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A comparison of different routing schemes for the robust

network loading problem: polyhedral results and computation

Sara Mattia∗ Michael Poss†

Abstract

We consider the capacity formulation of the Robust Network Loading Problem. The aim of the
paper is to study what happens from the theoretical and from the computational point of view
when the routing policy (or scheme) changes. The theoretical results consider static, volume,
affine and dynamic routing, along with splittable and unsplittable flows. Our polyhedral study
provides evidence that some well-known valid inequalities (the robust cutset inequalities) are
facets for all the considered routing/flows policies under the same assumptions. We also intro-
duce a new class of valid inequalities, the robust 3-partition inequalities, showing that, instead,
they are facets in some settings, but not in others. A branch-and-cut algorithm is also proposed
and tested. The computational experiments refer to the problem with splittable flows and the
budgeted uncertainty set. We report results on several instances coming from real-life networks,
also including historical traffic data, as well as on randomly generated instances. Our results
show that the problem with static and volume routing can be solved quite efficiently in practice
and that, in many cases, volume routing is cheaper than static routing, thus possibly repre-
senting the best compromise between cost and computing time. Moreover, unlikely from what
one may expect, the problem with dynamic routing is easier to solve than the one with affine
routing, which is hardly tractable, even using decomposition methods.

Keywords: robust network loading, budgeted uncertainty, Benders decomposition, static rout-
ing, volume routing, affine routing, dynamic routing.

1 Introduction

Given an undirected graph and a set of point-to-point commodities with known demands (traffic
matrix), the objective of the network design problem is to find the cheapest capacity installation on
the edges of the graph such that the resulting network supports the routing of the commodities. The
problem has numerous applications in telecommunications, transportation, and energy management,
among many others. Accordingly, a large number of variations can be defined, which restrict for
instance, the type of flows admissible on the edges or the type of capacities that can be installed on
the edges. A large variety of technical constraints can also be considered. They include ensuring a
given level of survivability in case of link failures or limiting the length of the paths used. Different
flows policies may be used: the demands may be restricted to be routed on single paths (unsplit-
table flows) or the flows may be unrestricted (splittable flows) [9]. Herein, we focus on the so-called
Network Loading Problem, where capacities can be installed by integer multiples. An important
aspect of network design problems is related to the knowledge of the demands. In a large number
of applications, these demands are not available at the time we decide on the capacity installation.
Here we refer to the Network Loading Problem under uncertain demands as the Robust Network
Loading Problem. A way to deal with demand uncertainty is to rely on demand forecasts, based, for
instance, on population statistics [18] or on traffic measurements [48]. If these statistical studies are
accurate enough, one can come up with a stochastic model that considers demands as known random
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variables, typically leading to two-stage stochastic programs. See [5] and the references therein for
additional details. Unfortunately, it is very difficult in practice to come up with an accurate de-
scription of these random variables. An alternative approach is to define sets of admissible values of
random variables compatible with the available data, falling into the framework of distributionally
robust optimization [46]. In this work, we assume that the uncertain demands are described through
an uncertainty set [11], falling into the framework of robust optimization [13]. Hence, the problem
turns to designing a network able to route each traffic matrix in the uncertainty set. Although
conservative, this approach has been used extensively in recent years to model demand uncertainty
in telecommunications and transportation networks [4, 8, 26, 33, 34, 37, 38, 44]. A popular choice to
model the forecast demands is to use the budgeted uncertainty set [15]. The latter supposes that the
demands fluctuate between their nominal values and given peak values and that at most Γ of them
reach their peak values simultaneously. The model is motivated by probabilistic guarantees [15] and
has been used in numerous papers on robust network design problems [8, 34, 44].

