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We experimentally investigate mixing in sheared particulate suspensions by measuring
a crucial kinematic quantity of the flow: the stretching laws of material lines in the sus-
pending liquid. High-resolution PIV measurements in the fluid phase are performed to
reconstruct, following the Diffusive Strip Method (Meunier 2010), the stretching histo-
ries of the fluid material lines. In a broad range of volume fractions 20% 6 φ 6 55%,
the nature of the elongation law changes drastically from linear, in absence of particles,
to exponential in the presence of particles: the mean and the standard-deviation of the
material line elongations are found to grow exponentially in time and the distribution
of elongations converges to a log-normal. A multiplicative stretching model, based on
the distribution of local shear-rates and on their persistence time, is derived. This model
quantitatively captures the experimental stretching laws. The presence of particles is
shown to accelerate mixing at large Péclet numbers (& 105). However, the wide distribu-
tion of stretching rates results in heterogeneous mixing and hence, broadly distributed
mixing times, in qualitative agreement with experimental observations.

1. Introduction

Sheared particulate suspensions represent a quasi-unique system where efficient disper-
sion spontaneously occurs even under low Reynolds number flow conditions. For instance,
the transfer of heat (Sohn 1984, Metzger 2013) or mass (Wang et al. 2009, Wang & Keller
1985, Souzy 2015) across a suspension of non-Brownian particles is significantly enhanced
when the suspension is submitted to a macroscopic shear. This would not happen in a
pure Newtonian fluid where the laminar streamlines remain perpendicular to the scalar
(heat or concentration) gradients. In a sheared suspension, the macroscopic stationary
imposed shear results at the particle scale in an unstationary flow: particles constantly
collide with one another, change streamlines and thus generate disturbances within the
fluid which promote the dispersion of the scalar, prelude to its subsequent mixing. Two
mechanisms have been identified to explain the origin of the transfer enhancement. First,
the particle translational shear-induced diffusivity, a phenomenon which has been widely
investigated over the last decades (Eckstein 1977, Arp 1976, Da Cunha 1996, Breedveld
2002, Sierou 2004, Metzger 2013). Second, the particle rotation whose impact is par-
ticularly important at the boundaries, where particles disrupt the diffusive boundary
layer by a ‘rolling-coating’ effect (Souzy 2015). These studies mainly focused on the rate
of transfer across sheared suspensions which is customary characterized by an effective
diffusion coefficient much larger than the scalar molecular diffusivity.
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Figure 1. Some dye, initially confined to a small blob in a flowing particulate suspension (a),
mixes with the rest of the suspension (b) by diffusing while the blob is stretched in the complex
micro-flow generated by the particles.

Another aspect of transport enhancement concerns the mixing properties of the system,
namely its ability, starting from a given spatial scalar distribution, to reach homogeneity.
Figure 1 shows how a blob of dye with initial size s0, diffuses while it is deformed by
the complex flow in the interstitial fluid of a suspension. The important question which
naturally arises is to understand how this initially segregated system reaches homogeneity,
and particularly how long this process takes. By essence, it involves both advection by the
flow and molecular diffusion of the scalar. Such a problem has been studied in a wide range
of situations involving a single fluid phase such as shear flows (Ranz 1979), vortice flows
(Meunier 2003), turbulent jets (Duplat 2010), or flows in porous media (Le Borgne 2015).
These studies all underline the crucial importance of the rate at which fluid material lines
are elongated by the flow (Villermaux 2012). The knowledge of these ‘stretching laws’
allows to estimate the mixing time: the time when the scalar concentration fluctuations
start to significantly decay (Batchelor 1959). For instance, in a simple shear flow with
rate γ̇, the material lines grow as γ̇t. In the limit of large Péclet number Pe = γ̇s2

0/D, the
mixing time for a scalar blob of initial size s0 is tmix ∼ γ̇−1Pe1/3, where D denotes the
molecular diffusivity of the dye. In chaotic flows, where the stretching rate is maintained,
the material lines stretch exponentially, as eγ̇t, and tmix ∼ γ̇−1 lnPe.

In spite of their crucial importance for mixing issues, stretching laws in particulate
suspensions have never been studied experimentally, nor have the general question about
the mixing time in such a system been. Stretching in particulate suspension has been
addressed indirectly using numerical simulations through the measurement of the sus-
pension largest Lyapunov exponent (Dasan 2002, Drazer 2002, Metzger 2012, Metzger
2013). In such a chaotic system, the mean stretching rate of fluid elements can be as-
similated to the largest Lyapunov exponent. The reported positive Lyapunov exponents
indicate that the stretching laws must be exponential. Stretching has also been explored
theoretically with the motivation of understanding the rheology of such system when the
suspending fluid is viscoelastic. It was shown that the expected exponential stretching of
the polymers should affect the pressure drop in fixed beds of spheres or fibres (Shaqfeh
1992) or the viscosity of freely suspended fibres in a simple shear flow (Harlen 1993).

In this paper, we specifically address the question of the stretching kinematics by per-
forming experiments on non-Brownian and spherical particulates suspended in a viscous
and Newtonian fluid that is steadily and uniformly sheared. In this limit, the flow kine-
matics is independent of both the shear rate γ̇ and the molecular diffusivity. The sole
parameter expected to affect the stretching process is the particulate volume fraction φ.
We investigate the stretching laws in particulate suspensions varying the volume frac-
tion over a wide range 20% 6 φ 6 55%, for which collective effects between particles
are present but the suspension still flows easily, since it is still far from jamming. After
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Figure 2. Schematics of the set-up.

presenting the experimental set-up in § 2, we first compare the evolution of a blob of
dye sheared in a pure fluid (without particles) to that of a blob sheared in a suspension
(§ 3). This experiment illustrates the complexity of the advection field induced by the
presence of the particles. Then, following the Diffusive Strip Method of Meunier 2010,
accurate velocity field measurements of the fluid phase (§ 2.3) are used to determine
the stretching laws. Material lines are found to stretch, on average, exponentially with
time (§ 4), at a rate which agrees with the largest Lyapunov exponents reported in 3D
Stokesian dynamic simulations (Drazer 2002, Dasan 2002). Beyond the mean, we tackle
the complete statistics of stretching, that is to say, the distributions of elongation as
a function of strain and particle volume fraction, which are found to converge towards
log-normal distributions. In § 5, we present a model, based on a multiplicative stretch-
ing process, which explains quantitatively the experimental distributions of the material
line elongation and its dependance to γ̇t and φ. Finally, the crucial implication of these
findings for scalar mixing are developed and discussed in §6, before we conclude in §7.

