in Figure 14(c) with Figure 8 at both ends. This proves (b). For d ≥ 4 Figures 15(b) and 15(c) imply graphs of order n = 7 + 12 -2 + 3i = 17 + 3i. Two copies of Figure 15(b) identified together with another copy of 15(b) gives n = 13 + 7 -2 + 3i = 18 + 3i. Figures 15(c) and 15(d) determine n = 9 + 12 -2 + 3i = 19 + 3i. Two copies of Figure 15(d) imply n = 9 + 9 -2 = 16. Twice Figure 15(b) yields n = 7 + 7 -2 = 12. If we connected the midpoints of the sides of one (4, 4, 2)-triangles in this graph we obtain n = 12 + 3 = 15. Figure 16 shows how to obtain n = 14 for any d ≥ 4. Thus (c) is proved. If for d ≥ 5 the two connecting edges of length d in Figure 9 are substituted by edges of length d + 1 being incident to a new vertex then n = 12 + 1 = 13 is obtained. This proves (d).

  for n = 15 and d = 4, however, they do not serve for all larger values of d. Another example for n = 11 and d = 17 follows from Figure 13 if the midpoints of one (4,4,2)-triangle are added and connected pairwise. Now for 5 ≤ d ≤ 12 only n = 11 remains in question, however, to decide a b (a) n = a + b, a b (b) n = a + b + 1, n = a + b -2 + 3i, i ≥ 0.
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 14 Figure 14: Ways to combine graphs of orders a and b.
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 15 Figure 15: Parts of graphs used for combining graphs.
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 16 Figure 16: n = 14, d ≥ 4.Figure17: n = 15, d = 4.
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 1734 Figure 16: n = 14, d ≥ 4.Figure 17: n = 15, d = 4. on existence or nonexistence one has to check 17 drawings for the three 4regular planar graphs of order 11. If d ≥ 13 then n = 6, 8, and 9 are in question, too. Problem 3. Find matchstick graphs for the missing orders n or prove the occasional nonexistence. Problem 4. Determine the minimum diameter d for 4-regular matchstick graphs (or nonexistence) of orders n = 6 and n ≥ 8.
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 18195 Figure 18: n = 12, d = 159, r = 5.

Table

  

		34, 8, 8)
	(24, 20, 20, 15, 15, 7)	(37, 36, 25, 27, 14, 15) (39, 39, 13, 33, 8, 9)
	(26, 20, 18, 13, 15, 9)	(37, 36, 31, 18, 20, 24) (39, 39, 13, 33, 9, 8)
	(28, 26, 24, 21, 17, 8)	(37, 37, 24, 19, 20, 20) (39, 39, 30, 16, 25, 25)
	(28, 27, 23, 20, 18, 8)	(37, 37, 24, 26, 15, 15) (39, 39, 30, 28, 17, 17)
	(30, 25, 25, 17, 17, 12) (37, 37, 24, 30, 13, 13)

17, 17, 16, 9, 10, 10) (32, 30, 13, 28, 6, 8) (38, 32, 30, 11, 28, 23) (22, 19, 8, 17, 6, 4) (32, 30, 26, 15, 19, 18) (39, 27, 24, 26, 15, 11) (23, 21, 20, 13, 14, 10) (34, 34, 32, 18, 20, 20) (39, 31, 20, 22, 19, 11) (24, 15, 15, 13, 13, 4) (35, 31, 24, 26, 19, 7) (39, 37, 22, 28, 13, 15) (24, 20, 20, 13, 13, 11) (37, 31, 30, 13, 26, 20) (39, 38, 14,

Table
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