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Abstract

This study focuses on the interaction of two small freely-moving spheres in a
linear flow field of yield stress fluids. We perform a series of experiments over
a range of shear rates and different shear histories using an original apparatus
and with the aid of conventional rheometry, Particle Image Velocimetry (PIV)
and Particle Tracking Velocimetry (PTV). We investigate the flow field around a
single sphere as well as two spheres in a simple-shear flow. The flow is Stokesian
and the Bingham number is in the range of 0 & B & 2. To explore the limit of
zero Bingham number, we use both Newtonian and shear thinning suspending
fluids. We use guar gum solutions and Carbopol gels as shear thinning and yield
stress test fluids respectively. We show that the presence of a slight elasticity,
which is unavoidable when dealing with polymer solutions, plays an important
role in establishing the flow field, e.g., disturbance velocities and stream lines
around a single sphere as well as particle trajectories. Therefore, ideal yield
stress fluid models cannot provide a full description of flow problems involving
particles in practical yield stress fluids. The flow field around a single sphere
can be used to understand the two particle interactions. We show how particle-
particle contact and non-Newtonian behaviors result in relative trajectories with
fore-aft asymmetry. Particularly, the fore-aft asymmetry depends on the Debo-
rah number, Bingham number, shear history, initial offset and roughness of the
particles. Finally, we discuss how the relative particle trajectories may affect
the microstructure of complex suspensions and consequently the bulk rheology.
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1. Introduction

The flows of non-Newtonian slurries, often suspensions of noncolloidal par-
ticles in yield stress fluids, are ubiquitous in many natural phenomena (e.g.
flows of slurries, debris and lava) and industrial processes (e.g. waste disposal,
concrete, drilling muds and cuttings transport, food processing). Studying the5

rheological and flow behaviors of non-Newtonian slurries is therefore of high
interest. The bulk rheology and macroscopic properties of noncolloidal sus-
pensions are related to the underlying microstructure, i.e., the arrangement of
the particles. Therefore, investigating the interactions of particles immersed
in viscous fluids is key to understanding the microstructure, and consequently,10

to refine the governing constitutive laws of noncolloidal suspensions. Here, we
study experimentally the interaction of two particles in shear flows of yield stress
fluids.

There exists an extensive body of research on hydrodynamic interactions of15

two particles in shear flows of Newtonian fluids. One of the most influential
studies on this subject is performed by Batchelor and Green [1] who then used
the knowledge of two particle trajectories and stresslets to scale up the results
and provide a closure for the bulk shear stress in a dilute noncolloidal suspension
to the second order of solid volume fraction, φ[2]. Moreover, they showed that20

due to the fore-aft symmetry of the particle trajectories, Stokesian noncolloidal
suspensions do not exhibit any normal stress difference.

The work of Batchelor and Green was followed by subsequent attempts
[3, 4, 5, 6] to develop accurate functions describing the hydrodynamic inter-25

actions between two particles, which built a foundation for further analytical
studies [7, 8, 9] and powerful simulation methods such as Stokesian Dynamics
[10]. A large body of theoretical and numerical studies has been done to solve
the relative motion of two spherical particles in order to obtain the quantities
required for the calculation of the bulk parameters, such as mean stress and vis-30

cosity in suspensions with a wide range of solid fractions (dilute to semi-dilute)
[1, 11, 12, 13, 14].

The Stokes regime without any irreversible forces leads to symmetric particle
trajectories, and consequently, a symmetric Pair Distribution Function (PDF),35

i.e., the probability of finding a particle at a certain position in space with re-
spect to a reference particle. These result in a Newtonian bulk behavior without
any development of normal stress differences in shear flows. However, even in
Stokesian suspensions the PDF is not symmetric [15, 16, 8, 17, 18] and the loss
of symmetry can be related to contact, due to roughness [19, 20, 21, 22] or other40

irreversible surface forces (e.g., repulsive force leads to an asymmetric PDF in
a similar fashion to how a finite amount of Brownian motion does [8]).

The microstructure affects the macroscopic properties of noncolloidal sus-
pensions leading to non-Newtonian effects (i.e., normal stress differences) and45
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phenomena such as shear induced migration of particles [23, 24, 25, 26]. Thus,
the development of accurate constitutive equations requires considering the con-
nection between the microstructure and macroscopic properties either explicitly
[27, 28, 29] or implicitly through the particle phase stress [30, 31, 32, 23, 33].

50

A yield stress fluid deforms and flows when it is subjected to a shear stress
larger than its yield stress. In ideal yield stress models, such as the Bingham
or Herschel-Bulkley models [34], the state of stress is undetermined when the
shear stress is below the yield stress and the shear rate vanishes. In the absence
of inertia, the solutions to flows of ideal yield stress fluids have the following55

features: (i) uniqueness (ii) nonlinearity of the equations (iii) symmetries of the
domain geometry, coupled methodologically with reversibility and reflection of
solutions [35]. Therefore, flows around obstacles, such as spheres, should lead to
symmetric unyielded regions and to symmetric flow lines in the yielded regions,
as observed in simulations [36, 37, 38, 39, 40].60

However, recent studies report on phenomena such as loss of fore-aft symme-
try under creeping condition and formation of negative wake behind particles,
which cannot be explained with the assumption of ideal yield stress fluid [41, 42].
While these behaviors have been attributed to the thixotropy of the material65

previously [43], recent simulations show similar behaviors for nonthixtropic ma-
terials when elastic effects are considered [44, 45]. Therefore, elastoviscoplastic
(EVP) models are proposed which consider the contribution of elastic, plastic
and viscous effects simultaneously in order to analyze the material behavior
more accurately [46, 47, 48].70

The field of inclusions (i.e. solid particles, fluid droplets and air bubbles)
in yield stress fluids is not as advanced as that of Newtonian fluids. The main
challenges are due to the nonlinearity of the constitutive laws of yield stress
fluids and resolving the structure of unyielded regions, where the stress is below75

the yield stress (for more details see [49]). To locate the yield surfaces that
separate unyielded from yielded regions, two basic computational methods are
used: regularization and the Augmented Lagrangian (AL) approach [37]. On
the experimental front, techniques such as PIV [43, 41, 50, 51, 42, 52], PTV
[51, 42], Nuclear Magnetic Resonance (NMR) [53, 54], X-ray [55, 56], Magnetic80

Resonance Imaging (MRI) [57] are used to study the flow field inside the yielded
region as well as determining the yield surface.

Generally speaking, studies of single and multiple inclusions (i.e., rigid par-
ticles and deformable bubbles and droplets) in yield stress fluids are abundant.85

These studies mainly focus on resolving important physical features when deal-
ing with yield stress suspending fluids, e.g. buoyant inclusions can be held
rigidly in suspensions [58, 59, 60, 61, 62, 63, 64, 65, 66]; multiple inclusions
appear not to influence each other beyond a certain proximity range [61]; flows
may stop in finite time [66]; etc. Other studies exist which address the drag90

closures, the shape of yielded region, the role of slip at the particle surface and

3



its effect on the hydrodynamic interactions [40, 67, 42, 44].

Progressing beyond a single sphere and tackling the dynamics of multiple
particles in a Lagrangian fashion is a much more difficult task. Therefore, an-95

other alternative is to address yield stress suspensions from a continuum-level
closure perspective. The fundamental objective is then to characterize the rheo-
logical properties as a function of the solid volume fraction (φ) and properties of
the suspending yield stress fluid. Recent studies show that adding particles to a
yield-stress fluid usually induces an enhancement of both yield stress and effec-100

tive viscosity while leaving the power-law index intact [68, 69, 70, 71, 72, 73, 54].

