
HAL Id: hal-01768773
https://hal.science/hal-01768773

Submitted on 17 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparison of Soft-Fault Error Models in the Parallel
Preconditioned Flexible GMRES

Evan Coleman, Aygul Jamal, Marc Baboulin, Amal Khabou, Masha Sosonkina

To cite this version:
Evan Coleman, Aygul Jamal, Marc Baboulin, Amal Khabou, Masha Sosonkina. A Comparison of
Soft-Fault Error Models in the Parallel Preconditioned Flexible GMRES. International Conference on
Parallel Processing and Applied Mathematics, Sep 2017, Lublin, Poland. pp.36-46, �10.1007/978-3-
319-78024-5_4�. �hal-01768773�

https://hal.science/hal-01768773
https://hal.archives-ouvertes.fr

A Comparison of Soft-Fault Error Models in the
Parallel Preconditioned Flexible GMRES?

Evan Coleman 1,2 (ecole028@odu.edu), Aygul Jamal3 (jamal@lri.fr), Marc
Baboulin3 (baboulin@lri.fr), Amal Khabou3 (khabou@lri.fr), and Masha

Sosonkina 2 (msosonki@odu.edu)

1 Naval Surface Warfare Center - Dahlgren Division, Dahlgren, VA, United States
2 Old Dominion University, Norfolk, VA, United States

3 Université Paris-Sud, Université Paris-Saclay; 91405 Orsay, France

Abstract.
The effect of two soft fault error models on the convergence of the par-
allel flexible GMRES (FGMRES) iterative method solving an elliptical
PDE problem on a regular grid is evaluated. We consider two types
of preconditioners: an incomplete LU factorization with dual threshold
(ILUT), and an algebraic recursive multilevel solver (ARMS) combined
with random butterfly transformation (RBT). The experiments quan-
tify the difference between two soft fault error models considered in this
study and compare their potential impact on the convergence.

Keywords: fault tolerance, soft fault models, FGMRES, parallel itera-
tive linear solvers, preconditioners, ARMS, ILUT, RBT randomization

1 Introduction

The prevalence of faults is expected to increase as high-performance computing
platforms continue to grow [1,6] and the mean time between failures (MTBF)
continues to decrease, which calls for the design of fault-tolerant computational
algorithms that are robust, in the sense of being able to cope with errors. Mostly,
faults are divided into two categories: hard faults and soft faults [4,9]. Hard faults
are usually due to negative effects on the physical components of the system;
their key characteristic is that they cause program interruption. Thus, they are

?This work was supported in part by the Air Force Office of Scientific Research
under the AFOSR award FA9550-12-1-0476 by the U.S. Department of Energy, Office
of Advanced Scientific Computing Research, through the Ames Laboratory, operated
by Iowa State University under contract No. DE-AC02-07CH11358, and by the U.S.
Department of Defense High Performance Computing Modernization Program, through
a HASI grant, and the ILIR/IAR program at NSWC Dahlgren. This research used
resources of the National Energy Research Scientific Computing Center (NERSC),
a DOE Office of Science User Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231 and of Old Dominion
University operating the Turing High Performance Computing Cluster.

mailto:ecole028@odu.edu
mailto:jamal@lri.fr
mailto:baboulin@lri.fr
mailto:khabou@lri.fr
mailto:msosonki@odu.edu

