
HAL Id: hal-01768687
https://hal.science/hal-01768687

Submitted on 17 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal verification of automotive embedded software
Vassil Todorov, Frédéric Boulanger, Safouan Taha

To cite this version:
Vassil Todorov, Frédéric Boulanger, Safouan Taha. Formal verification of automotive embedded soft-
ware. FORMALISE: 6th International Conference on Formal Methods in Software Engineering, Jun
2018, Gothenburg, Sweden. �10.1145/3193992.3194003�. �hal-01768687�

https://hal.science/hal-01768687
https://hal.archives-ouvertes.fr


Formal verification of automotive embedded software
Vassil Todorov

LRI, Groupe PSA, Université
Paris-Saclay

Frédéric Boulanger
LRI, CentraleSupélec, Université

Paris-Saclay

Safouan Taha
LRI, CentraleSupélec, Université

Paris-Saclay

ABSTRACT
The ever-increasing complexity of automotive embedded systems
and the need for safe advanced driver assistance systems (ADAS)
represent a great challenge for car manufacturers. Furthermore,
we expect that in the near future, authorities require a software
certification in order to get convinced that ADAS are safe
enough. Theoretical research and experience show that when using
conventional design approaches it is impossible to guarantee high
confidence to those systems. The way taken by some industries
(e.g. aerospace, railway, nuclear) was by partially using formal
verification techniques.

In this paper, we first present a background of the formal
verification techniques and how they can contribute to achieve
the requirements of some safety standards. Next, we share our
experience with the application of those techniques that seem to be
mature enough to be used in an industrial context: Static analysis
based on Abstract Interpretation, SMT-based software Model
checking and Deductive proof. Finally, we make a detailed analysis
about our experiments and propose an approach introducing formal
methods into the development of automotive embedded software.

CCS CONCEPTS
• Software and its engineering→ Software verification;

KEYWORDS
Software verification · Formal methods · ADAS · Certification
ACM Reference Format:
Vassil Todorov, Frédéric Boulanger, and Safouan Taha. 2018. Formal
verification of automotive embedded software. In FormaliSE ’18: FormaliSE
’18: 6th Conference on Formal Methods in Software Engineering , June 2, 2018,
Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
Automotive software has a major role in today’s vehicle control and
entertainment features. It is developed according to prescription
rules defined by the ISO 26262 standard. Verification and validation
activities (V&V) have to be performed in order to guarantee the
compliance of the software to the standard. These activities are a
key concern on complex systems particularly for the safety-critical
ones and require a great effort to avoid unexpected behaviors.

For many years, the automotive industry has relied on reviews,
analysis and tests for V&V activity. The reason was the cost
effectiveness of those methods and the fact that the software was

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FormaliSE ’18, June 2, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).

not so critical. Actually, the driver had a mechanical control over
the steering and the brakes and could stop in case of emergency.

However, in the near future, autonomous vehicles will bring
new requirements for higher software correctness and probably
a software certification issue. At the same time, software is
getting more and more complex. We think that a way to manage
the complexity issue and to guarantee a high confidence and
integrity in safety-critical software is to use formal methods. It will
bring a higher reliability, robustness and confidence. Moreover,
using formal methods in an early design phase results in a
better specification, maintenance and early design validation thus
reducing the overall V&V cost.

In this paper, we present our experience in applying formal
verification techniques to a software written the way automotive
is doing it today. In Section 2 we present a brief overview of
formal methods and comment on some tools. In Section 3 we
discuss safety standards, tools and cost, which are the factors
that could help introducing formal methods in the development
process. In Section 4 we give a detailed analysis of our experiments.
Our approach for introducing formal methods in the development
process is presented in Section 5, before concluding in Section 6.

2 OVERVIEW OF FORMAL METHODS
The first works on formal methods date back to the 1960s. The
central idea is to guarantee the behavior of a computing system
using mathematical methods.