Unlike the case of settling of particles in yield stress fluids, no attention has
been payed to the study of pair interactions of particles in simple flows of yield
stress fluids. Our knowledge about this fundamental problem is essential to form105

a basis for further studies regarding the suspensions of non-Brownian particles in
yield stress fluids. To this end, we present an experimental study on the interac-
tion of two small freely-moving spheres in a Couette flow of a yield stress fluid.
Our main objective is to understand how the nonlinearity of the suspending
fluid affects the particle trajectories, and consequently, the bulk rheology. This110

paper is organized as follows. Section 2 describes the experimental methods,
materials and particles used in this study along with the rheology of our test
fluids. In Section 3, we present our results on establishing a linear shear flow in
the absence of particles, flow around one particle and the interaction of parti-
cle pairs in different fluids including Newtonian, yield stress and shear thinning.115

Finally, we discuss our conclusions and suggestions for future works in Section 4.

2. Experimental methods and materials

In this section we describe the methodology and materials used in this study.

2.1. Experimental set-up120

The schematic of the experimental set-up is shown in Fig. 1. It is designed
to produce a uniform shear flow within the fluid enclosed by a transparent belt.
The belt is tightened between two shafts one of which is coupled with a precision
rotation stage (M-061.PD from PI Piezo-Nano Positioning) with high angular

resolution (3�10
�5
rad) while the other shaft rotates freely. The rotation gener-125

ated by the precision rotation stage drives the belt around the shafts and hence,
applies shear to the fluid maintained in between. In order to have the maximum
optical clarity along with the mechanical strength to afford the tension, Mylar
sheets (polyethylene terephthalate films from Goodfellow Corporation) of 0.25
mm thickness are used to make the belt. The set-up is designed to reach large130

enough strains (γ � 45) to ensure the steady-state condition. The design is
inspired by Rampall et al. [22] and the Couette apparatus is the same as that
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Figure 1: Schematic of the planar Couette-cell and the imaging system: the left shaft is
driven by a precision rotation stage while the right shaft rotates freely. Walls are made from
transparent acrylic, which allows laser to illuminate the flow field (styled after Fig. 1 of [74])

used by Metzger and Butler in [74].

The flow field is visualized in the plane of shear (xy plane) located in the135

mid-plane between the free surface and bottom of the cell. A fraction of the
whole flow domain is illuminated by a laser sheet, which is formed by a line
generator mounted on a diode laser (2W, 532 µm). Fluid is already seeded
homogeneously with fluorescently labeled tracer particles, which reflect the in-
cident light (see Sec.2.2). Tracer particles should be small enough to follow140

the flow field without any disturbance and large enough to reflect enough light
needed for image recording. The thickness of the laser sheet is tuned to be
around its minimum in the observation window with a plano-convex cylindrical
lens. Images are recorded from the top view via a high quality magnification
lens (Sigma APO-Macro-180 mm-F3.5-DG) mounted on a high-resolution dig-145

ital camera (Basler Ace acA2000-165um, CMOS sensor, 2048 � 1080 pixel
2
, 8

bit). The reflected light is filtered with a high-pass filter (590 nm) through
which the direct reflection (from the particle surface) is eliminated. A transpar-
ent window made of acrylic is carefully placed on the free surface of the fluid in
order to eliminate the deformation of the fluid surface and by this, the quality150

of images is improved significantly. The imaging system is illustrated schemat-
ically in Fig. 1.
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2.2. Particles

Particles used in this study are transparent and made of PMMA (polymethyl155

methacrylate, Engineering Laboratories Inc.) with radius of a � 1 mm, density

of 1.188 gr©cm3
and refractive index of 1.492 at 20

`

C. They are dyed with
Rhodamine 6G (Sigma-Aldrich) which enables us to preform PTV and PIV at
the same time. In order to dye particles the procedure proposed by Metzger and
Butler in [74] is followed; PMMA particles are soaked for 30 minutes in a mix-160

ture of 50 % wt. water and 50 % ethanol with a small amount of Rhodamine 6G
maintained at 40

`

C. They are rinsed with an excess amount of water afterwards
to assure there is no extra fluorescent dye on their surface and the coat is stable.
The surface of the particles from the same batch have been previously observed
by Phong [75, 21] and Souzy [76] using Atomic Force Microscope (AFM) and165

Scanning Electron Microscope (SEM). The root mean square and peak values of
the roughness are measured to be 0.064�0.03 µm and 0.6�0.3 µm respectively
after investigating an area of 400 µm

2
[21]. Moreover, in order to perform PIV,

the fluid is seeded with melamine resin particles dyed with Rhodamine B with
a diameter of 3.87 µm, provided by Microparticle GmbH.170

2.3. Fluids

In this study, three different fluids have been used including Newtonian, yield
stress and shear thinning fluid; each of the fluids is described in the following
sections:175

2.3.1. Newtonian fluid

The Newtonian fluid is designed to have the density and refractive index
(RI) matched with that of the PMMA particles. Any RI mismatch could lead
to refraction of the laser light when it passes the particle-fluid interface which180

decreases the quality of the images and makes the post processing very difficult
or even impossible. However, we only have one or two particles in our exper-
iments and therefore, a slight refractive index mismatch does not result in a
poor quality image. The fluid consists of 76.20% wt. Triton X-100, 14.35% wt.
of zinc chloride, 9.31% wt. of water and 0.14% wt. of hydrochloric acid [77]185

with the viscosity of 4.64 Pa.sec and refractive index of 1.491 � 10
�3

at room
temperature. A small amount of hydrochloride acid prevents the formation of
zinc hyperchlorite and thus enhances the transparency of the solution. Water
is first added to zinc chloride gradually and the solution is stirred until all solid
particles dissolve in the water. Since the process is exothermal we let the solu-190

tion cool down to reach room temperature. After adding hydrochloride acid to
the cooled solution, Triton X-100 is added and mixed until the final solution is
homogeneous.
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2.3.2. Yield stress fluid

Here we limit our study to non-thixotropic yield-stress materials with iden-195

tical static and dynamic yield-stress independent of the flow history [78, 79].
To this end, we chose Carbopol 980 which is a cross-linked polyacrylic acid
with high molecular weight and is widely used in the industry as a thickening
agent. Most of the experimental works studying the flow characteristics of the
simple yield-stress fluids utilize Carbopol since it is highly transparent and the200

thixotropy can be neglected. Carbopol 980 is available in a form of anhydrous
solid powder with micrometer sized grains. When mixed with water, polymer
chains hydrate, uncoil and swell forming an acidic solution with pH� 3 � 4.
When neutralized with a suitable basic agent such as sodium hydroxide, mi-
crogels swell up to 1000 times of their initial size (10 times bigger radius) and205

jam (depending on the concentration) forming a structure which exhibits yield-
stress and elastic behavior [80, 81]. Rheological properties of Carbopol gels are
dependent of both concentration and pH. At intermediate concentrations, both
yield-stress and elastic modulus increase with pH until they reach their peak
values around the neutral point, where they are least sensitive to pH. A compre-210

hensive study on the microstruture and properties of Carbopol gel is provided
by Piau in [82].