difficult to deal with from an algorithmic standpoint. Conversely soft faults do
not immediately cause program interruption, although such an interruption may
occur. Another key feature of soft faults is that they can be detected during the
program execution. Typically, soft faults allude to some data corruption. The
occurrence of soft faults is commonly modeled by injection of bit flips into the
algorithm data structures [5,12]. Recent research efforts (see, e.g., [7,8,9,10,11])
have focused on modeling the impact of soft faults with a numerical approach
that quantifies the potential impact by generating an appropriately sized faults.
It is important to develop and study such models because they provide a means
of simulating the data corruption caused by faults, and thus, enable to develop
fault resilient algorithms without making any assumptions concerning how a
fault may manifest on either current or future hardware. Note that the data
corruption caused by the simulation of a fault is not expected to mirror exactly
the data corruption that would be caused by the error (e.g., bit flip), but that
the impact on the algorithm should be the same. In the case of parallel iterative
methods this impact may be judged by the resulting extra iterations. Note also
that these numerical soft fault models allow one to model the worst-case behavior
by adjusting internal parameters. Moreover, stochastically sampling a particular
type of error, such as a bit flip, will tend to reveal an average-case behavior.
See [13] for a more detailed description of the numerical approach to simulating
faults. This paper aims at adapting two existing numerical soft fault models
to study a particular class of soft faults, referred to as sticky faults. In the
classification of soft faults that is presented in [4,9], soft faults are divided into
three categories based upon how they affect the program execution: transient,
sticky, and persistent. Transient faults are defined as faults that occur only
once, sticky faults indicate a fault that recurs for some period of time but where
computation eventually returns to a fault-free state, and persistent faults refer
to permanent faults.

An example of a sticky fault, that is provided in [4], is the incorrect copy of
data from one location to another. The incorrect bit pattern present in the faulty
copy of the data will remain incorrect for an indefinite amount of time, but will
be corrected if and when the data is copied over again. It is also important to
note that in the case of a sticky fault, the fault can be corrected by means of a
direct action. Transient errors are typically caused by solitary bit flips. Whether
researchers choose to model faults using bit flips or adopt a more numerical
approach, much of the previous work on the impact of silent data corruption
(SDC) has to do with the modeling of transient errors. The goal of the study
presented in this paper is to adapt both a numerical soft fault model for transient
soft faults and a perturbation based soft fault model for persistent soft faults,
so that each one is capable of modeling the potential impact of a sticky fault.
Specifically, the main contributions of this work include (1) an extension to the
fault model presented by Elliot et al. in [9,10,11], (2) a modification of the fault
model proposed by Coleman et al. in [7], and (3) an analysis of the differences
between the two models.

The remaining sections of the paper are organized as follows: in Section 2,
we give some background information for both the FGMRES algorithm and
the preconditioners used for the experiments, in Section 3, we detail the two
fault models adapted here, in Section 4, we present experiment results, and in
Section 5, we conclude.

2 Background

2.1 Preconditioners

A preconditioned system writes the general linear system of equations Ax = b
in the form M−1Ax = M−1b, when preconditioning is applied from the left,
and AM−1y = b with x = M−1y, when preconditioning is applied from the
right. The matrix M is a nonsingular approximation to A, and is called the
preconditioner. Incomplete LU factorization methods (ILUs) are effective pre-
conditioning techniques for solving linear systems. In this case, the matrix M
has the form M = L̄Ū , where L̄ and Ū are approximations to the L and U factors
of the standard LU decomposition of A. The incomplete factorization may be
computed using the Gaussian elimination algorithm, by discarding some entries
in the L and U factors. In the ILUT preconditioner used in the experiments, a
dual non-zero threshold (τ, ρ) is used: all computed values that are smaller than
τ ||ai||2 are dropped, where ||ai||2 is the norm of a given row of the matrix A,
and only the largest ρ elements of each row are kept. Note that throughout the
paper, the Euclidean norm is used.

For a given linear system, if m of the independent unknowns are numbered
first, and the other n−m unknowns last, the coefficient matrix of the system is
permuted in a 2× 2 block structure.