2. Experimental set-up

The experimental set-up is shown in figure 2. It aims at steadily and uniformly shearing
a viscous particulate suspension, injecting a small blob of dyed fluid, and observing both
the flow and the mixing of the dye. The set-up consists of a transparent cell in which a
transparent mylar belt is tightly mounted at the top of the cell on two cylinders and at
the bottom on two ball bearings. One cylinder is entrained by a rotating stage (M-061.PD
from PI Piezo-Nano Positioning) with high angular resolution (3×10−5 rad). The motion
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of the belt generates in its central region a linear shear flow. The suspension is allowed
to flow below the cylinders and a constant spacing between the belt and the inner wall
of the cell is maintained all around the cell. This specific design, which is an evolution
of that used in Metzger 2012, minimizes secondary flows and ensures a velocity profile
with constant shear rate within the belt.

2.1. Particles and liquid

The particles and the liquid are carefully chosen to allow the visualization of the dye
and of the flow inside the suspension, as well as to ensure a purely viscous flow without
buoyancy effects. This requires using a transparent media, matching both the density
and the refraction index of the particles, and using a fairly viscous liquid.

To fulfill the above requirements, we use mono-disperse spherical particles (PMMA
from Engineering Laboratories Inc.) with density ρ = 1.18 kg/m3 and diameter d = 2
mm, especially chosen for their smooth surface and good transparency. The liquid is a
Newtonian mixture of Triton X-100 (77.4 wt %), Zinc Chloride (13.4 wt %) and water
(9.2 wt %) with viscosity η = 3 Pa s and having the same density as the particles
at room temperature. Its composition is optimized to match both the refractive index
and the density of the particles. A small amount of hydrochloric acid (≈ 0.05 wt%) is
added to the solution to prevent the formation of zinc hypochlorite precipitate, thereby
significantly improving the optical transparency of the solution. Last, to finely tune the
index matching between the particles and the liquid, the temperature of the set-up is
adjusted with a water bath surrounding the shear cell.

The solid volume fraction φ of the suspension is varied between 20 and 55%. To ensure
that inertial effects are negligible, the shear rate γ̇ is set to typically 0.15 s−1, which
corresponds to a particulate Reynolds number ργ̇d2/η ∼ 10−4.

2.2. Imaging

The suspension is observed in the flow-gradient plane (xy plane): a slice of suspension
is illuminated by a laser sheet across the transparent belt and imaged from the top (see
figure 2).

The laser sheet is formed by reflecting a laser beam (2 W, 532 nm) on a standard laser-
printer mirror (rotating at ∼ 10000 rpm). This technique was found to produce a light
sheet with a better spatial homogeneity than that obtained with classical cylindrical or
Powel lense techniques. The sheet is collimated and focused to a thickness of ∼ 60µm
with the help of two perpendicular plano-convex lenses. Last, a high-pass filter (590 nm)
eliminates direct light reflexions. The suspension is imaged with a high-resolution camera
(Basler Ace2000-50gm, 2048x1080 pixel2, 12bit) coupled to a high-quality magnification
lens (Sigma APO-Macro-180 mm-F3.5-DG). To avoid that the particles distord the free
surface of the suspension through which the visualization is realized, a small plexiglass
window is positioned on the free surface, above the region of interest, which locally
ensures a flat interface. The window has a small hole allowing the injection of a blob of
dyed fluid with a syringe.

2.3. Velocity field measurements

The velocity field in the suspending liquid is measured in the plane of the laser sheet
(xy), at half-distance between the bottom and the free surface (see figure 3), performing
particle image velocimetry (PIV), which yields the two-dimensional velocity field {u, v},
which does not necessarily verify incompressibility. To perform PIV, the liquid is seeded
with small passive fluorescent tracers (3.23µm PMMA B-particles from MF-Rhodamine)
at a very low volume fraction (∼ 10−5 � φ). These small and diluted tracers do not affect
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Figure 3. a) Flow streamlines in the bulk of a suspension. b) Slice of a sheared suspension
illuminated by a laser sheet. The small fluorescent tracers seeding the suspending fluid appear
as bright whereas the particle intersections with the laser sheet appear as dark, see also Movie
1. c) Magnified view of the suspending liquid velocity field obtained from the PIV (the velocity
is not computed in the particles).

the flow but allow its visualization and quantification, as shown in figure 3 and Movie
1. The large (2 mm) particles of the suspension do not interact with the laser sheet and
appear as black discs. Note that all the particles have the same size; the apparent size
differences arise from their different vertical positions relative to the laser sheet plane.
The PIV routine is adapted from a Matlab code developed by Meunier 2003. Images
are captured every 0.1 s, which corresponds to a strain increment of 0.015. To perform
PIV, the images are divided into equally spaced and overlapping sub-images with a
typical size of d/20 (32 pixels). The local velocity field is computed by cross-correlating
successive sub-images. The presence of a particle in the sub-image is detected with the
help of two filters (for the maximum of correlation and for the standard deviation of
the sub-images), in which case the corresponding velocity vector is not used (see figure
3b). For each volume fraction, three independent runs over a strain of 20 are performed.
The independence of the measured velocity field on the PIV sub-image size was verified
by decreasing the latter to ∼ d/40 (16 pixels). Besides increasing the data noise, no
significant effect was found on the measured velocities.