In order to make Carbopol gel with a density matched with that of PMMA
particles mentioned in sec. 2.2, first, a solution of deionized water 27.83% wt.215

and glycerol 72.17% wt (provided by ChemWorld) is prepared, which has the
same density as the PMMA particles. Then, depending on the concentration
needed for the experiment (varies in the range of 0.07-0.2 % wt. in this study),
the corresponding amount of Carbopol 980 (provided by Lubrizol Corporation)
is added to the solution while it is being mixed by a mixer. The dispersion is220

let to be mixed for hours until all Carbopol particles hydrate and the dispersion
is homogeneous. A small amount of sodium hydroxide (provided by Sigma-
Aldrich) is then added in order to neutralize the dispersion. It is suggested to
add all of the neutralizer at once, or at least in a short amount of time since
as pH increases the viscosity increases drastically which would increase mixing225

time. The solution becomes more transparent as it reaches neutral pH. The
refractive index of the Carbopol gels used in this study varies in the range of
1.370�5�10

�3
. By investigating the rheological properties of the gel at different

pHs, we found pH� 7.4 to be a stable point with highest yield-stress and elastic
modulus. The solution is then covered and mixed for more than eight hours.230

The final solution is transparent, homogeneous with no visible aggregates. Also,
the rheometry results of all samples taken from different parts of the solution
batch collapse. The compositions of all Carbopol gels used in this study are
described in Table 1.

235

2.3.3. Shear thinning fluid

In order to investigate the effect of yield-stress and shear thinning individ-
ually, it is required to study the problem with a shear thinning fluid with no
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yield stress. Therefore, we chose Hydroproxypyl Guar which is a derivative of
the guar gum, a polysaccharide made from seeds of guar beans. Jaguar HP-105240

(provided by Solvay Inc.) is used in this study which is widely used in cosmetics
and personal care products [83]. It is transparent when mixed with water and
exhibits negligible yield stress in low to moderate concentrations. The refrac-
tive index of the guar gum solutions used in this study varies in the range of
1.368 � 5 � 10

�3
.245

In order to make a solution of Jaguar HP-105 with the same density as
the particles, we follow the same scheme mentioned earlier for Carbopol gel in
sec.2.3.2. First, a solution of deionized water 27.83% wt. and glycerol 72.17%
wt (provided by ChemWorld) is prepared. While being mixed by a mixer, de-250

pending on the desirable concentration (in this study varies from 0.3�0.6% wt.),
corresponding amount of Jaguar HP-105 is added gradually to the solution. The
dispersion is covered and mixed for 24 hours until a homogeneous solution is
achieved. Homogeneity is tested by comparing rheometry results performed on
samples taken from different spots in the container. The compositions of the255

guar gum solutions used in this study are described in Table 1.

2.4. Rheometry

Unlike Newtonian fluids, the effective viscosity of the non-Newtonian fluids
depends on the shear rate and flow history. Here, we explain the rheological260

tests performed to characterize the non-Newtonian behaviors. For each test the
procedure is described followed by the results and the interpretation. All mea-
surements shown in this section are carried out using serrated parallel plates
with a stress-controlled DHR-3 rheometer (provided by TA Instruments) on
samples of Carbopol gels and guar gum solutions referred to as “YS1-2” and265

“ST” respectively. The rheological properties of all test fluids used in this study
are described in Table.1.

A logarithmic shear rate ramp with γ̇ " �0.001, 10� sec�1 is applied on sam-
ples of test fluids for a duration of 105 sec in order to find the relation between270

shear rate and shear stress, τ � f�γ̇� (see Fig. 2). During the increasing shear
ramp, the material is sheared from rest. The behavior of the yield stress mate-
rial is hence similar to a Hookean solid until the stress reaches the yield stress.
Beyond the yield stress, the material starts to flow like a shear thinning liquid.
On the contrary, during the decreasing shear ramp, the yield stress material is275

already in flow condition and the stress asymptotes to the yield stress at low
shear rates (see Fig. 2a). The value of yield stress during both increasing and
decreasing ramps are identical. This is the typical behavior of non-thixotropic
yield-stress materials (more information can be found in [84, 85]). The measure-
ments of increasing and decreasing ramps overlap beyond yield stress and show280

no sign of hysteresis. The rheological behavior of Carbopol gel is described well
by the Herschel-Bulkley (see Eq. 1) model as shown in Fig. 2:
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Table 1: Composition, pH and rheological properties of the test fluids used in this study:
NWT (Newtonian fluid), YS1-2 (yield stress fluids) & ST (shear thinning fluid). Dynamic

moduli, G
¬

and G
¬¬

are measured at ω � 1 rad.sec
�1
, γ0 � 0.25 %.

Test fluids

Materials (% wt.) ST YS1 YS2 NWT

Water 71.764 71.969 75.004 9.31

Glycerol 27.707 27.876 24.766 -

Carbopol 980 - 0.116 0.170 -

Jaguar HP-105 0.529 - - -

Sodium hydroxide - 0.039 0.060 -

Triton X-100 - - - 76.20

Zinc chloride - - - 14.35

Hydrochloric acid - - - 0.14

pH - 7.40 7.44 -

τy (Pa) 0 3.3 46.6 0

K (Pa.sec
n
) 6.7 4.6 18.7 4.6

n 0.46 0.50 0.30 1

G
¬ �Pa� 3.5 17.9 213.5 -

G
¬¬ �Pa� 3.5 3.3 18.9 -
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Figure 2: Stress versus shear rate for a cycle of logarithmic shear rate ramps applied on samples
of YS1 (a) and ST (b): increasing ramps (W), decreasing ramps (u) and the corresponding
Herschel-Bulkley fits (q) described in the Table 1. The inset of (b) presents the variation of
viscosity versus shear rate for ST.

τ � τy �K�γ̇�n (1)

Where τy is the yield stress, K is the consistency and n is the power index.285

These values are calculated for YS1-2 in range of γ̇ " �0.01, 10� sec�1 in Table.
1.

Fig. 2b shows the rheology of the guar gum solution, ST in the plane of
shear stress versus shear rate. The Carreau-Yasuda model has generally been290

adopted to explain the rheological behavior of guar gum solutions [86, 87]. The
inset of Fig. 2b shows the viscosity of the guar gum solution versus shear
rate following the Carreau-Yasuda model. We see that the viscosity presents a
plateau, η0 � 12.2 Pa.sec, in the limit of small shear rates, γ̇ $ 0.1 sec

�1
. At

γ̇ % 0.1 sec
�1

viscosity decreases with shear rate until it reaches another plateau295

at higher shear rates. Here, we adopt a power-law model which properly de-
scribes the rheological behavior of the material in the range of shear rate in our
experiments. The values of consistency and power-law index are reported in
Table 1.

300

Practical yield-stress fluids exhibit viscoelastic behavior as well. Therefore,
it is expected that the shear history has an impact on the behavior of the ma-
terial. We have adopted two experimental procedures to evaluate the effect of
shear history. In the first procedure, we shear the material ensuring that the
strain is sufficient to break the micro-structure of gel and reach a steady state.305

Then, we rest the material for one minute (zero stress) and apply the shear
in the same direction as the pre-shear (hereafter called positive pre-shear). In

10
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Figure 3: Normalized stress versus strain for samples of yield stress and shear thinning test

fluids under a constant shear rate with different shear histories: (a) YS1 at γ̇ � 0.129 sec
�1

�B,De� � �2.0, 0.09), (b) ST at γ̇ � 0.26 sec
�1
De � 1.03. Triangle markers represent negative

pre-shear while square markers indicate positive preshear.

the second procedure, we reverse the direction of the applied shear after im-
posing a pre-shear on the material (hereafter called negative pre-shear) and a
rest period. Fig. 3a shows that under a constant applied shear stress the yield310

stress material reaches its steady state after a larger strain when negative pre-
shear is applied. However, the shear history does not affect the behavior of the
guar gum solution as shown in Fig. 3b. These procedures helped us design
the experimental protocol for our Couette flow experiments (see Sec. 3.3.2).
One can conclude that a preshear in the same direction as the shear imposed315

subsequently in the experiments is appropriate for having a behavior close to
that of ideal visco-plastic behavior.