In multi-elimination methods [16, p. 392], a reduced system is recursively
constructed from the permuted system performing a block LU factorization of
PAPT as follows

PAPT =

(
D F
E C

)
=

(
L 0
G In−m

)
×

(
U W
0 A1

)
,

where P is a permutation matrix, D is a diagonal matrix (or block-diagonal if
we consider sets of independent unknowns), L and U are the triangular factors
of the LU factorization of D, and A1 = C − ED−1F is the Schur complement
with respect to C, In−m is the identity matrix of dimension n−m, G = EU−1

and W = L−1F . The reduction process can be applied another time to A1, and
recursively to each consecutively reduced system until the Schur complement
is small enough to be solved with a standard method. The factorization above
defines a general framework which can accommodate for different methods. The
Algebraic Recursive Multilevel Solver (ARMS) preconditioner [17] uses block
independent sets to discover sets of independent unknowns and computes them
by using a greedy algorithm. In the ARMS implementation used here, the in-
complete triangular factors L̄, Ū of D are computed by one sweep of ILU using
dual non-zero thresholds (ILUT) [16]. In the second loop, an approximation Ḡ

to EŪ−1 and an approximate Schur complement matrix Ā1 are derived. This
holds at each reduction level. At the last level, another sweep of ILUT is applied
to the (last) reduced system.

In this study, we also use an implementation of ARMS called ARMS RBT [3]
where the last Schur complement system is small enough to be converted into
a dense matrix and randomized using Random Butterfly Transformations [2] to
avoid pivoting in the Gaussian elimination. Then the resulting system is solved
via a routine that performs Gaussian elimination with no pivoting, followed by
two triangular solves. The ARMS RBT version has shown satisfactory numerical
behavior [3] and can potentially benefit from GPU computing [14]. It appeared
also in the experiments conducted in our study that the convergence results with
ARMS and ARMS RBT have been quite similar.

In the remainder of this paper, ARMS RBT will be simply referred to
as “ARMS”. In our experiments, we will use the preconditioners ILUT and
ARMS RBT. This choice is motivated by the fact that ultimately, we plan to
study soft errors in the pARMS solver [15].

2.2 Flexible GMRES

The right-preconditioned FGMRES algorithm, as described in [16, p. 273] is pro-
vided in Algorithm 1. FGMRES is similar in its nature to the standard GMRES
with the exception of allowing the preconditioner to change at each iteration by
storing the result of each preconditioning operation (cf. matrix Zm in line 10).
In this study, we select FGMRES (instead of GMRES) because it is a robust
solver which is proven to converge under variable preconditioning, including con-
verging in situations where the variability comes as a result of some anomaly in
the preconditioning operation [7], the anomaly being here the fault injected via
the soft error fault models. In our experiments, the faults are injected at two
distinct locations inside the FGMRES algorithm: line 1, called here the outer
matvec operation, and line 3, which is the application of the preconditioner M .
These two locations were chosen since they are two of the most computationally
demanding operations in the algorithm.

3 Fault Models

As noted earlier, the two main sticky fault models used in this study are: first an
adapted version of the model presented in [11], referred to as “Numerical Soft
Fault Model” (NSFM) due to its origins in seeking a numerical estimation of
a fault, and second an adapted version of the model given in [7], which will be
referred to as the “Perturbation Based Soft Fault Model” (PBSFM) due to its
modeling of faults as small random perturbations.

Numerical Soft Fault Model. The approach detailed in [11] generalizes the simu-
lation of soft faults by disregarding the actual source of the fault and allowing the
fault injector to vary the size of errors. In the experiments conducted in [9,10,11],
faults are typically defined as either: (1) a scaling of the contribution of the re-
sult of the preconditioner application for the Message Passing Interface (MPI)

Input: A linear system Ax = b and an initial guess at the solution, x0
Output: An approximate solution xm for some m ≥ 0

1 r0 := b−Ax0, β := ||r0||2, v1 := r0/β
2 for j = 1, 2, . . . ,m do
3 zj := M−1

j vj

4 w := Azj
5 for i = 1, 2, . . . , j do
6 hi,j := w · vi
7 w := w − hi,jvi
8 end
9 hj+1,j := ||w||2, vj+1 := w/hj+1,j

10 Zm := [z1, . . . , zm], H̄m := hi,j1≤i≤j+1;1≤j≤m

11 end
12 ym := argminy||H̄my − βe1||2, xm := x0 + Zmym
13 if Convergence was reached then return xm else go to line 1

Algorithm 1: Flexible GMRES algorithm.

process in which a fault was injected, (2) a permutation of the components of the
vector result of the preconditioner application for the MPI process in which a
fault was injected, or (3) a combination of these two effects. We denote as α the
scaling factor used, as x and x̂ the vector with and without faults, respectively:
α = 1: ||x||2 = ||x̂||2, 0 ≤ α < 1: ||x||2 > ||x̂||2 and α > 1: ||x||2 < ||x̂||2.