The introduction of uncertainty in demands raises the question of how to adapt the flows to dif-
ferent realizations of the demand. This concept is often referred to as routing in the literature on
network optimization. Different routing policies (or schemes) have been studied in the past, each
with its own flexibility and computational issues [4, 33, 44]. At one extreme, we find static routing,
which imposes that the fractional splitting of the commodities among a fixed set of paths stays
constant for all realizations of the demands. In the other extreme, dynamic routing allows the flows
to be changed completely any time that the demands change. Both approaches have advantages and
drawbacks. Dynamic routing is more flexible, but the corresponding problem is difficult to solve.
In addition, dynamic routing can be difficult to implement in practice because the routing depends
on the current status of all the demands in the network, thus, hardening decentralization. On the
other hand, static problems are usually computationally more tractable and easier to implement in
decentralized environments, but the corresponding solutions may be too conservative. Therefore, in
the last years, several intermediate routing schemes have been proposed. They include affine and
volume routing. The aim was to obtain more flexibility than static routing, solving a problem that is
theoretically easier than the dynamic one. Affine routing [41] restricts the flows to be affine functions
of the demands, as it applies to network optimization what has long been known as affine decision
rules in adjustable robust optimization [14]. Affine routing has been used in several papers on robust
network design, see for instance [8, 28, 40, 44], including a variation of the problem where it is the
capacity, rather than the demand, which is uncertain [42]. Volume routing [12] is a special case of
affine routing, where the set of paths used for each commodity can be adjusted according to the
current value of the demand for that commodity. In addition to its numerical tractability, volume
routing is easier to implement in a decentralized environment than affine and dynamic routing, since
the routing for a commodity only depends on the demand for that commodity. Other intermediate
routings have also been proposed in the literature, such as those based on dynamic partitions of the
uncertainty set [10, 45]. However, they lead to optimization problems that are even harder to solve
than the problem with dynamic routing [43]. For this reason, we do not consider them in what follows.

The computational tractability of the Robust Network Loading Problem has been studied under
static, affine and dynamic routing. The problem is NP-hard independently of the routing scheme,
as it includes the problem without uncertainty, and then the Steiner tree problem, as a special case.
However, even for the splittable case, when the integrality restrictions on the capacity variables are
relaxed, the complexity of the problem does depend on the routing. For affine, volume and static
routing there exists a compact formulation, that is, a formulation with a polynomial number of
variables and constraints, and, hence, the problem can be solved in polynomial time [3, 12, 44]. In
contrast, the problem with dynamic routing was proved to be NP-hard, both in general and for the
budgeted uncertainty set [20, 25, 36]. Therefore, no compact formulation exists, unless P = NP.
As a consequence, for static/affine/volume routing separation is polynomial, whereas for dynamic
routing it is NP-hard [33]. This affects the computational performance of the problem with integer
capacities. For splittable flows and static routing, in [4] the authors propose a polyhedral investiga-
tion and numerical results for the problem assuming that the demand uncertainty polytope is the
Hose model [22, 23]. Similar numerical studies have been carried out in [26] for the problem with
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budgeted uncertainty. In [27] a Benders decomposition approach for the splittable Robust Network
Loading Problem with static routing and budgeted uncertainty is derived and studied. In [33] the
author studies the problem with dynamic routing and splittable flows under the Hose model, propos-
ing a branch-and-cut procedure related to bilevel optimization. A special case of that problem is
studied in [19], where the authors focus on single-commodity problems, which allows them to provide
more efficient inequalities and separation routines. Finally, in [37] the problem with splittable flows,
affine routing and polyhedral or ellipsoidal uncertainty sets is studied. The authors further consider
a version of the problem with restrictions on the set of feasible paths and propose column generation
algorithms.