In order to characterize the viscoelasticity of the test fluids further, the shear
storage modulus, G

¬

and the shear loss modulus, G
¬¬

(representing the elastic and320

viscous behavior of the material respectively) are measured during oscillatory
tests. Dynamic moduli of YS1 and ST are shown in Fig. 4 as a function of strain
amplitude, γ0 " �10

�1
, 10

3� % while frequency is constant, ω � 1 rad.sec
�1

. We
observe that the behavior is linear up to γ0 � 1% in YS1 while it remains linear
at larger strain amplitudes, γ0 � 10% in ST. Elastic effects are dominant (i.e.325

G
¬

% G
¬¬

) at strain amplitudes lower than γ0 � 100% in the yield stress material,
YS1 (see Fig. 4a). At γ0 % 100%, the shear loss modulus becomes larger than
the shear storage modulus in YS1 indicating that the viscous effects take over.
On the other hand, elastic and viscous effects are equally important in ST in
the linear viscoelastic regime as the shear loss and shear storage moduli have330

identical values under γ0 � 100% (see Fig. 4b). At larger strain amplitudes
however, the shear loss modulus becomes larger implying larger viscous effects.
The values of G

¬

and G
¬¬

reported in Table 1 are measured at ω � 1 rad.sec
�1
,

γ0 � 0.25 %. In Fig. 5 the variation of dynamic moduli is given as a function of
frequency for the Carbopol gel, YS1 and the guar gum solution, ST. Different335
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Figure 4: Elastic and viscous moduli with respect to strain amplitude in strain amplitude

sweep tests with an angular frequency of 1 rad.sec
�1

on samples of YS1 (a), and ST (b). G
¬

starts to decrease beyond a critical strain below which it is nearly constant.

curves correspond to different strain amplitudes (γ0 � 1, 5, 20, 50, 100 %).

2.5. Post-processing

The PMMA particles are tracked during their motion via Particle Tracking
Velocimetry (PTV) to extract the trajectories. Images are recorded at strain340

increments of γrec & 0.6% to ensure high temporal resolution. In each image,
the center and radius of each particle is detected via the Circular Hough Trans-
form [88, 89]. Due to the small strain difference between two respective images
and consequently small displacement of PMMA particles, same particles are
identified and labeled in two images. Applying this methodology to all images345

we obtain trajectories of particles.

Particle Image Velocimetry (PIV) is employed to measure the local velocity
field from successive images recorded from the flow field. It is worth mentioning
that in this method we calculate the two dimensional projection of the velocity350

field in the plane of shear (xy plane).

We have used the MatPIV routine with minor modifications in order to an-
alyze PIV image pairs [90]. Each image is divided into multiple overlapping
sub-images, also known as interrogation windows. The PIV algorithm goes355

through three iterations of FFT-based cross-correlation between corresponding
interrogation widows in two successive images in order to calculate the local
velocity field. The velocity field measured in each iteration is used to improve
the accuracy during the next iteration where the interrogation size is reduced
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Figure 5: Dynamic moduli, G
¬

(left column) and G
¬¬

(right column) for samples of YS1 (first
row) and ST (second row) during frequency sweep from 0.1 to 100 rad©sec. Different markers
correspond to different strain amplitudes, γ0 � 1, 5, 20, 50, 100 %.
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to one half. Window sizes of 64 � 64, 32 � 32 and 16 � 16 pixels (� a©9) with360

the overlap of 50% are selected respectively during the first, second and third
iterations. Following each iteration, spurious vectors are identified by different
filters such as signal-to-noise ratio, global histogram and local median filters.
Spurious vectors are then replaced via linear interpolation between surrounding
vectors. Since less than 3.1% of our data is affected we do not expect a signifi-365

cant error due to the interpolation process. The measured velocity is ignored if
the interrogation window overlaps with the particle surface (detected earlier via
PTV algorithm). The size independence of the velocity measurements is verified
by comparing the results with that obtained when we increase the interrogation
widow size to 32 � 32 pixels (� a©4.5).370

3. Experimental results

3.1. Establishing a linear shear flow in the absence of particles

The first step is to establish a linear shear flow field within the experimental
set-up. Any deviation from the linear velocity profile across the gap of the375

Couette-cell affects the flow field around one particle, or the interaction of two
particles. Our Couette-cell has a finite dimension bounded with a wall from the
bottom, an acrylic window from the top and two rotating cylinders from the
sides (see Fig 1). It is essential to show that a linear shear flow is achievable in
the middle of the set-up and not affected by the boundaries. Reynolds number380

is defined as:

Re �
4ρ�2U©H�a2

µ (2)

which is of the order O�10
�5� in our experiments, implying that the iner-

tial effects are negligible. Here a and H are the particle radius and gap width
respectively, U is the maximum velocity across the gap, ρ is the density and
µ is the viscosity of the fluid. Moreover, according to the aspect ratio of the385

Couette-cell (50 cm long versus 2 cm wide), the central region where measure-
ments are made is far from the shafts. In the absence of inertia and boundary
effects the solution to the momentum equations would give us a linear velocity
profile in our configuration, independent of the rheology of the test fluids. In
this section, we present our experimental results showing how a linear shear flow390

field is established within the Couette-cell when we have different suspending
fluids including Newtonian fluids, yield stress fluids and shear thinning fluids.

In the case of the Newtonian fluid, Fig 6a shows the velocity profile across
the gap for different shear rates imposed at the belt. The velocity field is av-395

eraged along the x-direction (flow direction). We normalize the velocity with
the maximum velocity across the PIV window, uc, and show that all velocity
profiles collapse to a master curve (see Fig. 6b.). A linear shear flow is achieved
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Figure 6: (a) Velocity profiles averaged along the x-direction for the Newtonian fluid when

subjected to different shear rates of γ̇ � 0.18, 0.26, 0.35, 0.44, 0.52, 0.61, 0.70, 0.79 sec
�1

. (b)
Normalized velocity profiles across the gap.

consequently with the Newtonian fluid.
400

When we deal with a yield stress test fluid, there exist more dimensionless
numbers in addition to the bulk Reynolds number including Bingham number
(B) which is the ratio of yield stress (τY ) to the viscous stress (Kγ̇

n
) in the

flow:
B �

τY
Kγ̇n

(3)

Another important dimensionless number is Deborah number which is the ratio405

of the material time scale to the flow time scale. For elastoviscoplastic materials,
the relaxation time λ, the elastic modulus G

¬

, and the apparent plastic viscosity
ηp are related via ηp � λG

¬

where the so-called plastic viscosity is defined as
follows [44]:

ηp �
τ � τY
γ̇

(4)

Comparing Eq.(4) with (1), we conclude ηp � Kγ̇
n�1

. Therefore, the Deborah410

number is:

De � λγ̇ �
Kγ̇

n

G¬
(5)

Velocity fields obtained via PIV measurements are averaged along the flow
direction. Fig. 7a shows the measured velocity profiles across the gap when
normalized by the maximum velocity across the PIV window, uc. Next, shear415

rate profiles are calculated from the averaged velocity profiles according to Eq.
(6) and are used to calculate the shear stress profiles via the Herschel-Bulkley
model (shown in Fig. 7b and 7c respectively). Shear rate profiles are normalized
by the average shear rate across the gap γ̇c, while stress profiles are normalized
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Figure 7: (a) Normalized velocity profiles across the gap when YS2 undergoes shear flows at
different Bingham numbers: �B,De� � �4.6, 0.05� (c), �B,De� � �3.2, 0.07� (]), �B,De� �
�2.3, 0.10� (�), �B,De� � �2.2, 0.10� ([), �B,De� � �2.0, 0.11� (�) compared to that of the
Newtonian fluid, NWT (v). (b) The corresponding dimensionless shear rate profiles and (c)
stress profiles.