2.4. Molecular diffusivity measurements

The molecular diffusion coefficient of the dye (rhodamine 6G) is measured by observing
the spreading, in the absence of flow, of a slice of liquid depleted in dye. A small Hele-
Shaw cell (100µm thick) is filled with dye-doped suspending liquid without particles. A
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Figure 4. a) Schematics of the set-up used to measure the molecular diffusivity D of the dye
(rhodamine 6G), in the suspending liquid (TritonX+ZnCl2+H2O). b) Diffusive thickening of
the bleached line at t = 0, 4800, 21600 and 64800 s (the image width is 5 mm). c) Concentra-
tion profiles at successive times (0 s< t <64800 s). d) Increase of the spatial variance of the
concentration χ2(t)− χ2(0) versus time. Its fit to 2Dt yields D = 1.44± 0.2× 10−13m2s−1.

thin slice of liquid is initially depleted in dye by bleaching the dye with a high power
laser sheet across the cell (see figure 4). The depleted slice appears as a dark line having
a gaussian profile which diffuses with the diffusion coefficient of the dye. The spatial
variance of the gaussian profile χ2 is measured over one day, and the diffusivity is de-
termined from D = [χ2(t)− χ2(0)]/2t ' 1.44 10−13 m2s−1. This value is consistent with
that of 4.14 10−10 m2s−1 found by Culbertson 2002 for the diffusivity of the same dye in
water, given that water is 3000 times less viscous than the suspending liquid and that,
according to the Einstein-Sutherland law, D ∝ 1/η.

3. General observations

To illustrate the influence of particles on mixing in a shear flow, we first compare the
evolution of a blob of dye sheared in a pure fluid (without particles) to that of a blob
sheared in the suspension of particles, see Movie 2. A cylindrical blob of dyed fluid is
injected, at rest and at t = 0, in the middle of the shear cell. Initially, the blob has a di-
ameter s0 ' 2 mm, is aligned with the vorticity direction and is centered on the neutral
velocity plane. This results in a macroscopically two-dimensional initial configuration,
and ensures that the blob does not drift with the flow but only deforms. Figure 5 shows,
for a Péclet number Pe ≈ 106, how mixing proceeds in the two sheared media, from
the initial segregated state up to a strain γ̇t = 20. In the pure liquid, the blob of dye
stretches homogeneously. Its length increases linearly with time and the blob transverse
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Figure 5. Comparison of the stretching processes of a blob of dye sheared at high Péclet (∼ 106)
and low Reynolds numbers (∼ 10−4), in a pure fluid (top), and in a particulate suspension with
volume fraction φ = 35% (bottom). The dye appears as dark, and the beads appear as bright,
see also Movie 2.
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dimension thus decreases as 1/t. In the suspension, the situation is markedly different:
the fluctuations induced by the particles in the fluid phase strongly impact the evolution
of the blob. Several conspicuous features deserve being highlighted i) the dispersion and
the unfolded length of the blob are significantly enhanced by the particles, ii) both trans-
lational diffusivity (transverse undulations of the blob, see figure 5b) and rotation (blob
winding around particles, see figure 5c) of the particles contribute to these enhancements,
iii) the blob stretching is highly inhomogeneous: at some locations, its transverse dimen-
sion becomes much thinner and at others larger than in the pure fluid case, revealing
regions of enhanced stretching and regions of compression, iv) at large strains (figure 5d),
the blob has separated into several filaments which means that some regions of the blob
have already mixed, while in the pure liquid (without particles) mixing has not occurred
yet, v) In some regions, the blob evolves into bundles composed of several nearly overlap-
ping filaments (Duplat 2008). This suggests an underlying stretching/folding mechanism
similar to the well known baker’s transform (Ottino 1989).

The above features are generic to the flow of a viscous suspension at large Péclet
number. Since inertial effects are negligible, these features are independent of the rate γ̇
at which the suspension is sheared. Similarly, the value of the Péclet number does not
influence the general stretching pattern of the blob, but only prescribes the strain γ̇t at
which diffusion starts to becomes effective.

This direct comparison clearly illustrates how the liquid velocity fluctuations gener-
ated by the particles dramatically accelerate the blob deformation and dispersion. This
acceleration is apparent here from the beginning of the shear, because the blob size s0 is
similar to the particle size d. It is however crucial to realize that the strain at which this
acceleration establishes is expected to depend on the ratio s0/d. If the initial size of the
blob s0 is larger than d, the blob is essentially not stretched by the particle fluctuation
motions. It is thus essentially stretched by the linear macroscopic shear until the blob
transverse size has thinned down to d, after a typical strain s0/d. From that strain on,
the particulate fluctuations are expected to contribute directly to the blob stretching.

In stirred flows, such as the case considered here, mixing results from the coupling be-
tween advection and molecular diffusion. In the experiment described above, the blob of
dye is stretched by the local velocity field: the blob is stretched along its own longitudinal
direction and conversely compressed along its transverse direction. The blob thus evolves
towards a topology constituted of sheets, or filaments (Ottino 1989, Buch 1996). Con-
versely to the effect of advection, molecular diffusion tends to broaden the filaments. This
diffusive broadening will at some point counter-balances the rate of compression of the
blob caused by the advection. As we already mentioned, this naturally sets a time-scale
called the mixing time, tmix, beyond which the concentration levels drop significantly. The
mixing time, a key element to understand the overall mixing process, can be estimated
from the sole knowledge of the dye molecular diffusion coefficient and from the history
of the transverse dimension of the blob. If one assumes that the flow is two-dimensional
(this assumption is discussed in 5.3), incompressibility and mass conservation relate at
any time the transverse size of the blob to its length l, through s0l0 = s(t)l(t). The
mixing time can therefore be estimated from the characterization of the evolution of l(t).
Our goal in the following is thus to determine the so-called ‘stretching laws’, i.e., the
time dependence of l in sheared particulate suspensions.

4. Experimental stretching laws

Our first attempt to measure the unfolded length of the blob l(t) was naturally to
perform direct image analysis on images such as those shown in Figure 5. However, the
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Figure 6. Example of stretching for two material lines numerically advected using the
experimental fluid velocity field, see also Movie 3.

intrinsic dispersion process rapidly distorts the blob into bundles of very close (sometimes
merging) filaments, which renders image analysis ineffective above strains of typically 5.

To overcome these limitations, we adopted a different approach inspired from the
Diffusive Strip Method. This method happens to be a very powerful experimental tool
allowing the determination of the stretching laws over unlimited strains. The key idea is
to use the experimental fluid velocity field to numerically advect passive material lines
representing portions of the blob. The lines are initially composed of three passive tracers
separated by a distance d/20 which discretize a fluid material line. The lines are randomly
located in the two-dimensional velocity field with a random orientation (see figure 6a).
Each tracer with coordinate x is advected independently from each other according to
the local fluid velocity v(x) (obtained by linear interpolation of the instantaneous PIV
velocity field) as x(t + ∆t) = x(t) + v(x)∆t, where ∆t is the time between consecutive
measurements of the velocity field. As a material line is advected, it is refined by adding
more tracers when its length increases or when its local curvature becomes too large (see
Meunier 2010 for a detailed description of the refinement procedure).