The adaptation that was made to extend this model to be applicable in a
“sticky” sense was to inject a fault into a single MPI process in the exact same
manner at every iteration in which a fault is simulated. The analysis that was
performed in [9,10,11] details the impact of the NSFM model in the case where
it is modeling transient soft faults with various scaling values. The impact of
this fault model relative to the impact of a single bit flip is given in [11] and
shows that regardless of where the bit flip occurs, the NSFM will perform in a
similar way to the worst case scenario induced by a traditional bit flip. Analysis
showing the impact of a bit flip based on where in the storage of a floating point
number it occurs is given in [12].

Perturbation Based Soft Fault Model. The approach in [7] selects a single MPI
process and injects a small random perturbation into each vector element. If

Table 1: Effect of the two fault models on random vectors of several sizes
Size 101 102 103 104 105 106

NSFM 2.2223 5.1826 17.1997 53.8458 172.3676 543.9308
PBSFM 0.0009 0.0029 0.0091 0.0289 0.0913 0.2887

the vector to be perturbed is x and the size of the perturbation based fault
is ε then to inject a fault, one should generate a random number in the range
rε ∈ (−ε, ε) and set xi = xi + rε for all i. The vector with the fault injected x̂, is
thus perturbed away from the original vector x. Since the FGMRES algorithm
works at minimizing the norm of the residual, and this can be directly affected
by the norm of certain steps inside the FGMRES algorithm, we present three
variants of the PBSFM:

1. The sign of xi is not taken into account. In this variant, ||x||2 ≈ ||x̂||2.
2. If xi ≥ 0 then rε ∈ (−ε, 0) and if xi < 0 then rε ∈ (0, ε). Here, ||x||2 ≥ ||x̂||2.
3. If xi ≤ 0 then rε ∈ (−ε, 0) and if xi > 0 then rε ∈ (0, ε). Here, ||x||2 ≤ ||x̂||2.

Using these three variants allows the PBSFM to monitor changes over the norm
of the vector where a fault is injected (similarly to the NSFM with the α coeffi-
cient) and therefore an additional level of control on how a fault may affect the
convergence of the FGMRES algorithm.

To show the potential difference between a given vector x and its instance x̂
where a fault is injected, we report in Table 1 the norm of the distance between x
and x̂ computed for each fault model (see columns NSFM with α = 1.0 and PBSFM

ε = 5×10−4) when considering 10, 000 random vectors x of varying sizes (column
Size) generated using MATLAB.

Additionally, the NSFM allows for slightly more exact statements to be made
concerning the effect of the injected fault on the norm, as the norm will not be
affected by the shuffling of elements and the scaling factor causes a predictable
effect; even if it is not applied to all subdomains. However, the size of the fault—
measured as a difference between fault-free and faulty runs—in general, depends
only on the problem size in the case of the NSFM. On the other hand, when
using the PBSFM, this fault size is easier to control.

4 Experiments

The test problem that was considered here comes from the pARMS library [15],
and represents the discretization of the following elliptic 2D partial differential
equation,

−∆u+ 100
∂

∂x
(exyu) + 100

∂

∂y
(e−xyu)− 10u = f

on a square region with Dirichlet boundary conditions, using a five-point centered
finite-difference scheme on an nx×ny grid, excluding boundary points. The mesh
is mapped to a virtual px × py grid of processors, such that a subrectangle of
rx = nx/px points in the x direction and ry = ny/py points in the y direction
is mapped to a processor. The size of the problem was varied and controlled
by changing the size of the mesh that was used in the creation of the domain.
The mesh sizes that were considered corresponded to a “small” problem with
rx = ry = 200 and a “large” problem variant with rx = ry = 400. Both of
these two problem sizes were run on a px = py = 20 grid of 400 processors in
total. This leads to problem sizes of 16, 000, 000 and 64, 000, 000, respectively
(n = px × py × rx × ry). The right hand side was chosen as b = Ax with
x = (1, 1, . . . , 1)T . The initial guess was then set to (0, 0, . . . , 0)T . This problem
was selected in order to provide a comparison to existing work [7,15].