For many years, formal methods have essentially been used in
academia. Today, formal methods get more and more connected
with applied engineering and many industries are using them in
their development process. They are better applied in the electronic
hardware design because the hardware tools are more standardized
and stable. Software tools and technology (such as requirements
and design methodology) are still changing rapidly.

We shortly discuss here the three main categories of formal
methods that provide some guarantee of quality and that are highly
automated.

2.1 Abstract Interpretation
Abstract Interpretation is a kind of static analysis introduced in 1977
by Cousot et al. [9] that automatically computes information about
the program behavior without executing it. Most questions about
this behavior are either undecidable or it is practically impossible
to compute an answer. The main goal of abstract interpretation is
to efficiently compute an approximate or abstract representation of
a program and bring sound guarantees about dynamic properties.
Sound means that the approximation is reliable and that bugs are not
missed (no false negatives). A spurious alarm also known as a false
positive is a warning about a bug that does not exist in the program.
False positives can be generated because of the approximation.



FormaliSE ’18, June 2, 2018, Gothenburg, Sweden V. Todorov et al.

This method has been implemented in static analysis tools to
check for runtime errors like division-by-zero, out of bound array
access, overflows and others. Some tools extend it also to check
MISRA coding rules [16], SEI CERT Secure C rules [20] and MITRE
Common Weakness Enumeration CWE rules [15]. Astrée from
AbsInt, Polyspace Code Prover from MathWorks and TrustInSoft
Analyzer from TrustInSoft are commercial tools for sound static
analysis. Other tools like Coverity and Klocwork are based on
heuristics and do not guarantee to find all runtime errors. They are
out of the scope of this paper.

2.2 Model Checking
Model checking is a formal method introduced in the early 80s
by two teams: E. M. Clarke, E. A. Emerson [7], and J. P. Queille,
J. Sifakis [18]. It determines if a formal model of a system satisfies
a correctness property from the specification. It provides a better
expressiveness for properties than Abstract Interpretation but is
less scalable due to some limitations (e.g. nonlinear arithmetic,
combinatorial explosion). The most valuable feature of Model
checking for system design engineers is the counterexample
produced when the property is violated. It shows an execution
trace leading to a state in which the property is not verified.

There exist different types of model checkers but for our use
cases (checking safety properties on embedded software), the most
suitable are the ones that use induction and SMT (Satisfiability
Modulo Theories) solvers, for example Kind2 (University of
Iowa) [5], JKind (Rockwell Collins) [10], Prover Plugin also known
as Design Verifier (Prover Technologies) and GATeL (CEA). They
generally translate a model written in a synchronous dataflow
formal language such as Lustre [3] into first-order logic formulas
which are then checked for satisfiability by the solver. Sometimes,
properties are not strong enough to be provable by induction.
In this case, it is helpful to strengthen the induction hypotheses
with known invariant properties of the system using invariant
generation techniques [13].

2.3 Deductive methods
Deductive methods use mathematical arguments to establish each
property of a formal model. Proofs are normally constructed using a
theorem proving tool, either automatically or in an interactive way.
The proofs are based on Hoare logic and Dijkstra’s precondition
calculus [11]. This method is generallymore expressive than abstract
interpretation and model checking, but if the property is invalid,
there is generally no counterexample to help the engineer. It also
needs more human expertise than the other methods.

We can mention some frameworks and tools for deductive
proof: SPARK for Ada [6], Frama-C WP for C code [14] and its
predecessor CAVEAT that was successfully used at Airbus [21].
The B Method [2] is another deductive method that was used with
success in some French railway companies.

3 INTRODUCING FORMAL METHODS IN
THE INDUSTRY

Some factors could help introducing formal methods in the industry:
• Recommendation or requirement by the standards;

• Availability of supporting tools that are easy to use by the
engineers;

• An overall cost for using them which is less than without
using formal methods.

3.1 Standards
For the automotive industry, ISO 26262 is the standard for functional
safety management. This standard recommends the use of formal
methods for its most critical levels.