In this paper we study the capacity formulation of the Robust Network Loading Problem, that is, a
formulation including only design variables. The scope of the paper is to investigate what happens
both theoretically and computationally when the routing policy changes. To the best of our knowl-
edge, this is the first time that such a comprehensive investigation is carried out. From the theoretical
point of view, a first contribution of the paper is to derive a capacity formulation for the problem
with volume and affine routing using a Benders decomposition approach. For dynamic routing, the
exponential number of variables and constraints in the formulation prevents us from using the flow
formulation as a starting point for deriving a capacity formulation, and hence, from applying the
classical Benders reformulation. Instead, we must draw from the more advanced tools proposed in
the recent years for adjustable robust optimization, see [7, 33, 47]. We refer to the formulations in-
cluding only design variables as Benders formulations in the rest of the paper, despite the differences
in the techniques used to obtain them. We provide polyhedral results characterizing the convex-hull
of integer feasible solutions of the problem for all the considered routing schemes under splittable
and unsplittable flows, for a general uncertainty set. We establish relations among the polyhedra
corresponding to the considered routing schemes, giving conditions for an inequality that is valid
or facet under a given routing/flows policy pair to be valid or facet for another routing/flows pair.
Following the comments in [33], we formally prove that the well-known robust cutset inequalities
[26, 33, 34] are facets under the same assumptions in all the considered settings. Actually, this is,
so far, the only class of inequalities having such a property, but for the non-negativity constraints.
Indeed, we present a new class of valid inequalities for the Robust Network Loading Problem, the
robust 3-partition inequalities, and show that they are facet-defining for the problem with dynamic
routing and splittable flows, whereas they are not facets, under the same assumptions, for the other
routing schemes or for unsplittable flows. They provide the first example of such a behavior. From
a computational perspective, we investigate what is the effect of the different routing schemes on
costs and computing times, when the splittable problem is solved using the budgeted uncertainty
set, the Benders formulations and the cuts investigated in the theoretical part. We provide exact
and heuristic separation routines for the robust cutset inequalities, a heuristic approach for finding a
violated robust 3-partition inequality, an exact approach for the Benders cuts and a primal heuristic.
We compare the Benders formulations using many different cutting plane approaches. We also in-
vestigate the compact flow formulation for volume, affine and static routing. Although compact, the
corresponding problem may be time consuming for some of the considered routing schemes. How-
ever, we show that its performance can be significantly improved by separating the above mentioned
inequalities in the branch-and-cut tree. We report computational experiments on real-life instances,
including instances based on historical traffic data [39], as well as on randomly generated ones. We
prove that the problem with static and volume routing can be solved quite efficiently in practice on
the considered instances. Moreover, unlikely from what one may expect, the problem with dynamic
routing is easier to solve than the one with affine routing. It turns out that all the considered routing
schemes (but possibly affine routing) are able to solve real-life problems. We also show that volume
routing yields cost reductions over static routing in half of the instances, while not requiring more
computational time. This is important because many papers use static routing, whereas volume
routing is not so popular.

The paper is structured as follows. Sections 2 and Section 3 present, respectively, the so-called flow
and Benders formulations of the Robust Network Loading Problem for each of the aforementioned
routing schemes. In Section 4 we give polyhedral results. In Section 5 we present implementation
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details and the test-bed. In Sections 6 we discuss computational experiments. The paper is concluded
in Section 7. When presenting models and computational results (Sections 2, 3, 5, 6), we restrict to
splittable flows and to the budgeted uncertainty set, whereas the theoretical results (Section 4) are
more general and they also hold for unsplittable flows and are independent of the uncertainty set.

2 Flow formulations

Let G(V,E) be an undirected graph without loops and parallel edges, let K be the set of point-to-
point commodities to be routed on the network and assume that all the demands belonging to a

given uncertainty set U ⊂ R|K|+ must be served. Each commodity k ∈ K is defined by its endnodes
sk and tk and its demand value dk for any d ∈ U . In presenting the models, we suppose that the
flows are splittable and that the uncertainty set has a special structure, often used in the literature
[15]: each demand value dk varies between its nominal value d̄k and its peak value d̄k + d̂k and the
number of deviations from the nominal value is bounded by integer Γ. It corresponds to the extended
formulation below and we denote it by Ub.