The experiments have been carried out on the computing platform Edison
located at NERSC. It is a Cray XC30 with 134, 064 cores and 357 TB memory
across a total of 5586 nodes. Each node has two sockets, with a 12-core Intel
“Ivy Bridge” processor at 2.4 GHz per socket. All the experiments in this paper
were conducted on a subset of 400 cores.

4.1 Experiment Description

For both the small and large problem, the performed tests included a fault-free
run, a series of runs using the NSFM model and a series of runs using the PB-
SFM model. For the NSFM, the variable that will have the largest impact upon
the fault injected is the scaling factor α while for the PBSFM the largest con-
tributor to the impact of the fault is the size of the perturbation ε. Sticky faults
were conservatively defined to be present during the first 1000 iterations of the
iterative solver execution. For the fault-free test, the small problem converged in
roughly 1500 iterations, and the large problem in approximately 3500 iterations.
For these experiments, three values of both α and ε were used: α = 1/2, 1, 2, and
ε = 10−3, 5 · 10−4, 10−4.

The NSFM runs using α = 1/2, α = 1, and α = 2, were compared to
the three variants of PBSFM that decreases the norm, that leaves the norm
approximately the same (referred to as “neutral” in the remainder), and that
increases the norm, respectively (see Section 3). For both fault models, the three
values were chosen such that the largest error was close to the largest possible
error that allowed convergence for the given problem and fault definition, and
the two smaller values were scaled down by reasonable amounts. Note that all
the runs of FGMRES were performed multiple times and the average was taken.

4.2 Results

The plots are only presented for the neutral norm variants of the fault models in
Figs. 1 and 2. This involves the variants of the PBSFM model where the norm
remains approximately the same, and the version of the NSFM where the scaling
factor α is set to 1. Each figure shows five different fault methods: a nominal
(fault-free) run, a PBSFM run with a “small” fault (10−4), a PBSFM run with
a “medium” fault (5 ·10−4), a PBSFM with a “large” fault (10−3), and a NSFM
run with α = 1. Fig. 1a depicts the effects of the various soft faults injected
into the outer matrix vector operation of the FGMRES algorithm when solving
the small problem. In this figure, it is apparent that, for both the ARMS and
ILUT preconditioners, the NSFM has a more negative effect on the convergence
of the FGMRES algorithm than the PBSFM. For instance, compared to the
fault-free runs, the NSFM runs needed more than 1000 additional iterations to
converge for both preconditioners while the additional number of iterations is
at most around 150 for the different PBSFM variants. Fig. 1b shows the results
when the faults are injected into the vector resulting from the preconditioner
application. We observe that the size of errors in PBSFM has more impact when
injected in the preconditioner than in the outer matvec operation and that, for
large error sizes (10−3), PBSFM requires even more iterations than NSFM.

Fig. 2a displays the number of iterations to convergence when injecting faults
into the outer matrix vector operation for the large problem. As in Fig. 1a, the
results in Fig. 2a show a steady increase in the delay in the convergence of FGM-
RES from the nominal case to the PBSFM cases (ordered by the increasingly
sized faults), then to the NSFM case. The plots in Fig. 2b depict the injection of

Small MV ARMS_RBT and ILUT

Page 2

Nominal PBSFM-Small PBSFM-Medium PBSFM-Large NSFM

0

500

1000

1500

2000

2500

3000

ARMS ILUT

(a) matvec

Small PC ARMS_RBT and ILUT

Page 2

Nominal PBSFM-Small PBSFM-Medium PBSFM-Large NSFM

0

500

1000

1500

2000

2500

3000

3500

4000

4500

ARMS ILUT

(b) precond

Fig. 1: Soft fault model comparison for the small problem for faults injected at
the outer matvec operation (a), and at the application of the preconditioner (b).