In rail transport, EN 50128 recommends the use of formal
methods for the less critical levels and highly recommends their
use for the most critical levels, making it de facto mandatory.

In the aviation domain particularly, there is a special supplement
DO-333 to the DO-178C which modifies, deletes and adds objectives
specific to formal methods. Thus using formal methods can replace
some heavy duty tasks like MC/DC 100% coverage testing.

The “Common Criteria” software security standard requires the
use of formal methods for its highest critical level (EAL7).

Static analysis is also recommended or required by some
standards. Performing it with abstract interpretation tools brings
better guarantees for the absence of runtime errors.

3.2 Tool support
Using formal methods requires appropriate tools. There has been
many tools developed for some particular cases and there is no
universal tool covering all types of formal methods. We can also
say that the maturity of the tools for each formal method is different.
For example, static analysis based on abstract interpretation tools
are mature enough to be used, although the precision needs to be
improved. Model checking based tools for software are less robust
than static analysis tools and need to be improved to cover a larger
fragment of programs. Deductive proof tools also need to improve
their user assistance in writing formal specifications and invariants,
and in giving an explanation when the goals cannot be proved.

3.3 Cost
An important point for the industry when adopting a new
technology is the cost. We can argue that using formal methods
increases the software quality and thus reduces the overall V&V
cost, but it is difficult to measure. Some companies use formal
methods in combination with testing, in order to introduce them
along an activity that engineers are familiar with. This way, cost
reduction can be measured.

4 EXPERIMENTS
In this section, we discuss our experiments with different formal
methods to get an idea of which methods can be used at each
development stage, if it really scales and if we could find bugs more
easily compared to testing. The context is the development of an
AUTOSAR embedded application software.

4.1 Abstract Interpretation
This section illustrates the use of abstract interpretation for static
analysis of about 300 000 lines of code. We checked a variety of
runtime related errors using the MathWorks Polyspace Code Prover
2016b and AbsInt Astrée 17.04i abstract interpretation tools. We



Formal verification of automotive embedded software FormaliSE ’18, June 2, 2018, Gothenburg, Sweden

noticed that there was a reasonable number of alarms that could
be analyzed by the engineers. Comparing the two tools, Polyspace
has done a great effort on the user interface and the automation of
the project creation and analysis but there is a restricted number
of parameters to control. For instance, the user cannot guide the
analyzer to choose a specific abstract domain for a portion of the
code. On the other hand, Astrée is less automated (the entry point
must be set manually, stubs must be defined explicitly) but accepts
annotations (the user can select an abstract domain for some portion
of the code, or for some variables). Astrée has a great number of
options but their default values were not the optimal choice for
our software, and we needed some expertise from AbsInt to get a
working configuration. Finally, configuring Polyspace and Astrée
with similar options, we noticed that the analysis with Polyspace
took much more time than with Astrée.

4.2 Model checking
This section illustrates the use of model checking to verify safety
properties of a real Cruise Controller function. Initially, this
function was developed using textual requirements (high and
low-level software requirements) and handwritten C code. Model
checking C code has been studied in [19] but none of the model
checkers were able to handle C source code for embedded systems
out of the box. The tools were made for a specific subset of the C
language. That is why we decided to model our requirements and
verify which model checking technique works best for our use case.
We chose Ansys Scade Suite R17.2 as modeling tool for its formally
defined language based on Lustre. Thus the translation from Scade
to Lustre was almost automatic. We developed a little tool based
on an XSLT transformation called Scade2Lustre which transformed
our Scade model into Lustre code. This transformation preserves
the original semantics as we used the textual version of Scade
nodes. Prover Plugin (commercially called Scade Design Verifier)
is the native model checker of Scade Suite and we compared its
results with other Lustre model checkers. We can note that defining
properties in Scade is easy because they are defined using the same
library blocks as for the model.

As reported in [8] writing good formal properties shares many
similarities with writing good requirements and is as much art as
science. This report mentions that properties that cut across an
entire system often find the most errors and that the best source
of formal properties is found in the safety-related requirements of
the system. We formalized our properties from the safety-related
requirements, extending them to all system high-level requirements
(HLR) concerning the deactivation of the function. We want to
prove that the cruise controller will be deactivated when any of the
specified conditions occurs.