by the average stress across the gap τc.420

γ̇loc �

Ø
2�∂ud
∂x

�2 � 2�∂vd
∂y

�2 � �∂ud
∂y

�
∂vd
∂x

�2 (6)

It is evident that as we increase the Bingham number, the velocity profile
deviates from a linear shape, and consequently, the shear rate is not constant.
This is quite a unique observation for a yield stress fluid, and the rheology of
the fluid can explain this puzzle. Let us take a closer look at the variation of425

stress with respect to the shear rate shown in Fig. 2 for the yield stress test
fluids used in the experiments. We can see that at low shear rates (i.e. high

Bingham numbers), such as 0.01 $ γ̇ $ 0.1 sec
�1

, a small variation in the shear
stress projects to a large variation in the shear rate. On the contrary, at higher
shear rates γ̇ % 1 sec

�1
(i.e. low Bingham numbers) the same amount of stress430

variation corresponds to a significantly smaller variation in the shear rate. Fig.
7c shows the variation of stress across the gap is of the same order for all Bing-
ham numbers while the resulting shear rate profiles are significantly different in
terms of inhomogeneity. This implies that a small stress inhomogeneity due to
any imperfection of the set-up and the test fluid (finite dimension of the set-up,435

slight inhomogeneity in the test fluid or etc.) projects into a larger shear rate
inhomogeneity as we increase the Bingham number. This stress inhomogeneity
is estimated from Fig. 7c to be � 2% in our set-up.

Both the characteristic length of the inhomogeneity and its amplitude in-440

crease as the Bingham number increases. Our results show that for B & 2, the
shear rate inhomogeneity is minimal (comparable to that of the Newtonian test
fluid), and we can establish a linear velocity profile in the set-up for the case of
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a yield stress fluid. Therefore, all the experiments in this work are performed
for B $ 2.445

3.2. One particle in a linear shear flow

This section is aimed at studying a linear shear flow around one particle in
the limit of zero Re when we have different types of fluids including Newtonian,
yield stress and shear thinning. A theoretical solution is available for a particle in450

a Newtonian fluid subjected to a linear shear flow field. We use the theoretical
solution to validate our experimental results. The effect of a non-Newtonian
fluid on the flow field around one particle is then investigated experimentally.
Studying the disturbance fields around one particle is key to understanding the
hydrodynamic interaction of two particles, and consequently, the bulk behavior455

of suspensions of noncolloidal particles in non-Newtonian fluids.

3.2.1. Stokes flow around one particle in a linear shear flow of a Newtonian
fluid: comparison of theory and experiment

First, we compare our PIV measurements with the available theoretical solu-
tion for the Stokes flow around one particle in a linear shear flow of a Newtonian460

fluid [91]. The normalized velocity field obtained via a theoretical solution is
illustrated in Fig. 8a along with the measured velocity field via PIV in Fig. 8b,
which is normalized by the velocity at the belt. A quantitative comparison is
given in Figs. 8d-8f where dimensionless velocity profiles are compared at cross
sections located at different distances from the particle center, x©a � �2.5,�1, 0.465

It is noteworthy to mention that the PIV measurements are available at dis-
tances r©a ' 1� ε, where r is the distance from the particle center and ε � 0.1 is
given by the resolution of the PIV interrogation window. The close agreement
between our velocity measurements with that predicted by the theory allows
us to employ our method for the case yield stress fluids, where the theoretical470

solution is unavailable. Our experimental data can be used as a benchmark for
these fluids.

3.2.2. Creeping flow around one particle in a linear shear flow: Newtonian and
non-Newtonian suspending fluids

We present our PIV measurements of creeping flows around one particle in475

linear shear flows of Newtonian, shear thinning (guar gum solution) and yield
stress (Carbopol gel) suspending fluids. About 100 PIV measurements (i.e.,
100 PIV image pairs) are averaged afterwards to reduce the noise. The origin
of the coordinate system, �x, y, z�, is fixed on the center of the particle and
translates with it (non-rotating). We subtract the far field velocity profile from480

the experimentally-measured velocity field in order to calculate the disturbance
velocity field around one particle:

ud � �ud, vd� � u � u� (7)

Where ud and vd are components of the disturbance velocity vector along the
flow direction and gradient direction respectively. The disturbance velocity field
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Figure 8: (a) Normalized velocity field obtained via theoretical solution for a Newtonian fluid.
(b) Normalized velocity field for the Newtonian fluid NWT measured via PIV at γ̇ � 0.27

sec
�1

. (c) Schematic of the particle and locations where velocity profiles are compared with the
theory. (d-e) Comparison between velocity profiles obtained from theory (�) and experimental
measurements (]) at different locations.
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Figure 9: Normalized disturbance velocity fields around one particle in the shear flow of
different fluids: (a) theoretical solution for a Newtonian fluid, (b) experimental results for

a Newtonian fluid at γ̇ � 0.27 sec
�1

, (c) experimental results for the Carbopol gel, YS1 at

γ̇ � 0.34 sec
�1

�B,De� � �1.23, 0.15�, (d) experimental results for the guar gum solution, ST

at γ̇ � 0.26 sec
�1

De � 1.03.

is then normalized by the maximum disturbance velocity in the PIV window.485

Fig. 9 shows the normalized disturbance velocity field around one particle
in linear shear flows of a Newtonian fluid (theory: Fig. 9a and experiment:
Fig. 9b), a yield stress fluid (experiment of Carbopol gel: Fig. 9c) and a shear
thinning fluid (experiment of guar gum solution: Fig. 9d). The shear flow is490

established as u � �γ̇y, 0, 0� where γ̇ % 0. The disturbance velocity field is
normalized by the maximum disturbance velocity in the field. Although the
theoretical solution for the case of a single rigid sphere in a simple-shear flow of
a Newtonian fluid exists, there is no theoretical solution in the case of a yield
stress fluid. Therefore, our experimental measurements shown in Fig. 9c serves495

as the first set of information about simple-shear flows around a spherical par-
ticle.

Fig. 10 shows the colormaps of shear rate around one particle in linear shear
flows of a Newtonian fluid (theory: Fig. 10a and experiment: Fig. 10b), a yield500

stress fluid (experiment of Carbopol gel: Fig. 10c) and a shear thinning fluid
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Figure 10: Normalized shear rate fields around one particle in the shear flow of different
fluids: (a) theoretical solution for a Newtonian fluid, (b) experimental results for a Newtonian

fluid at γ̇ � 0.27 sec
�1

, (c) experimental results for the Carbopol gel, YS1 at γ̇ � 0.34 sec
�1

�B,De� � �1.23, 0.15�, (d) experimental results for the guar gum solution, ST at γ̇ � 0.26

sec
�1

De � 1.03.

(experiment of guar gum solution: Fig. 10d). The magnitude of local shear
rates are calculated by taking the spatial derivative of the disturbance velocity
fields based on Eq. (6). Although taking the derivative of experimental data
(i.e., PIV measurements of the velocity field) amplifies the noise, averaging over505

more than 100 PIV measurements reduces the noise and allows us to see the
qualitative features.