Figure 6 shows the evolution of two material lines up to a strain of 15, see also Movie
3. The red line successively stretches and folds very similarly to what is observed in
the blob experiments (figure 5). Interestingly, the blue line behaves very differently. Al-
though it sustains the same macroscopic strain as the red one, it experiences a much
softer stretching only because it started from a different initial location. These different
stretching histories reveal the stochastic nature of the stretching induced within partic-
ulate suspensions. The stretching laws therefore have to be sought in a statistical sense
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by repeating the advection procedure over a large number of independent material lines.
However, as the material lines lengthen, they may reach the boundaries of the measured
velocity field, which limits the maximum strain that can practically be investigated (typ-
ically γ̇t < 10). This problem is easily circumvented by realizing that, as long as the
stretching laws are concerned, the object of interest is not the material line as a whole
but rather the small segments which compose this line and which all stretch differently
from each other. We thus perform a new set of calculations focusing on segments: i)
initial segments (composed of two tracers) with length d/20 are positioned and oriented
randomly in the flow, ii) each time the length of a segment doubles, it is splited in two in-
dividual segments that are subsequently advected independently, iii) if a segment reaches
the boundary of the velocity field, it is re-injected near the center of the velocity field,
iv) when a segment overlaps with a particle, where the velocity field is undefined (as can
happen due to the finite time ∆t), it is frozen until the particle has moved away. Owing
to these rules, virtually unlimited strains can be considered, and the stretching history
of each segment that have been created over this strain can be determined. We define
the elongation of these segments as the ratio

ρ(t) ≡ δl(t)/δl0 (4.1)

of their current length δl(t) to their initial length δl0 where δl0 = (d/20)/2n, with n the
number of times the sub-segment was splited in two. Note that to compute the distribu-
tions of elongations we present below, the contribution of each segment is weighted by its
initial length. Note also that times for which a segment is frozen are not considered. The
distribution of elongations at time t therefore represents the portion of the blob that has
reached a given elongation after being advected for a duration t. It was built from the
stretching histories of 25000 segments advected over 3 independent experimental velocity
fields, each of them recorded for a total strain of 20 (typically 4000 images).

Figure 7 shows the experimental stretching laws obtained for a suspension with φ =
35 %, which is generic to the volume fraction range 20 to 55 % investigated. It presents
the mean value 〈ρ〉 and the standard deviation σρ ≡

√
〈ρ2〉 − 〈ρ〉2 of the elongation for

strains up to 20. At γ̇t = 20, the segments have on average lengthened by typically 103,
which is about one hundred times larger than in the case of a pure liquid. The striking
result is that the presence of particles in a shear flow changes the very nature of the
stretching laws from linear to exponential. Indeed, the elongation of material line in a
simple shear (without particles) follows

ρlin(θ, t) =

√
1 + 2 cos θ sin θγ̇t+ sin2 θγ̇2t2, (4.2)

where θ denotes the angle between the line initial orientation and the flow direction. On
averaging ρ2

lin(θ, t) over all possible orientations, we obtain

ρlin(t) =
√

1 + γ̇2t2/2, (4.3)

which is only of order 10 for a strain of 20, and increases linearly with time for large
strains. Equation (4.3) is ploted in figure 7 to illustrate the contrast with the elonga-
tions actually measured in particulate suspensions: the mean elongation in suspensions
is different both in magnitude and in law.

Moreover, by contrast with the pure fluid case, the stretching variability of individual
material lines is very broad as evidenced by the exponential growth of the standard
deviation σp. These results corroborate the preliminary blob experimental visualizations
where, in the suspension, many filaments having very different transverse thickness can
be observed while the pure fluid case solely exhibits one uniform thickness, (figure 5d).
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ρ/〈ρ〉 at different strains. The dashed curves are log-normal distributions built from the mean
value 〈ρ〉 and standard deviation σρ of the experimental elongation distributions.

More precisely, figure 7b shows the distributions of the relative elongations P (ρ/〈ρ〉) at
successive strains. The distribution of elongations broadens rapidly such that at a strain
γ̇t = 20, it spans more than eight decades. At that strain, the right tail of the distribution
contains segments elongated 104 times relative to the average 〈ρ〉, which corresponds to
an absolute elongation of ρ ∼ 107, in stark contrast with the uniform average elongation
of 10 obtained in a simple shear. As figure 7b shows, these distributions are found to be
well fitted by log-normal distributions (shown as dashed lines). Note that the apparent
absence of data on the left hand side of the distributions is fully consistent with log-
normal distributions. Indeed, for broad distributions, the statistical weight of the left
hand side of the distribution vanishes. Our data thus fully resolve the meaningful part
of the distribution.

The advective strip method presented above was repeated with velocity fields measured
in suspensions with different volume fractions φ ranging from 20% to 55%. The same
trends as those detailed for φ = 35 % are systematically observed. As shown in figure 8,
it is moreover found that larger particulate volume fractions increase both the growth
rate of the average elongation 〈ρ〉 and that of the standard deviation σρ. This indicates
that a larger volume fraction results in larger fluid disturbances which, in turn, induce
a faster and more random elongation of the fluid material lines. Fitting these curves
with exponential growths in strain eκγ̇t yields for 〈ρ〉, κρ = 0.09 + 0.74φ, and for σρ,
κσρ = 0.12 + 1.03φ. In the range of volume fraction investigated, the growth rates are
found to increase linearly with φ. No measurements could be performed above 55% as
the large normal stress built in the suspension starts to deform the belt.

To summarize, by kinematically advecting passive segments using the experimental
velocity fields of the fluid phase, we measured the elongation of fluid material lines in
sheared particulate suspensions. Two important features characterize these elongations:
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Figure 9. Each segment composing a fluid material line is locally stretched by a simple shear
γ̇loc which is oriented with a random angle θ with respect to the segment.

i) the mean and the standard deviation grow exponentially, ii) the distribution converges
to a log-normal. In the following, using two measurable properties of the fluid velocity
field, namely the local shear rate distribution and the Lagrangian correlation time, we
present a mechanism accounting for these observations.