Once we had modeled the cruise controller and its properties in
Scade, we checked them with Prover Plugin, which reported a bug
we had previously found during tests. It took us only a few seconds
to find it, instead of hours of writing a particular test scenario.
Results show that induction-based model checking is working fine
for inductive properties and small models. Invariant generation
is a very useful technique that helps the induction strengthen
the property, but can sometimes take a lot of memory and time.
Some model checkers verify all the properties at the same time

(incremental verification), so the proof of an easy property can
help proving a difficult one. PDR/IC3 [12] is essential and efficient
for proving properties on big models, properties that consider
a long period of time, and properties involving constants that
are not exactly the same as in the code. We can summarize that
Prover Plugin worked fine with the standard problem but not with
properties involving a long period of time or constants that did
not match the values in the model (lack of PDR/IC3). Kind2 is
excellent for long duration properties and can take into account
some Scade operators. JKind is on average the fastest for short
duration properties and properties involving constants that are not
exactly the same as in the code.

4.3 Deductive methods
We applied deductive methods to a function that computes the
square root from 0.00 to 100.00 by linear integer interpolation
between two known points using the following formula:

Y = Ya + (X − Xa )
(Yb − Ya )

(Xb − Xa )

Wewant to prove that the result is correct for a given precision (here
between -0.3 and 0.1) using contracts and the weakest precondition
calculus implemented in Frama-C WP and SPARK. We proceeded
in two steps. Firstly, we tried to prove it with less values in the
interpolation table and finally we extended it to the full table.

The proof with less values succeeded after taking into account
some precision issues. Next, we tried to prove the complete table
present in the code. Although the values were correct, the automatic
proof using Alt-Ergo, CVC4, Z3 and other SMT solvers did not
succeed to prove the post condition of the interpolation function.
Alt-Ergo and CVC4 were unable to give an answer and Z3 gave
up after 5 minutes (Timeout). We submitted the problem to the
Frama-C development team, and they found a solution in providing
us with a new development version of Frama-C with a special SMT
solver called Colibri that succeeded to prove the complete code.
Generally speaking, we remarked that the proof success depends
much on the SMT solver and even on its version as it relies on
heuristics. For instance, we had to change our code annotations
when changing only the version of the Alt-Ergo SMT solver.

Finally, we experimented with SPARK (a subset of the Ada
language) and the proof of the complete code succeeded. The hint
was in using bit vectors over the integers, as they are known to
work better with CVC4 and Z3. One of the advantages of SPARK
was the counterexample returned when the contract checking failed.

5 OUR VISION FOR DEPLOYING FORMAL
METHODS IN THE AUTOMOTIVE
INDUSTRY

We noticed that most automotive software engineers are not
familiar with formal methods and their potential. We think that a
progressive introduction in the software engineering process could
be successful by identifying at each stage the class of problems that
could be solved using such techniques. These use cases can be used
to show what kinds of problems can be solved and how.

System requirements are handwritten and can be inconsistent. If
we formalize the system requirements we can use model checking



FormaliSE ’18, June 2, 2018, Gothenburg, Sweden V. Todorov et al.

like in SpeAR 2.0 [1] to write formal properties and check their
logical entailment and consistency. Logical entailment proves
that the formalized properties are consequences of the set of
captured assumptions and requirements. Logical consistency aims
at identifying conflicting assumptions and requirements. Thus
safety requirements can be checked using model checking on high
level specifications.

At the software design level, we need to have a specific
architectural design supporting formal methods i.e. knowing that
complex algorithms and nonlinear arithmetic are difficult to prove,
we need to isolate or abstract them as soon as possible. Abstraction
can be obtained using contracts, allowing for modular and
compositional approaches such as those proposed in CoCoSpec [4].