Ub ≡

{
d ∈ R|K|+ | ∃δ ∈ [0, 1]|K| : dk = d̄k + δkd̂k, k ∈ K,

∑
k∈K

δk ≤ Γ

}
(1)

In what follows we use U when the formulation or the result refers to a general uncertainty set,
whereas we use Ub when we specifically refer to the budgeted uncertainty set. We do not make any
special assumption on U , but that it is bounded (otherwise the resulting problem is unbounded)
and non-empty (otherwise the resulting problem is trivial). By non-empty we also mean that U is
different from the singleton {0}, as the resulting problem admits the trivial solution x = 0, as well.
We associate to E the set of directed arcs A: for each e = {i, j} ∈ E, we create two directed arcs
(i, j) and (j, i). The unitary cost of installing capacity on edge e ∈ E is given by ce. The Robust
Network Loading Problem studied herein aims at installing the cheapest capacities x on the edges
of the graph, such that all realizations of the demand vectors d ∈ U can be routed on the resulting
network.

2.1 Dynamic routing

The problem with dynamic routing can be formulated mathematically as follows. The integer variable
xe represents the capacity allocation on edge e ∈ E and the real variable fkij(d) describes the amount
of flow for commodity k routed on arc (i, j) ∈ A, when considering demand d ∈ U . We also define
the star of node i ∈ N as N(i) = {j ∈ N : ∃e = {i, j} ∈ E}.

fDRNL min
∑
e∈E

cexe

s.t.
∑

j∈N(i)

(fkji(d)− fkij(d)) =

{
dk if i = tk

0 otherwise
i ∈ V \ {sk},
k ∈ K,d ∈ U (2a)

∑
k∈K

(fkij(d) + fkji(d)) ≤ xe e = {i, j} ∈ E,d ∈ U (2b)

f ,x ≥ 0 (2c)

x ∈ Z|E| (2d)

Constraints (2a) represent flow conservation constraints at every node of the network (constraints
for sk are not included because they are redundant) and constraints (2b) impose that the amount
of flow on each edge does not exceed the available capacity on that edge. In the following, we call
routing the flow function f . We use the term dynamic routing when no particular assumption is made
on admissible functions, as in fDRNL. Problem fDRNL is a mixed integer linear programming
problem with an infinite number of variables and constraints. However, we see easily that the problem
can be discretized by considering the extreme points of the demand polyhedron, denoted by vert(U),
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yielding a finite mixed-integer linear formulation. However, when some uncertainty sets are used,
the resulting formulation is extremely large, since the number of extreme points of U may grow
exponentially. This is the case for Ub, where

| vert(Ub)| =
Γ∑
l=0

(
Γ

l

)
.

One way to cope with such a large formulation is to use a decomposition approach to generate only
a subset of the extreme points on the fly in the course of branch-and-cut algorithms. We explain in
the next section how Benders decomposition can be used to do that. Alternatively, we could restrict
the routing to simple functions of d.

2.2 Affine routing

Rather than letting f be an arbitrary function of d, we can enforce that the following restrictions be
satisfied.

fkij(d) = f0k
ij +

∑
h∈K

ykhij d
h k ∈ K, (i, j) ∈ A. (3)

Constraints (3) yields what is known as affine decision rule or affine routing in the literature [40, 41,
44]. The constraints limit f to be an affine function of d. Here we explain how to obtain a compact
reformulation for the affine problem from fDRNL using constraints (3) and linear programming
duality, for Ub. The reader is referred to [44] for further details. Plugging (3) into fDRNL yields

min
∑
e∈E

cexe

s.t.
∑

j∈N(i)

(
f0k
ij +

∑
h∈K

ykhij d
h − (f0k

ij +
∑
h∈K

ykhij d
h)

)
=

{
dk if i = tk

0 otherwise
i ∈ V \ {sk},
k ∈ K,d ∈ U (4a)