5. Origin of the stretching laws

5.1. Principle

We consider the elementary component of a fluid material line: the segment, see figure
9. At that scale, much smaller than the particle size, the local shear γ̇loc is uniform.
Considering the broad distribution of the segment orientations, we assume that the local
shear rate has a random orientation with respect to the segment. Therefore, as long as
the local shear rate γ̇loc persists, the average elongation of the segment is (see equation
4.3)

ρ =
√

1 + γ̇2
loct

2/2. (5.1)

Note that an individual segment can be stretched or compressed depending on wether it
is located in a diverging or compressive region of the flow, respectively. However, once
averaged over all possible orientations, the segment net elongation is strictly larger than
unity. Two questions then naturally emerge: what are the local shear rates? and how long
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Figure 10. a) Typical local shear rate map for a suspension with volume fraction φ = 35%. b)
Experimental distributions of normalized local shear rate P (γ̇loc/γ̇) for different volume fractions
(the solid line is not a fit but the experimental data, sparse markers are used for sake of clarity).

c)
√
〈γ̇2

loc〉/γ̇ versus φc−φ. The best fit
√
〈γ̇2

loc〉/γ̇ ∼ (φc−φ)−β , with φc = 0.58, yields β = 0.601
(see text). Inset: mean normalized local shear rate 〈γ̇loc/γ̇〉 versus φ. The line is the best fit by
A/(φc − φ)δ.

do these shear rates persist? In the following two sections, we address these questions by
providing information about the local shear rates and the Lagrangian correlation time of
the velocity field.

5.1.1. Local shear rate

We measure the local shear rate from the experimental two-dimensional velocity fields.
To this end, we define the local shear rate by the norm of the symmetric part of the strain
tensor:

γ̇loc =

√
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+
∂v

∂x

)2

, (5.2)

where {u, v} are the {x, y} components of the velocity field. This definition disregards
the rotation part of the strain tensor. For a simple shear, one has γ̇loc = cte = γ̇.
Figure 10a shows a typical local shear rate map, obtained in a suspension with volume
fraction φ = 35%. The color-scale represents γ̇loc amplitude normalized by the applied
macroscopic shear rate γ̇, that is to say the amplification of the shear due to the presence
of particles. The local shear rate is highly non-uniform and its value can greatly exceed
the macroscopic shear rate. Interestingly, large local shear rates occur preferentially in
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Figure 11. (a-b) Lagrangian velocity transverse to the flow of a tracer passively advected by the
suspending liquid V , as a function of the strain γ̇t. a) φ = 20% and b) φ = 50%. c) Average La-
grangian velocity auto-correlation function 〈V V 〉 obtained for different volume fractions versus

strain. The velocity auto-correlation functions fit well e−γ̇t/γ̇τ where τ denotes the correlation
time. d) Correlation strain γ̇τ versus φ and corresponding linear fit γ̇τ = 0.62− 1.08φ.

the vicinity of the particles, however there is no apparent correlation between large local
shear rates and small inter-particle distances.

More quantitatively, we report in figure 10b the distribution of normalized local shear
rates obtained for various volume fractions. Clearly, the local shear rate exceeds most
of the time the imposed macroscopic shear rate, sometimes by one order of magnitude,
and this trend accentuates with increasing volume fractions. The mean normalized value
〈γ̇loc〉/γ̇ is plotted versus φ in the inset of figure 10c. It is found to fit well 〈γ̇loc〉/γ̇ =
A/(φc−φ)δ. Fixing φc = 0.58 this yields A ' 0.56 and δ ' 0.7. Note that the last point,
corresponding to φ = 55%, was not included in the fitting procedure since we suspect
that it is biased by the deflexion of the belt mentioned above. Note also that PIV using
smaller boxes resulted in very similar local shear rate distributions with less than 6%
difference on the average.

The trends discussed above may also be interpreted in terms of a macroscopic viscosity.
In such case, the relevant quantity to investigate is the second moment of the local shear
rate distribution 〈γ̇2

loc〉 (Chateau 2008, Lerner 2012, Dagois-Bogy 2015). Values of this
quantity have recently been obtained by Trulson et al. from numerical simulations of
dense frictional suspensions (Trulsson 2016). They report that

√
〈γ̇2

loc〉/γ̇ ∼ (J/µ)−1/3,
where J = γ̇ηf/P is the viscous number, with P the confining pressure, and µ the
suspension macroscopic friction coefficient. Since ηs/ηf = σ/γ̇ηf = µ/J , this results in√
〈γ̇2

loc〉/γ̇ ∼ (ηs/ηf )1/3. Combining this with ηs/ηf ∼ (φc − φ)−2 and using φc = 0.58

(Boyer 2011) leads to
√
〈γ̇2

loc〉/γ̇ ∼ (φc − φ)−2/3, which is in fairly good agreement with
the measured scaling, as figure 10c shows.
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5.1.2. Lagrangian correlation time

The second important quantity of the suspending liquid flow is the persistence time of
the velocity fluctuations induced by the particles. Figures 11a and b show the transverse
Lagrangian velocity V (perpendicular to the flow) of a passive tracer advected by the fluid
at a low and a large volume fraction, respectively. Consistently with the magnitude of
the local shear, more concentrated particulate suspensions develop velocity fluctuations
with larger amplitudes. However these fluctuations are found to persist on a much shorter
time as φ increases. The duration tc for which a segment is coherently stretched by the
flow is directly prescribed by this persistence time, which we define from the Lagrangian
velocity auto-correlation functions. As shown in figure 11c, these functions decorrelate
exponentially with strain. In the range of volume fraction investigated, the dimensionless
correlation time γ̇τ , inferred from this exponential decay, decreases linearly with φ as

γ̇τ ' 0.62− 1.08φ, (5.3)

(see figure 11d). We expect tc to be of the order of τ and thus write

tc = ατ, (5.4)

with α an order one constant. Note that as shown in figure 7, this persistence time
(. γ̇−1) is much shorter than the observation period (& 10γ̇−1).