It is important to introduce contracts at the code level, and this
activity can be partly generated from the Autosar XML files that
specify the interfaces between components. Another way is to
reuse and transfer the contracts defined at model level to the source
code level, assuming that one Scade node is transformed into one
C-language function.

As we have no guarantee to avoid runtime errors even if we use
automatic code generation, we suggest using abstract interpretation
at the code level to eliminate all potential runtime errors.

We can also introduce tools like Frama-C E-ACSL to check
failures at runtime and model-based testing tools like MaTeLo to
get additional guarantees of software correctness.

Lastly, we suggest that in the future autonomous vehicle
architecture, which will probably implement difficult to prove
machine learning algorithms, there should be a supervisor module
integrating the safety-critical software. This supervisor could be
formally verified using automatic proof techniques if this is taken
into account before its design.

6 CONCLUSION
In this paper, we shared our experience about the practical use
of formal methods. All the experiments quickly confirmed bugs
that had already been found by testing, but with great effort and
cost because of the late discovery. We cannot show them for
confidentiality reasons. We are convinced that we need to use
formal methods to bring better guarantees for the future assisted
and autonomous driving systems and reduce the overall V&V cost.

Some of these methods, such as static analysis based on abstract
interpretation, are mature enough to be used today and can
guarantee that source code is free of runtime errors. We discovered
that even automatically generated code can present runtime errors
difficult to find only by testing. Advanced academic techniques
such as PDR/IC3 are not yet commercialized, but we found some
use cases for which they worked better than the commercialized
ones. Frama-C WP experienced some difficulties in proving our
code automatically. Nevertheless, it detected wrong values in a
interpolation table that were not found during classical test sessions.
This method is very promising because it can replace unit tests as
shown in [17] and provide additional guarantees. We think that
formal tools could be specialized to get more information from
the designers. This could give rise to new heuristics, enabling the
verification of larger applications.

Formal methods are implemented in sophisticated tools, which
can contain bugs. These tools need to be stable and preserve
compatibility with previous versions. Many tools coming from
the academia are developed by Ph.D. students and postdoctoral
researchers, and are sometimes not maintained after the end of
the project. On the commercial side, there are few tools and their
algorithms are not well documented, so it is difficult to know how
they work and how to compare them. Both academia and software
companies need realistic industrial benchmarks and use cases,
which are difficult to obtain because of confidentiality constraints.
We need to work together.

REFERENCES
[1] Aaron W. Fifarek, Lucas G. Wagner, Erika R. Hoffman, Benjamin D. Rodes, M.

Anthony Aiello, and Jennifer A. Davis. 2017. SpeAR v2.0: Formalized Past LTL
Specification and Analysis of Requirements. In NFM 2017.

[2] Jean-Raymond Abrial. 1996. The B-book : assigning programs to meanings.
Cambridge Univ. Press.

[3] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. 1987. LUSTRE: A Declarative
Language for Real-time Programming. In POPL ’87. ACM, 178–188. https://doi.
org/10.1145/41625.41641

[4] Adrien Champion, Arie Gurfinkel, Temesghen Kahsai, and Cesare Tinelli. [n. d.].
CoCoSpec: A Mode-Aware Contract Language for Reactive Systems. In SEFM
2016. Springer. http://dx.doi.org/10.1007/978-3-319-41591-8_24

[5] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. 2016.
The Kind 2 Model Checker. In CAV 2016, Toronto, ON, Canada. Springer, 510–517.
http://dx.doi.org/10.1007/978-3-319-41540-6_29

[6] Roderick Chapman. 2000. Industrial Experience with SPARK. Ada Letters XX, 4
(2000). https://doi.org/10.1145/369264.369270

[7] Edmund M. Clarke and E. Allen Emerson. 1982. Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic. In Logic of
Programs Workshop. http://dl.acm.org/citation.cfm?id=648063.747438

[8] Darren Cofer and Steven P. Miller. 2014. Formal Methods Case Studies for DO-333.
Technical Report. http://ntrs.nasa.gov/search.jsp?R=20140004055