faults into the result of the preconditioning operation for the large problem. Sim-
ilarly to Fig. 1b, we observe for PBSFM a higher sensitivity to the size of errors
for perturbations of the preconditioner than of the outer matvec operation. Note
also that medium and large fault sizes associated with PBSFM cause a larger
delay in the convergence than the corresponding NSFM run. For this specific
case, the same observation holds for all the three norm variants (cf. Table 2).

Large MV ARMS_RBT and ILUT

Page 2

Nominal PBSFM-Small PBSFM-Medium PBSFM-Large NSFM

0

1000

2000

3000

4000

5000

6000

ARMS ILUT

(a) matvec

Large PC ARMS_RBT and ILUT

Page 2

Nominal PBSFM-Small PBSFM-Medium PBSFM-Large NSFM

0

2000

4000

6000

8000

10000

12000

14000

ARMS ILUT

(b) precond

Fig. 2: Soft fault model comparison for the large problem for faults injected at
the outer matvec operation (a), and at the application of the preconditioner (b).

Complete results, including different PBSFM variants, are provided in Ta-
ble 2 for the small (SP) and large (LP) problems with the neutral, decrease, and
increase norm variants in rows represented by signs =, −, and +, respectively.
The † symbol indicates that the corresponding solver does not converge. We
recall that for NSFM, the cases =, −, and + correspond to α = 1, 1/2, and 2,
respectively.

For a fault-free case, the preconditioning is not variable and we simply run
GMRES (see Section 2.2), which converged in fewer iterations when using the
ARMS preconditioner compared to the ILUT preconditioner, as already observed
in [3]. This remained true when faults were injected. For the large problem, the

|| ||2
Nominal PBSFM-Small PBSFM-Medium PBSFM-Large NSFM
SP LP SP LP SP LP SP LP SP LP

IL
U

T m
a
tv

ec = 1542 3496 1380 3300 1477 3797 1624 3969 2590 4768
– 1542 3496 2236 3807 2318 4170 2352 4380 2565 4660
+ 1542 3496 2241 3603 2326 4140 2358 4386 2637 4788

p
re

co
n
d = 1542 3496 1487 3523 2243 6703 3811 11156 2355 4022

– 1542 3496 1499 3280 2155 5163 2782 7639 2324 4093
+ 1542 3496 1499 3518 2168 5162 2780 7735 † †

A
R

M
S

m
a
tv

ec = 1359 3357 1538 3790 1585 4594 1764 4727 2698 5456
– 1359 3357 2323 4199 2426 4810 2459 7639 2697 5375
+ 1359 3357 2339 3825 2423 4655 2459 5059 2646 5426

p
re

co
n
d = 1359 3357 1700 4349 2336 8221 4125 13607 2518 4550

– 1359 3357 1706 4010 2201 6063 2925 9492 2570 4493
+ 1359 3357 1657 3989 2205 6061 2927 9005 † †

Table 2: Full results for the small and large problems with the neutral, decrease,
and increase norm.

impact of faults injected is more pronounced for PBSFM, and for ILUT rather
than ARMS.

Our experiments showed that the NSFM has a more negative impact on
the convergence of the iterative FGMRES than the PBSFM in most scenarios.
In every instance tested except for preconditioner faults on the larger problem
size, the comparable version of the NSFM delayed convergence longer than the
PBSFM did. This is in part due to the fact that the NSFM moves the vector
where a fault is injected much further from its original location than the PBSFM
does (see, e.g., Table 1). In summary, for recurring faults specifically, the PBSFM
offers a greater level of fine-tuned control over the fault impacts. However, the
size of the fault in the PBSFM does not seem to have as large impact on the
convergence of FGMRES in the runs that attempted to manipulate the norm.