5.1.3. Multiplicative stretching process

With informations about the local shear rates and their persistence time at hand, we
now explain the elongations of fluid material lines as a sequence of uncorrelated cycles
of stretching. During the first cycle of duration tc, a given segment of a material line is
elongated by the local shear rate γ̇loc,1 resulting in a stretching

∆ρ1 =
√

1 + (γ̇loc,1tc)2/2, (5.5)

where γ̇loc,1 is a local shear rate which probability is prescribed by the distribution
P (γ̇loc/γ̇), cf. figure 10b. After the duration tc, the local velocity field de-correlates and
the local shear rate map is entirely redistributed. The segment then experiences a new
local shear rate γ̇loc,2, which at t = 2tc yields ρ = ∆ρ1

√
1 + (γ̇loc,2tc)2/2, and so on. The

total elongation at time t, after N = t/tc cycles, is the product of all the elementary

elongations occurring at each cycle ρ(t) =
∏N=t/tc
i=1 ∆ρi. The logarithm of this expression

can be written as a sum

ln ρ ≡
t/tc∑
i=1

ln ∆ρi =
1

2

t/tc∑
i=1

ln[1 + (γ̇loc,itc)2/2]. (5.6)

Since the elementary stretchings are independent, the distribution of ln ρ is expected, by
virtue of the central limit theorem, to be normal. This multiplicative stretching model
thus predicts ρ to converge, after a few t/tc cycles, to a log-normal distribution. This pre-
diction is in agreement with the experimental results shown in figure 7b. The distribution
of ln ρ, i.e. the normal distribution, writes

P (x = ln ρ) =
1√
2πσ

e−
(x−µ)2

2σ2 , (5.7)

with a non-zero mean

µ ≡ 〈ln ρ〉 =
〈ln ∆ρ〉
γ̇tc

γ̇t, (5.8)
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and variance

σ2 ≡ 〈ln2ρ〉 − µ2 =
〈ln2∆ρ〉 − 〈ln ∆ρ〉2

γ̇tc
γ̇t. (5.9)

Both the mean and the variance of the distribution of ln ρ increase linearly with time.
They also vary with the particulate volume fraction due to the φ-dependence of γ̇loc and
tc. This variation with φ is better appreciated by recasting equations (5.8) and (5.9) into

µ = f(φ) γ̇t, (5.10)

σ2 = g(φ) γ̇t, (5.11)

with f(φ) ≡ 〈ln ∆ρ〉/γ̇tc and g(φ) ≡ (〈ln2∆ρ〉−〈ln ∆ρ〉2)/γ̇tc only depending on φ. Note
that f(φ) and g(φ) are crucial quantities. Since the time dependency is known, they
contain all the information about the asymptotic of the stretching laws in suspensions.

The multiplicative stretching model not only explains the origin of the log-normal
distributions of elongations measured experimentally, but also the exponential increase
of the mean elongation ρ and variance σ2

ρ shown in figure 7. Indeed, the mean and variance
of the (log-normal) distribution of ρ can be deduced from the mean and the variance of
the (normal) distribution of ln ρ following

〈ρ〉 = e(f+g/2)γ̇t, (5.12)

and

σ2
ρ = (egγ̇t − 1)e(2f+g)γ̇t ' e2(f+g)γ̇t, (5.13)

the last simplification in σ2
ρ becoming true after a few tc.

Furthermore, the particulate volume fraction dependence of f(φ) and g(φ) can be
computed from the persistence time tc and the distribution of local shear rates, using
equations (5.10) and (5.11) together with equations (5.8) and (5.9). In the experimental
range 20 % < φ < 55 %, this yields

f(φ) ' 0.104 + 0.298φ, (5.14)

and

g(φ) ' −0.069 + 0.810φ, (5.15)

with the structure constant α, set once and for all φ, to 0.3 for computing µ, and to
3.9 for computing σ2. These rates f and g both increase with φ, in agreement with the
experimental trends. Note that this dependence on the volume fraction is non-trivial,
since f and g result from the product of γ̇loc and tc, which have opposite trends with φ:
the former increases whereas the latter decreases with increasing φ.

The predictions of the multiplicative stretching model are compared to the experimen-
tal stretching laws obtained by the Diffusive Strip Method in figure 12. The agreement
is good for all volume fractions and all strains, which suggests that the multiplicative
stretching model presented above captures the relevant mechanisms at the origin of the
stretching laws.

5.2. Comments on the stretching process

Stretching of material elements in nature, may they be passive like in the present case,
or with internal restoration forces like polymers (Shaqfeh 1992, Afonso 2005) may have
different origins. The stochastic models to describe them usually present a net drift,
and a random noise terms. The relative amplitudes of these two contributions are in
our analysis given by f(φ) and g(φ), respectively (see equations (5.10) and (5.11)). The
first term sets the growth of 〈ln ρ〉, while the second sets that of 〈ln2ρ〉 − 〈ln ρ〉2. At a
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Figure 12. Comparison between the experimental stretching (extracted from figure 8) and
the multiplicative stretching model. (a-b) Mean elongation 〈ρ〉 and standard deviation σρ. The
values from the advective strip method are plotted versus those predicted by the multiplicative
stretching model. (c) Comparison between the exponential rates of the mean elongation κρ
obtained from the advective strip method (see figure 8a) and the model prediction f + g/2
(5.12). (d) Comparison between the exponential rates of the variance of the elongation 2κσρ
(see figure 8b) and the model prediction 2(f + g) (5.13).

microscopic level, the growth of a given material line depends on its orientation with
that of the local velocity gradient. The line length l(t) may increase or decrease de-
pending on wether it is aligned with a diverging or compressive region of the flow. For
instance, in a flow corresponding to the pure Brownian motion limit (Cocke 1971), for
which ρ̇/ρ = B(t) with B(t) a zero-mean, Delta correlated noise, i.e. 〈B(t)〉 = 0 and
〈B(t′)B(t′′)〉 = (1/τ0)δ(t′ − t′′), these two contributions are balanced and the net line

growth d ln ρ(t)/dt = ˙l(t)/l(t) is, on averaging over all directions, identically zero. In
that case, representative of tc → 0, the material lines only grow through the contribution
of the fluctuations of B(t), which results in d〈ln ρ〉/dt = 0, and 〈(ln ρ)2〉 ∼ 2t/τ0: the
logarithm of the elongation diffuses.