[9] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In POPL ’77. ACM, 238–252. https://doi.org/10.1145/512950.512973

[10] Andrew Gacek, John Backes, Mike Whalen, Lucas Wagner, and Elaheh
Ghassabani. 2018. The JKind Model Checker. http://arxiv.org/pdf/1712.01222

[11] David Gries. 1987. The Science of Programming. Springer-Verlag.
[12] Kryštof Hoder and Nikolaj Bjørner. 2012. Generalized Property Directed

Reachability. In Proceedings of SDAT’12 (SAT’12). Springer-Verlag, 157–171.
https://doi.org/10.1007/978-3-642-31612-8_13

[13] Temesghen Kahsai, Pierre-Loïc Garoche, Cesare Tinelli, and Mike Whalen.
2012. Incremental Verification with Mode Variable Invariants in State Machines.
In Proceedings of the 4th International Conference on NASA Formal Methods
(NFM’12). Springer-Verlag, Berlin, Heidelberg, 388–402. https://doi.org/10.1007/
978-3-642-28891-3_35

[14] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. 2015. Frama-C: A software analysis perspective. Formal Aspects of
Computing 27, 3 (2015). https://doi.org/10.1007/s00165-014-0326-7

[15] Robert A. Martin and Sean Barnum. 2008. Common Weakness Enumeration
(CWE) Status Update. Ada Letters XXVIII, 1 (April 2008), 88–91. https://doi.org/
10.1145/1387830.1387835

[16] Motor Industry Software Reliability Association. 2008. MISRA-C:2004 : guidelines
for the use of the C language in critical systems (2nd ed. ed.). MIRA Ltd.

[17] Yannick Moy, Emmanuel Ledinot, Herve Delseny, Virginie Wiels, and Benjamin
Monate. 2013. Testing or Formal Verification: DO-178C Alternatives and
Industrial Experience. IEEE Soft. 30, 3 (2013). https://doi.org/10.1109/MS.2013.43

[18] J. P. Queille and J. Sifakis. 1982. Specification and verification of concurrent
systems in CESAR. In International Symposium on Programming, Turin. Springer.
https://doi.org/10.1007/3-540-11494-7_22

[19] Bastian Schlich and Stefan Kowalewski. 2009. Model Checking C Source Code for
Embedded Systems. Int. J. Softw. Tools Technol. Transf. 11, 3 (June 2009), 187–202.
https://doi.org/10.1007/s10009-009-0106-5

[20] Robert C. Seacord. 2008. The CERT C Secure Coding Standard. Addison-Wesley.
[21] Jean Souyris and Denis Favre-Felix. 2004. Proof of properties in avionics. In

Building the Information Society, IFIP 18th World Computer Congress, Toulouse,
France. https://doi.org/10.1007/978-1-4020-8157-6_48

https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
http://dx.doi.org/10.1007/978-3-319-41591-8_24
http://dx.doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1145/369264.369270
http://dl.acm.org/citation.cfm?id=648063.747438
http://ntrs.nasa.gov/search.jsp?R=20140004055
https://doi.org/10.1145/512950.512973
http://arxiv.org/pdf/1712.01222
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-642-28891-3_35
https://doi.org/10.1007/978-3-642-28891-3_35
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/1387830.1387835
https://doi.org/10.1145/1387830.1387835
https://doi.org/10.1109/MS.2013.43
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/s10009-009-0106-5
https://doi.org/10.1007/978-1-4020-8157-6_48

	Abstract
	1 Introduction
	2 Overview of Formal Methods
	2.1 Abstract Interpretation
	2.2 Model Checking
	2.3 Deductive methods

	3 Introducing formal methods in the industry
	3.1 Standards
	3.2 Tool support
	3.3 Cost

	4 Experiments
	4.1 Abstract Interpretation
	4.2 Model checking
	4.3 Deductive methods

	5 Our vision for deploying formal methods in the automotive industry
	6 Conclusion
	References