∑
k∈K

(
f0k
ij +

∑
h∈K

ykhij d
h + f0k

ji +
∑
h∈K

ykhji d
h

)
≤ xe

e = {i, j} ∈ E,
d ∈ U (4b)

f0k
ij +

∑
h∈K

ykhij d
h ≥ 0

(i, j) ∈ A,
k ∈ K (4c)

x ≥ 0,x ∈ Z|E| (4d)

Consider first equations (4a) and group the terms according to their dependency on d. Then, we
consider d̄ + εeh where ehh = 1 and ehk = 0 for each k 6= h. Subtracting (4a) written for d̄ from (4a)
written for d̄ + εeh yields the reformulation (6a)–(6c). Consider now constraints (4b) and use the

definition dk = d̄k + δkd̂k. They can be rewritten as∑
k∈K

(f0k
ij + f0k

ji ) +
∑
h∈K

d̄h
∑
k∈K

(ykhij + ykhji ) + max
δ∈[0,1]|K|:

∑
h δ

h≤Γ

∑
h∈K

δhd̂h
∑
k∈K

(ykhij + ykhji ) ≤ xe. (5)

Replacing the inner maximization problem of (5) by its dual yields (6d) and (6e), where ze and pke
are the dual variables corresponding to constraints

∑
h δ

h ≤ Γ and δk ≤ 1, respectively. Proceeding
similarly with (4c) yields (6f) and (6g). Then, the flow formulation of the affine problem is the
following.

fARNL min
∑
e∈E

cexe

s.t.
∑

j∈N(i)

(ykij − ykji) =

{
1 if i = tk

0 otherwise
i ∈ V \ {sk},
k ∈ K (6a)
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∑
j∈N(i)

(ykhji − ykhij ) = 0
i ∈ V \ {sk},
k 6= h ∈ K (6b)

∑
j∈N(i)

(f0k
ji − f0k

ij ) = 0
i ∈ V \ {sk},
k ∈ K (6c)

Γze +
∑
k∈K

(
pke + f0k

ij + f0k
ji +

∑
h∈K

(ykhij + ykhji )d̄h

)
≤ xe e = {i, j} ∈ E (6d)

ze + pke ≥
∑
k∈K

(ykhij + ykhji )d̂h
e = {i, j} ∈ E,
h ∈ K (6e)

Γsij − f0k
ij +

∑
h∈K

(
qkhij − ykhij d̄h

)
≤ 0

(i, j) ∈ A,
k ∈ K (6f)

sij + qkhij ≥ ykhij d̂h
(i, j) ∈ A,
k ∈ K,h ∈ K (6g)

z, s,p,q,x ≥ 0 (6h)

x ∈ Z|E| (6i)

Variables z, s,p,q come from dualizing the robust constraints, whereas f0 and y come from the
restrictions imposed to the routing by (3). Although compact, formulation fARNL is quadratic in
|K|, which makes the problem significantly harder to solve than its deterministic counterpart. As
we will show in our numerical experiments, the dimension of the reformulation is such that it even
its linear programming relaxation can hardly be solved in reasonable amounts of time. To avoid
this quadratic dependency on |K|, we can consider special cases of affine routing that contain less
degrees of freedom than (3). Below we present two such cases and we show how the corresponding
formulations can be derived from fARNL.

2.3 Volume routing

We enforce f to satisfy

fkij(d) = f0k
ij + ykkij d

k, k ∈ K, (i, j) ∈ A (7)

obtaining a subclass of affine routing known as volume routing. Roughly speaking, (7) means that the
flows are defined by a set of paths from s(k) to t(k) (associated with y), modified by the circulation
described by f0. Volume routing has been originally introduced in [12]. Plugging constraints (7)
into fDRNL and applying the techniques mentioned above, yields the following reformulation for
the problem:

fV RNL min
∑
e∈E

cexe

s.t.
∑

j∈N(i)