In particulate suspensions, the situation is different since if the direction of the stretch
indeed changes at random, it has a finite persistence time. In such case, it has been shown
that material lines tend to preferentially align in the direction of elongations (see Cocke
1969, Orszag 1970, Girimaji 1990, Duplat 2000 and also equation 5.5). Thus, over an
observation period larger than the (non-zero) correlation time tc, we expect

d

dt
〈ln ρ〉 > 0. (5.16)

This agrees with our measurements shown in figure 13(a): the finite persistence time
of the stretching field results in a positive drift term: f(φ) > 0. Although some ma-
terial lines are subject to compression (see the negative values on the distribution of
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Figure 13. a) Mean logarithm of the material line elongations, 〈ln ρ〉 versus γ̇t for a suspension
of volume fraction φ = 35%. b) PDF of the logarithm of the material line elongations P (ln ρ) at
successive times.

ln ρ in figure 13(b)), on average, the logarithm of the elongations 〈ln ρ〉 increases with
time. Material lines in particulate suspensions thus grow from the contribution of both
a drift and a noise. The stretching process thus corresponds to a noisy multiplicative
sequence of correlated motions, like the random Sine Flow (Meunier 2010), or porous
media flows (Le Borgne 2015). Porous media and sheared particulate suspensions have
similar exponential stretching laws. This is true in 3D systems as in both cases the fluid
trajectories are chaotic. Note however that for 2D systems the implications of steadiness
change the picture qualitatively. In a 2D porous media, the flow is steady and there are
only two degrees of freedom : the flow is thus not chaotic. The elongation of material
lines in 2D synthetic porous media have been shown to grow algebraically rather than
exponentially (Le Borgne 2015). Conversely in 2D sheared suspensions, the time depen-
dence of the flow allows the system to be chaotic (Metzger 2013). One therefore expect
to observe exponential stretching laws in sheared particulate suspensions also in purely
2D configurations.

5.3. Further remarks

We would like to point out certain limitations of the present study. First, the present
findings and their analysis are restricted to the particulate volume fraction 20 % 6 φ 6
55 %, for which material lines in the suspending liquid stretch exponentially with strain.
This is not necessarily the case outside form this range. In particular, as φ → 0, this
exponential trend must cross-over to linear since the elongation of material lines in a
simple shear is linear with strain. We however anticipate that the exponential trend
could hold down to fairly low volume fractions but only emerge after increasingly large
strains, since the velocity correlation time in the dilute limit should follow τ ∼ (γ̇φ)−1

and diverge at low φ. Further investigations are needed to characterize this dilute regime
(φ < 20%).

Second, the PIV measurements performed here are two-dimensional and provide the
fluid velocity projected in the (xy) plane only. They therefore neglect part of the stretch-
ing of the material lines, namely that involving deformations in the vorticity direction
(z). However, we believe that they resolve the stretching mechanism and most of its mag-
nitude for the following reasons: i) these measurements resolve the fluid displacements in
the gradient direction (y), which is the only direction for which displacements couple with
the main shear flow to produce an enhance stretching. The fluctuations in the vorticity
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Figure 14. Comparison between the stretching rates obtained in the present study and the
largest Lyapunov exponent obtained from 3D Stokesian dynamics simulations (Dasan 2002,
Drazer 2002).

direction are thus expected to produce less stretching than those occurring in the gradi-
ent direction. ii) Particles in a shear flow rotate mainly about the vorticity axis thereby
inducing fluid disturbances mostly in the velocity-gradient plane, which we consider. Here
again, the effects of the velocity disturbances induced by the particle rotation should be
smaller in the vorticity direction than those occurring in the velocity-gradient plane. iii)
More quantitatively, the stretching rates f + g/2 predicted by the present model based
on 2D data are in good agreement with the largest Lyapunov exponents obtained from
3D Stokesian simulations, see figure 14. From the above considerations, it is likely that
the mechanisms at the origin of the scalar dispersion, stretching and subsequent mixing
are well characterized by the present measurements, even though those are limited to the
information contained in the xy plane.

Third, as already mentioned in section 3, the stretching of material lines is exponential
at every scale, but the stretching of a material blob with thickness s0 is expected to follow
that of material lines only if its thickness is smaller than the correlation scale of the fluid
motion, which is of order d (in the other case, the blob is first essentially stretched by
the macroscopic shear γ̇ until s 6 d). In the following, we will therefore only consider
the relevant case s0 6 d.

The latter considerations have important consequences on the estimation of the blob
thickness s, hence on the mixing time that we will address in the next section. For an
arbitrary elongation w/w0 in the vorticity direction (z), mass conservation gives s0l0w0 =
s(t)l(t)w(t). However, in light of the above discussion, the flow is assumed to be two
dimensional with w/w0 � l/l0. Mass conservation thus results in

s0l0 = s(t)l(t). (5.17)

Using direct image analysis, we have checked that this is experimentally verified. A blob
with initial surface s0l0 being converted into a strip with length l(t) and thickness s(t)
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indeed obeys, before it starts mixing, to equation (5.17), suggesting that the flow is
indeed area preserving.

6. Implications for mixing

In such area preserving flow, the thickness s(t) of a distorted blob decreases in inverse
proportion of its length l(t) according to equation (5.17). As recalled in the introduction,
the mixing time for a given blob portion of thickness s is reached when its compression
rate −ṡ/s is balanced by its rate of diffusive broadening D/s2. At that time, called
the mixing time, the scalar concentration carried by that portion of the blob starts to
significantly decay i.e., mix. Since in particulate suspensions ρ = l(t)/l0 = eκγ̇t, the
mixing time writes tmix ' γ̇−1 ln(κPe)/(2κ).

We also found that the logarithm of the elongations of an ensemble of such material
lines is normally distributed with a mean and a variance growing linearly with time
following µ = 〈ln ρ〉 = f(φ)γ̇t and σ2 = g(φ)γ̇t (see equations (5.10) and (5.11), respec-
tively). These results are illustrated in figure 15a. Since, similarly to the logarithm of the
elongations, the stretching rates, κγ̇ = ln ρ/t are normally distributed, the median mix-
ing time, obtained for the mean stretching rate, i.e. for 〈κγ̇〉 = 〈ln ρ〉/t = µ/t = f(φ)γ̇,
is

tmed
mix ≈

1

2f(φ)γ̇
ln(f(φ)Pe). (6.1)

Considering a blob distorted in such a way that it samples all the possible elongations in
the global statistics, the above estimate provides the time at which half of the blob has
reached its mixing time. The logarithmic dependence of the mixing time on the Péclet
number is different from that obtained in a simple shear flow (without particles) for which
ρ ' γ̇t yields tmix ' γ̇−1Pe1/3. Introducing particles in a viscous fluid therefore becomes
more and more efficient at reducing the mixing time as the Péclet number increases. In
the present study, the Péclet number is Pe ∼ 106. The median mixing time for φ = 35 %
is thus tmed

mix ' 30/γ̇, which has to be compared with tmix ' 100/γ̇ in a pure shear flow.
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Figure 16. Picture illustrating the complexity of folding of the stretched blob of dye and the
potential interaction (merging) of nearby filaments.