For the Newtonian fluid, our experimental results shown in Fig. 9b are in a
very close agreement with the theoretical solution illustrated in Fig. 9a. we can510

see that the disturbance velocity has fore-aft symmetry and decays as we move
away from the particle surface. Unlike the Newtonian fluid, fore-aft symmetry
is broken for our non-Newtonian test fluids (see Fig. 9c and 9d). The fore-aft
asymmetry is significantly larger for the Carbopol gel (in Fig. 9c). As men-
tioned in Section 1, the loss of fore-aft symmetry is not predicted for the flow515

field around one particle if we use ideal visco-plastic constitutive models; e.g.
Herschel-Bulkley and Bingham models [36, 37, 38, 39]. However, practically
speaking, both the guar gum solution and Carbopol gel are polymer based so-
lutions with slight elasticity, and consequently, these are not ideal visco-plastic
fluids. Elastic effects are thus responsible for the fore-aft asymmetry observed520
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in Fig. 9c and 9d. For viscoelastic fluid flows, uniqueness and nonlinearity are
present but the symmetry and reversibility are missing. We should mention that
by adopting an appropriate pre-shear procedure in our experiments (described
in Section 2.4), we eliminated the possible effects due to the shear history.

525

Despite the loss of fore-aft symmetry which is evident in Fig. 9c and Fig. 9d,
we note that the velocity disturbance field is symmetric with respect to the cen-
ter of the particle (symmetric with respect to a point). This is indeed expected.
Assume two fluid elements are moving towards the particle and located at the
top left and bottom right of the flow field, but at the same vertical distance530

from the particle. Both fluid elements experience the same shear history during
their motion (e.g., compression, extension, rotation) resulting in a symmetric
flow field with respect to the center of the particle. The Deborah number is cal-
culated based on the values of shear storage moduli measured at the frequency
ω � 1 rad.sec

�1
with low strain amplitudes, γ0 � 0.25 % (see Table 1). In535

the experiment with the Carbopol gel, YS1 (Fig. 9c) the Deborah number is
De � 0.15 while it is De � 1.03 in the case of guar gum solution, ST(Fig. 9d).
Although the Deborah number is relatively small in our experiments, it clearly
affects the flow field around the particles. This is consistent with the results
of Fraggedakis et al. [44] where they observed the effect of slight elasticity in540

a yield stress fluid to be significant in establishing the flow field around a sin-
gle particle settling in a stationary column of a yield stress fluid. Despite the
smaller value of the De number for the case of Carbopol gel compared to the
guar gum solution, we see that the fore-aft asymmetry is larger. It can be due
the interplay between plastic and elastic effects in the Carbopol gel which is an545

elasoviscoplastic material. Further investigation is required to reveal the role of
plastic and elastic effects individually and mutually in establishing the flow field
in a wide range of Bingham and Deborah numbers. This can be explored via
a computational study since practical limitations exist in tackling this problem
experimentally. For example, it is not possible to change the Deborah number550

in our experiments independent of other parameters such as Bingham number.
Also, it is not feasible to increase the Deborah number significantly with the aid
of conventional yield stress fluids such as Carbopol gels.

Variation of disturbance velocity around one particle at fixed distances from555

the particle center (r fixed) is illustrated in Figs. 11a and 11b. It shows more
clearly the fore-aft asymmetry in the Carbopol gel compared to that of the New-
tonian fluid. Velocity is normalized with its maximum value at each distance,
uc,r in Figs. 11a and 11b.

560

The disturbance field shows how regions around a particle are affected by
the presence of a particle. When disturbance velocity is zero or very small at
a region it means this region lies outside of the zone influenced by the particle.
Studying the disturbance fields around one particle is thus essential to predict
the interaction of two particles, and consequently, the bulk behavior of dilute565

suspensions. The extent of disturbance is better seen on the velocity profiles.
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Figure 11: Variation of disturbance velocity at fixed distances ((a) r©a � 1.8, (b) r©a � 2.3)

around one particle in different test fluids: NWT at γ̇ � 0.27 sec
�1

, YS1 at γ̇ � 0.34 sec
�1

�B,De� � �1.23, 0.15�, and ST at γ̇ � 0.26 sec
�1

De � 1.03. Variation of disturbance velocity
along different directions in different test fluids: (c) θ � 45

`

, (d) θ � 135
`

.
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Figs. 11c and 11d show the variation of disturbance velocity around one particle
along different directions (θ fixed) normalized with the maximum disturbance
velocity along each direction, uc,θ. It is evident that the disturbance velocity
decays more rapidly in the case of the yield stress fluid and shear thinning fluid.570

The maximum decay occurs in the flow of Carbopol gel around one particle.
This means two particles will feel each other at a farther distance in a Newto-
nian fluid than in a generalized Newtonian fluid.

3.3. Interaction of two particles in a linear shear flow575

In this section we study experimentally the interaction of two spherical
PMMA particles in a linear shear flow of Newtonian, yield stress and shear
thinning fluids. First, we compare our experimental results for the case of a
Newtonain suspending fluid with the existing models [20] and analytical solu-
tions [1] describing the relative motion of two particles in a linear shear flow580

without the inertia. We proceed afterwards to study the non-Newtonian effects
on the interaction of particles in a linear shear flow.

3.3.1. Interaction of two particles in a linear shear flow of a Newtonian fluid:
theory and experiment585

Fig. 12 shows the schematic of a particle trajectory around a reference
particle in a linear shear flow. Depending on the initial offset, y0©a, the particles
follow different trajectories. If the initial offset is small enough, two particles
collide and separate further apart on the recession zone (symmetry is broken).
However, if the initial offset is large enough that they do not make contact, the590

corresponding trajectory is expected to be symmetric due to the symmetry of
the Stokes equations. It is noteworthy to mention that in the case of smooth
particles with no surface roughness, a contact is not possible due to divergence
of lubrication forces. However, practical contact occurs due to unavoidable
roughness at the surface of particles. For more details see theoretical [20, 1] and595

experimental works [92, 19, 22, 15].

The interaction of two particles could be described at different ranges of
separation by accurate hydrodynamics functions based on works by Batche-
lor [1] and Da Cunha [20]. It is assumed that inertial and Brownian effects600

are negligible, particles are neutrally buoyant and spherical. The appropriate
set of hydrodynamic functions must be chosen according to the separation of
two particles, r and the roughness, ε. Using the aforementioned hydrodynamic
functions we calculated the relative trajectories of two particles via 4th-order
Runge-Kutta to march in time. The results are plotted in Fig. 13a. The tra-605

jectories fall into two categories of asymmetric and symmetric whether or not a
contact occurs respectively.

Here, we present our experimental results for two particles suspended in a
linear shear flow of a Newtonian fluid. The experimental trajectory map of two610
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Figure 12: A schematic of two particles subjected to a shear flow and the general shapes
of their trajectory: a) trajectory when two particles pass each other with no collision. b)
trajectory when two particles collide.

particles is shown in Fig. 14. In addition, we have compared the experimental
trajectory map with those calculated from theoretical solutions in Fig. 13b. The
best match is achieved by manually setting the roughness to εtheo � 5.5 � 10

�4

in the model which is close to the peak value of roughness, εexp � 6 � 3 � 10
�4

reported by Phong in [21] for particles from the same batch. We see a great615

agreement between the theoretical and experimental trajectory map. The rel-
ative trajectories are symmetric with respect to y axis between the approach
and the recession side if two particles do not contact. However, at lower initial
offsets, when particles come into contact due to an unavoidable roughness at
the particles surfaces, two particles separate further apart on their recession.620

Consequently, the particle trajectories are fore-aft asymmetric. It is evident
that all trajectories along which the particles come into a contact will collapse
on each other at the downstream after separation.