5 Conclusion

We compared two soft fault error models, termed as “numerical” (NSFM) and
“perturbation based” (PBSFM) that we adapted to simulate sticky faults in the
FGMRES algorithm preconditioned with ARMS or ILUT. We injected errors of
different sizes when performing the outer matrix-vector operation or when apply-
ing the preconditioner. For both models, faults in the preconditioner application
lead to slower convergence as compared with errors in the outer matrix-vector
multiplication. The experiments also showed that, even in the presence of faults,
FGMRES converges in fewer iterations when using the ARMS preconditioner
than when using ILUT. These observations indicate that it is advantageous to
apply the most robust preconditioner in the environments prone to soft faults.
In the future, we plan to consider a wider range of preconditioners and compare
their resilience to soft faults and robustness.

References

1. K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, et al. The landscape of
parallel computing research: A view from Berkeley. Technical report, UCB/EECS-
2006-183, EECS Department, University of California, Berkeley, 2006.

2. M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov. Accelerating linear system
solutions using randomization techniques. ACM Trans. Math. Softw., 39(2):8:1–
8:13, February 2013.

3. M. Baboulin, A. Jamal, and M. Sosonkina. Using random butterfly transformations
in parallel Schur complement-based preconditioning. In 2015 Federated Conference
on Computer Science and Information Systems, pages 649–654, 2015.

4. P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen. Fault-tolerant
linear solvers via selective reliability. arXiv preprint arXiv:1206.1390, 2012.

5. G. Bronevetsky and B. de Supinski. Soft error vulnerability of iterative linear
algebra methods. In Proc. of the 22nd annual international conference on Super-
computing, pages 155–164. ACM, 2008.

6. F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward exascale
resilience: 2014 update. Supercomputing frontiers and innovations, 1(1), 2014.

7. E. Coleman and M. Sosonkina. Evaluating a Persistent Soft Fault Model on Precon-
ditioned Iterative Methods. In Proc. of the 22nd annual International Conference
on Parallel and Distributed Processing Techniques and Applications, 2016.

8. E. Coleman, M. Sosonkina, and E. Chow. Fault Tolerant Variants of the Fine-
Grained Parallel Incomplete LU Factorization. In Proc. of the 2017 Spring Simu-
lation Multiconference. Society for Computer Simulation International, 2017.

9. J. Elliott, M. Hoemmen, and F. Mueller. Evaluating the impact of sdc on the
GMRES iterative solver. In Parallel and Distributed Processing Symposium, 2014
IEEE 28th Int’l, pages 1193–1202. IEEE, 2014.

10. J. Elliott, M. Hoemmen, and F. Mueller. Tolerating silent data corruption in
opaque preconditioners. arXiv:1404.5552, 2014.

11. J. Elliott, M. Hoemmen, and F. Mueller. A Numerical Soft Fault Model for Iterative
Linear Solvers. In Proc. of the 24nd Int’l Symposium on High-Performance Parallel
and Distributed Computing, 2015.

12. J. Elliott, F. Mueller, M. Stoyanov, and C. Webster. Quantifying the impact of
single bit flips on floating point arithmetic. preprint, 2013.

13. James Elliott, Mark Hoemmen, and Frank Mueller. Resilience in numerical meth-
ods: a position on fault models and methodologies. arXiv:1401.3013, 2014.

14. A. Jamal, M. Baboulin, A. Khabou, and M. Sosonkina. A hybrid CPU/GPU
approach for the parallel algebraic recursive multilevel solver parms. In 18th
Int’l Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
SYNASC 2016, Timisoara, Romania, September 24-27, 2016, pages 411–416, 2016.

15. Z. Li, Y. Saad, and M. Sosonkina. pARMS: a parallel version of the algebraic
recursive multilevel solver. Numerical linear algebra with applications, 10(5-6):485–
509, 2003.

16. Y. Saad. Iterative methods for sparse linear systems. Siam, 2003.
17. Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for

general sparse linear systems. Numerical linear algebra with applications, 9(5):359–
378, 2002.