Note that varying the volume fraction from 20 % to 55 % increases f(φ) only by a typical
factor of 2, which decreases the median mixing time by about the same moderate factor.

In practical situations, mixing half of the scalar may not be the relevant question,
precisely because in particulate suspensions, elongations are, as seen in figure 5, broadly
distributed. So are mixing times. To address this point, we estimate, for the same condi-
tions as previously, the mixing times for the portions of the blob that undergo the largest
and the lowest stretching rates respectively, i.e. the mixing times corresponding to both
tails of the distribution (highlighted in figure 15a). The 3 % most strongly stretched por-
tions of the blob are bounded by ln ρ = µ+ 2σ. The expression −ṡ/s = D/s2 results in
2f(φ)γ̇t+4

√
g(φ)γ̇t = ln[(f(φ)+

√
g(φ)/γ̇t)Pe], which yields the mean field mixing time

t3%
mix ' 14/γ̇. On the other end of the distribution, the less stretched portions of the blob,

bounded by ln ρ = µ− 2σ, reach their mixing time at t97%
mix ' 64/γ̇, later than if it were

sheared in a pure fluid. In figure 15b, the median (blue line), the most stretched t3%
mix

(green line), and the less stretched t97%
mix (red line) dimensionless mixing times are plotted

as a function of the Péclet number. This shows that if the concern is to mix essentially
all the scalar, large Péclet numbers (� 105) are required before mixing in a suspension
becomes more efficient than in a pure fluid. Persistent poorly stretched regions are de-
terring. The relative width σ/µ of the stretching rate distribution decreases in time like
t−1/2 but this only mildly decreases the spreading of the mixing times as Pe increases,
since tmix ∝ lnPe. For instance, at Pe = 1020, the mixing times remain fairly distributed
with t97%

mix /t
3%
mix > 2.

Finally, the results obtained on the stretching laws must be related to the overall
dispersion of the blob. In a random flow, line stretching, and dispersion, are two different
things: because the extent of the area occupied by the blob grows more slowly than the
area where the scalar constitutive of the blob is dispersed, the blob will at some point
unavoidably reconnect and merge by overlapping onto itself (Duplat 2008). Let us see
how: after the mixing time, a scalar blob with length growing like l(t) = l0e

γ̇t has a
transverse concentration profile whose width is confined to the Batchelor scale

√
Dt. The

area A occupied by the scalar is thus A =
√
Dt l0e

γ̇t, growing exponentially in time. Now,
the spatial support of the blob undergoes a dispersion induced by the particle effective
dispersion coefficient Deff ∼ γ̇d2 (Eckstein 1977). The total area explored by the blob
of dye, within which the blob folds, is typically (see also Taylor 1953 in a related, but
different context), Σ ∼ (l0 +

√
Defft)× (s0 +

√
Defft)γ̇t ∼ d2(γ̇t)2, growing algebraically

in time. Because an exponential will always beat a power law, there will necessary be
a time for which the area occupied by the scalar overcomes that visited by the blob
(i.e. Σ/A < 1), and from that instant of time, overlaps of the folded scalar filaments
will be unavoidable. Such an event is illustrated in figure 16. These overlaps will locally
delay the mixing process and therefore affect the whole route of the mixture towards
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homogenization. This aspect, and more generally all aspects regarding the concentration
content of the mixture and its evolution, are left for future research.

7. Conclusions

Motivated by the need to understand on a firm basis the mixing properties of particu-
late flows, we have provided a complete characterization of the kinematics of stretchings
and consecutive elongations of materials lines in non-Brownian particulate suspensions
under a simple macroscopic shear. Our observations rely on high resolution PIV mea-
surements of the interstitial fluid velocity field, and our findings are as follows:

i) Following the Diffusive Strip Method of Meunier 2010, we used the experimentally
measured velocity fields to numerically advect passive segments in order to reconstruct
the stretching histories of fluid material lines. In agreement with previous theoretical pre-
dictions and simulation results, we observe that adding particles in a shear flow changes
the very nature of the stretching laws from linear to exponential in strain. The growth
rate for the mean elongation are found to closely agree with the largest Lyapunov ex-
ponent obtained from 3D numerical simulations (Drazer 2002, Dasan 2002). Besides the
mean, our analysis also provides the full statistics of the material lines elongation: the
variances of the elongations also grow exponentially in strain and the distributions of
elongations converge toward log-normals. This statistics of elongation was characterized
for a large range of volume fractions 20% 6 φ 6 55%.

ii) Using the same velocity fields, we determined the distribution of the local shear
rates intensities and their persistence time. From these, we have shown how the fluid
material lines undergo a multiplicative stretching process consisting in a noisy multiplica-
tive sequence of correlated motions. We also discussed the important role of the finite
correlation time of the velocity field. The model quantitatively predicts the evolution of
the mean and the variance of the elongations of the fluid material lines as well as their
evolution towards a log-normal distribution.

iii) We have discussed the importance of this characterization of the flow kinematics
to understand how mixing proceeds in sheared particulate suspensions. The exponential
stretching results in a mixing time increasing logarithmically with the Péclet number.
Moreover, the broad distribution of stretching rates implies a broad distribution of mixing
times. The stochastic nature of the stretching process thus allows stretching rates that
are smaller than in a pure shear flow. However, our analysis shows that the occurrence
of such events becomes negligible at large Péclet number (� 105) as mixing occurs at
larger deformations.

The present study opens the way for a complete description of the mixing process
occurring in sheared particulate suspension. In particular, it allows the prediction of
the evolution of the concentration distribution P (C, t) (Duplat 2010). A quantitative
verification of these predictions requires a specific experimental device that resolves the
Batchelor scale s(tmix) which corresponds to the transverse dimension of the filaments at
the time when diffusion significantly modifies the concentration levels. Such challenging
measurements will be addressed in future studies.
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