Particles are tracked via PTV and the flow field is investigated via PIV625

simultaneously. Therefore, we can link the particle trajectories to the informa-
tion obtained from the flow field. Fig. 15 illustrates a typical example of a
trajectory line with its corresponding velocity and local shear rate colormaps at
different points along the trajectory line for two particles in a linear shear flow
of a Newtonian fluid. The second particle approaches the reference particle from630

x©a $ 0. When particles are far from each other, the distribution of shear rate
around them resembles that of a single particle, i.e., the particles do not see each
other. The particles interact as they approach, and the shear rate distribution
and velocity field around them change correspondingly. After they come into
contact, they seem to get locked together and rotate like a single body (between635
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Figure 13: a) Relative trajectory map calculated via Da Cunha’s model [20], ε � 5.5 � 10
�4

.
b) Relative trajectories obtained from the theoretical solution compared with those measured
from the experiment (dashed colored lines) with the same initial offsets (y©a wit x $ 0).
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Figure 14: Trajectory map of two particles in a linear shear flow of the Newtonian fluid. The
reference particle is located at the origin and the second particle is initially at x©a $ 0.
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points B and D in Fig. 15) then separate from each other. Shear rate fields are
normalized by the far-field shear rate.

3.3.2. Interaction of two particles in a linear shear flow of a yield stress fluid:
experiment

In this section we present our experimental results on the interaction of two640

PMMA spherical particles in a linear shear flow of Carbopol gel, which is a yield
stress fluid (see Sections 2.3.2 and 2.4). In such case, a theoretical solution does
not exist due to the nonlinearity of the governing equations of motion, even
in the absence of inertia. While the majority of the experimental works and
simulations focused on the settling of particles in yield stress fluids, there are no645

simulation or experimental work on the interaction of two particles in a linear
shear flow of a yield stress fluid in the literature. However, a paper relating a
numerical 2D study of the interaction of pairs of particles in an ideal Bingham
fluid is under review at the same time as our paper; our experimental results
will be qualitatively compared to the simulation results when relevant [93].650

In the absence of inertia, the knowledge of roughness and initial offset are
sufficient to predict the interaction, and consequently, the relative trajectory of
two particles when we are dealing with Newtonian fluids. However, there are
more parameters influencing the interactions of two particles in a yield stress655

fluid. We expect that the value of Bingham number should strongly affect the
relative motion of two particles.

Moreover, viscoelastic effects are not always negligible when dealing with
non-ideal yield stress fluids and their contribution must be evaluated (see [44,660

45]). According to the range of Deborah number in our experiments, De "�0.04, 1.3� we believe that viscoelastic effects can play an important role, which
is consistent with [44].

In addition, shear history is another parameter which affects the interaction665

of two particles due to the strain hardening in the non-ideal yield stress test flu-
ids. As discussed earlier in sec. 2.4, for a sample of Carbopol gel, the material
undergoes different transient flow states depending on the applied shear history.
Our results show that when the material is pre-sheared in a negative direction,
the trajectories experience a relatively longer transient regime (results not in-670

cluded). This is consistent with our results in Fig. 3 which suggest that the
material reaches a steady state at larger strains under negative pre-shear. In the
course of this study, we apply the same shear history in all of the experiments
via adopting the positive pre-shear procedure in order to avoid strain hardening
and to be as close as possible to a model plastic behavior. However, we should675

mention that the dimension of our Couette-cell is large enough to allow us to
apply sufficient amounts of pre-strain to reach steady state condition, regardless
of the shear history.
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Figure 15: (a) Trajectory line of two particles in the Newtonian fluid subjected to a shear

rate of γ̇ � .27 sec
�1

. (b-k) Left column is the velocity fields at different points marked along
the trajectory line (A to E) while the right column is the corresponding normalized shear rate
fields.
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Figure 16: Trajectory map of two particles in a shear flow of the Carbopol gel YS1 at γ̇ � 0.34

sec
�1

�B,De� � �1.23, 0.15�.

While shearing the material we study the interaction of particles and the flow680

field via performing PTV and PIV respectively. Fig. 16 shows the trajectory
map of particles in a Carbopol gel at γ̇ � 0.34 sec

�1
, B � 1.23 and De � 0.15.

Two features are evident. First, the fore-aft asymmetries exist for all the tra-
jectories including those with no collisions of particles. When the initial offset
is large enough that there is no contact, particles experience a negative drift685

along the y-direction after passing each other (i.e. yf � y0 $ 0). We think that
this pattern can be attributed to the elasticity of the test fluid since no such be-
havior is observed in simulations when the fluid is considered ideal visco-plastic
(e.g. Bingham model) [93]. Second, for trajectories with small initial offsets,
the second particle moves downward along the velocity gradient direction on the690

approach side while it moves upward on the recession side. The same pattern is
observed in the simulations by Fahs et al. in [93] for yield stress fluids as well
as Newtonian fluids. These local minima in trajectories disappeared in their re-
sults for the Newtonian fluid when the domain size is increased from 24a� 12a
to 96a � 48a. However, this pattern for the yield stress fluid (with B � 10)695

disappeared at a larger domain size, 192a � 96a. Hence, we can conclude that
this might be due to the interplay of wall effects and non-Newtonian behavior.

Fig. 17 shows trajectories of two particles in a Carbopol gel at two dif-
ferent Bingham numbers, starting from approximately equal initial offsets. As700

expected, the particle trajectories strongly depend on the Bingham number. As
we increase the Bingham number the second particle approaches the reference
particle to a close distance and separates with a larger upward drift. This can
be related to the stronger decay of the disturbance velocity at larger Bingham
values around a single particle (see Sec. 3.2). This feature, which has been also705
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Figure 17: Relative trajectories of two particles in the Carbopol gel YS1 with similar initial

offsets at two different Bingham numbers. Dashed line corresponds to γ̇ � 1.70 sec
�1

�B,De� �

�0.55, 0.36� while the solid line represents γ̇ � 0.21 sec
�1

�B,De� � �1.57, 0.12�.

observed in simulations of Fahs et al.[93], implies larger asymmetry in the PDF,
and consequently, larger normal stress differences in the yield stress suspensions
as we increase the Bingham number.

Fig. 18 shows a typical example of a trajectory line with its corresponding710

velocity and local shear rate colormaps at different points along the trajectory
line for two particles in a linear shear flow of a yield stress fluid. Shear rate
fields are normalized with the applied shear rate at the belt. The second particle
approaches the reference particle from x©a $ 0. We see that particles interact
as they approach and the shear rate distribution and velocity field around them715

change (see colormpas associated with point A, Figs. 18b and c). After they
come into contact they seem to get locked together and rotate like a single body
(between points B and C in Fig. 18). They separate from each other afterwards
on their recession.

3.3.3. Interaction of two particles in a linear shear flow of a shear thinning720

fluid: experiment

A Carbopol gel exhibits both yield stress and shear thinning effects. In or-
der to investigate the effect of each non-Newtonian behavior individually, we
perform similar experiments with a shear thinning test fluid without a yield
stress. We use a Hydroproxypyl Guar solution which is transparent with negli-725

gible thixotropy at low concentrations (see Sections 2.3 and 2.4).