(ykji − ykij) =

{
1 if i = tk

0 otherwise
i ∈ V \ {sk},
k ∈ K (8a)

∑
j∈N(i)

(f0k
ji − f0k

ij ) = 0 i ∈ V \ {sk}, k ∈ K (8b)

Γze +
∑
k∈K

(
pke + f0k

ij + f0k
ji + (ykkij + ykkji )d̄k

)
≤ xe e = {i, j} ∈ E (8c)

ze + pke ≥ (ykkij + ykkji )d̂k
e = {i, j} ∈ E,
k ∈ K (8d)

f0k
ij + ykkij d̄

k ≥ 0 (i, j) ∈ A, k ∈ K (8e)

f0k
ij + ykkij (d̄k + d̂k) ≥ 0 (i, j) ∈ A, k ∈ K (8f)

z,p,x ≥ 0 (8g)
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x ∈ Z|E| (8h)

Formulation (8) can be derived from formulation (6) by removing flow conservation constraints (6c),
replacing robust non-negativity constraints (6f) and (6g) by (8e) – (8f) and removing the terms
corresponding to ykh for h 6= k in robust capacity constraints (6d) – (6e). Notice that other authors
have proposed different restrictions of affine routing to reduce the size of the reformulation [8].

2.4 Static routing

We enforce f to satisfy

fkij(d) = ykkij d
k, k ∈ K, (i, j) ∈ A, (9)

obtaining a subclass of volume routing, known as static routing. Static routing is a well-known
framework for the Robust Network Loading Problem and it has been studied long before affine
routing was introduced [22, 23]. When constraints (9) are satisfied, variables y are often called
routing template, because they represent the fractional splittings of demands along the paths from sk

to tk for each k ∈ K. Plugging constraints (9) into fDRNL and applying the techniques mentioned
above, yields the following reformulation for the problem:

fSRNL min
∑
e∈E

cexe

s.t.
∑

j∈N(i)

(ykji − ykij) =

{
1 if i = tk

0 otherwise
i ∈ V \ {sk}, k ∈ K (10a)

Γze +
∑
k∈K

(
pke + (ykkij + ykkji )d̄k

)
≤ xe e = {i, j} ∈ E (10b)

ze + pke ≥ (ykkij + ykkji )d̂k e = {i, j} ∈ E, k ∈ K (10c)

z,p,y,x ≥ 0 (10d)

x ∈ Z|E| (10e)

Formulation (10) can be derived from formulation (6) by removing flow conservation constraints
(6b) – (6c), replacing robust non-negativity constraints (6f) – (6g) by y ≥ 0 and removing the terms
corresponding to f0 and ykh for h 6= k in robust capacity constraints (6d) – (6e).

3 Benders formulations

Benders decomposition is a technique that projects out (part of) the continuous variables of a mixed
integer linear programming problem, replacing them by a possibly exponential number of cutting
planes that define the feasibility polyhedron for the variables that are not projected out. The
cutting planes are usually generated on the fly in the course of branch-and-cut algorithms. It has
been applied to many problems, ranging from black-out prevention [17] to shift-scheduling [35]. A
standard choice in solving networks design problems consists of projecting out the flow variables
working on a master problem which includes only the design variables (see [1, 6, 27, 31, 32, 33]
and references therein). This corresponds to the practical decomposition of the decision process: in
fact, the design variables correspond to long term decisions, whereas the flow variables correspond
to decisions taken at the operational level (short term decisions). We explain in this section how
to apply Benders decomposition to fDRNL and fARNL. This is the first formal presentation of
a Benders formulation for the problem with affine (and volume) routing. Benders reformulations
for dynamic and static routing can be found in [27, 33]. We point out that the purposes of using
Benders decomposition are different for fDRNL and fARNL. For fARNL (and its simplifications
fSRNL and fV RNL), Benders decomposition avoids solving a large linear program at each node of
the branch-and-bound tree. For fDRNL, the mixed integer linear programming problem contains
exponentially many variables and constraints (and we know from its NP-hardness that no compact
formulation exists). Hence, the use of Benders decomposition avoids to consider explicitly all vectors
in vert(U), as needed extreme points are generated on the fly by solving a separation problem.
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3.1 Affine routing and simplifications

We project the flow variables out of formulation (6). Let Baff be the projection of the set defined
by constraints (6a)–(6h), formally:

Baff ≡ {x ∈ R|E| : ∃f0,y, z, s,p,q that satisfy (6a)− (6h)}.