A map of the relative trajectory map of two particles in a linear shear flow
of the guar gum solution, ST, is illustrated in Fig. 19. Unlike yield stress sus-
pending fluids, trajectories do not exhibit downward and upward motions at730

the approach and recession zone respectively. A slight asymmetry exists when
particles do not come into a contact, but this is much smaller than that of yield
stress suspending fluids. When a contact occurs, the trajectories are all asym-
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Figure 18: (a) Trajectory line of two particles in the Carbopol gel, YS1 at γ̇ � 0.34 sec
�1

�B,De� � �1.23, 0.15�. (b-k) Left column is the velocity fields at different points marked on
the trajectory line (A to E) while the right column is the corresponding normalized shear rate
fields.
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Figure 19: Trajectory map of two particles subjected to a shear flow of ST at �γ̇,De� � �0.26

sec
�1

, 1.03�.

metric.
735

Fig. 20 illustrates a sample trajectory with its corresponding velocity and
shear rate fields at different points along the trajectory line for two particles
in the guar gum solution ST (see Table 1). The second particle approaches
the reference particle from x©a $ 0. Shear rate fields are normalized with the
applied shear rate at the belt.740

3.3.4. Particle trajectories versus streamlines

As mentioned earlier in Section 3.2.2, the disturbance velocity decays more
rapidly in the non-Newtonian fluids considered in this study. In other words,
the influence zone around a single particle is smaller when dealing with yield
stress and shear thinning fluids compared to the Newtonian fluid. In Fig. 21745

we compared the trajectories of two particles subjected to a shear flow with
the streamlines around a single particle (experimental velocity field). We can
see that they overlap up to closer distances in the Carbopol gel and guar gum
solution.

750

The streamlines around one particle can be viewed as the limiting form of
when two particles are far away or when one particle is much smaller than the
other one. The discrepancy between the fluid element streamlines and trajec-
tories is related to the lubrication and contact of the particles. Fig. 21 shows
that this discrepancy is minimal when the initial offset is large, meaning the755

pairwise interaction does not occur. Further computational and theoretical in-
vestigations are needed to build up trajectory maps of particle pairs in complex
fluids from the flow field around a single particle in shear flows of complex fluids.
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Figure 20: (a) Trajectory line of two particles in the guar gum solution, ST at γ̇ � 0.26 sec
�1

De � 1.03. (b-k) Left column is the velocity fields at different points marked on the trajectory
line (A to E) while the right column is the corresponding normalized shear rate fields.
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Figure 21: Two-particle trajectories (solid lines) compared with the streamlines around one

particle (dashed lines) in shear flows of different fluids: (a) NWT at γ̇ � 0.27 sec
�1

, (b) YS1

at γ̇ � 0.34 sec
�1

�B,De� � �1.23, 0.15� and (c) ST at γ̇ � 0.26 sec
�1

De � 1.03.
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4. Discussion and conclusions760

In this work, we have developed an accurate experimental technique to study
the interaction of two spherical particles in linear shear flows of Newtonian, yield
stress and shear thinning fluids. We have made use of PIV and PTV techniques
to measure the velocity fields and particle trajectories respectively. Rheometry
is employed in order to characterize the behavior of our test fluids.765

We showed in Section 3.1 that we can establish a linear velocity profile in our
Newtonian and non-Newtonian test fluids. In addition, for yield stress fluids, we
observed that stress inhomogeneity (naturally present due to any imperfection
in the set-up or the test fluid) could project to a larger amount of shear rate770

inhomogeneity as we increase the Bingham number. By restricting the range of
Bingham number to B $ 2, we managed to eliminate this effect and achieve a
linear shear flow in Couette device.

Next, we studied the flow around one particle when it is subjected to a lin-775

ear shear flow. Our results are in a very close agreement with the theoretical
solution for a Newtonian suspending fluid. Also the length scale of variation of
the disturbance velocity is significantly smaller in yield stress fluids compared
to that of Newtonian fluids. This affects the interaction of two particles, and
consequently, the bulk rheology of suspensions of noncolloidal particles in shear780

thinning and yield stress fluids.

We provided the first direct experimental measurement of the flow distur-
bance around a sphere in a yield stress fluid. This can serve as a benchmark
for simulations when dealing with suspensions of noncolloidal particles in yield785

stress fluids. Our study shows that Carbopol gel exhibits significant viscoelas-
tic behavior which affects the particle interactions. We observed that even the
disturbance field around a single particle in a shear flow cannot be explained
without considering the viscoelastic effects. Hence, employing elastoviscoplastic
(EVP) constitutive models [46] [47] are necessary when accurate simulations are790

considered [44]. Due to the experimental limits, further theoretical and com-
putational studies are required to characterize the contribution of elastic and
plastic effects in establishing the flow field around a single particle.

In the next step, we studied the interaction of a pair of neutrally buoyant795

particles in linear shear flows of Newtonian, yield stress and shear thinning
fluids. In the case of Newtonian suspending fluids, we observed a very close
agreement between our measurements and the available theoretical solution,
which shows the merit of our experimental method. Subsequently, the same
method has been employed to study the problem with yield stress and shear800

thinning suspending fluids which we have no theoretical solutions available for.
As it is evident in Fig. 22, fore-aft asymmetry is enhanced for trajectories of
particles in yield stress fluids (also observed in simulations of Fahs et al. [93])
and shear thinning fluids. Even a slight asymmetry has been observed in tra-
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jectories with no collision. These observations imply greater asymmetry in the805

PDF and stronger normal stress differences in the yield stress suspensions.

It is noteworthy to mention that for yield stress suspending fluids, in the ab-
sence of inertia, the interaction of particles depend on various parameters such
as Bingham number, Deborah number, shear history, initial offset and rough-810

ness. Hence, obtaining the entire trajectory space is not feasible experimentally
for yield-stress fluids. However, overall trends and patterns could be understood
by investigating a limited number of systematic measurements. The effect of
different parameters on the interaction of particles is investigated in this study.

815

As mentioned in Section 3.2.2, in the guar gum solution and Carbopol gel,
variations along the trajectory lines are confined in a closer neighborhood of
the particle. We can link this observation to the variation of the disturbance
velocity field around one particle in yield stress fluids where the length scale
of the decay is smaller than that in Newtonian suspending fluids (see Figs. 9,820

11c and 11d ). This feature has been observed in the numerical simulations of
Fahs et al. [93]. It means that two particles feel each other’s presence at closer
distances, and when they do, the interactions are more severe. One can con-
clude that the short-range interactions are more important when dealing with
yield stress suspending fluids. Due to the limited resolution of the experimental825

measurements close to the particles, especially when they are touching or very
close (separations of the order the size of the interrogation window), accurate
simulations with realistic constitutive models are required to understand and
characterize the short-range hydrodynamic interactions, particularly the lubri-
cation forces.830

Another distinct feature observed during the motion of two particles in a
yield stress fluid is the downward and upward motion of the second particle
along the velocity gradient direction during approach and recession. This phe-
nomenon could affect the microstructure, and consequently, the PDF of yield835

stress suspensions. This pattern has been observed experimentally for shear
thinning suspending fluids in [94]. Also, similar behavior is observed for both
Newtonian and yield stress fluids in the simulations of Fahs et al. [93]. By
increasing the gap size, w©a, the downward and upward motion disappeared in
their results for Newtonian fluid. However, for yield stress fluid, such behavior840

disappeared at larger gap sizes. We have not observed this feature during the
motion of two particles in the shear thinning fluid in the course of this project,
but it is perhaps due to the fact that this behavior is present only at initial
offsets smaller than the range covered in our experiments. The confinement
effects might be responsible for this behavior. The extent of such effects could845

be amplified in the presence of yield stress fluids. Further investigations are
needed to understand the underlying mechanisms properly.
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Figure 22: a-d) Relative trajectories of two particles in shear flows of different test fluids with
similar initial offsets: y0©a � 0.63 (a), 0.75 (b), 1.05 (c), 2.12 (d). Test fluids include NWT

at γ̇ � 0.27 sec
�1

, YS1 at γ̇ � 0.34 sec
�1

�B,De� � �1.23, 0.15� and ST at γ̇ � 0.26 sec
�1

De � 1.03.
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