Different approaches can be used to test whether a given vector x belongs to Baff . In the following,

we use a reformulation based on strong linear programming duality. In this end, given x̄ ∈ R|E|+ , we
introduce the feasibility problem associated with x̄

FeasAff(x̄) min α

s.t.
∑

j∈N(i)

(ykij − ykji) =

{
1 if i = tk

0 otherwise
i ∈ V \ {sk},
k ∈ K

(11a)

Γze +
∑
k∈K

(
pke + f0k

ij + f0k
ji +

∑
h∈K

(ykhij + ykhji )d̄h

)
≤ x̄e + α e = {i, j} ∈ E

(11b)

(6b), (6c), (6e), (6f), (6g)

where α represents the amount of extra capacity required to route all the demands on the network.
One readily sees that x̄ ∈ Baff if and only if the optimal solution value of FeasAff(x̄) is non-
positive. Let Daff be the feasibility polyhedron of the dual of problem FeasAff(x̄), and let π and
µ denote the dual variables corresponding to constraints (11a) and (11b), respectively. To keep our
exposition as simple as possible, we do not describe Daff explicitly and we commit the following
abuse of notation, indicating the vertices of the polyhedron by (π,µ) ∈ vert(Daff ). The Benders
reformulation of fARNL is given below.

bARNL min
∑
e∈E

cexe

s.t.
∑
e∈E

µexe ≤
∑
k∈K

πktk (π,µ) ∈ vert(Daff ) (12a)

x ≥ 0,x ∈ Z|E|

Problem FeasAff(x̄) is always feasible and bounded so that its optimal value is equal to the optimal
value of its dual, which is obtained at an extreme point of Daff . In practice, this reformulation is
addressed implicitly, by generating only the required constraints on the fly within a branch-and-cut
algorithm, whose features are detailed in Section 5.2. An important property of constraints (12a) is
that they can be separated in polynomial time by solving compact linear program FeasAff(x̄) or
its dual. The Benders reformulations of fV RNL and fSRNL are obtained similarly. Namely, we
define

Bvol ≡ {x ∈ R|E| : ∃f0,y, z,p that satisfy (8a)− (8g)}
Bstat ≡ {x ∈ R|E| : ∃y, z,p that satisfies (10a)− (10d)}

To check whether a given vector x belongs to Bstat or Bvol, we can introduce feasibility problems
FeasStat(x̄) and FeasV ol(x̄) as before. We omit the formulations of these problems since they are
obtained from FeasAff(x̄) in the same way fSRNL and fV RNL are obtained from fARNL. We
denote the feasibility polyhedra of the duals of FeasStat(x̄) and FeasV ol(x̄) by Dstat and Dvol,
respectively. The Benders reformulations bV RNL and bSRNL for the problem with volume and
static routing are obtained from bARNL by replacing vert(Daff ) by vert(Dvol) and vert(Dstat).
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3.2 Dynamic routing

Let Bdyn be the projection of the set defined by constraints (2a) – (2b):

Bdyn ≡ {x ∈ R|E| : ∃f : vert(U)→ R|A|×|K|+ that satisfies (2a)− (2c)}.

In contrast with the other routing schemes, we can aggregate the commodities by source, as it is
often done for the deterministic Network Loading Problem [6, 16]. We assume, without loss of
generality, that K contains one commodity for each pair of nodes i, j in V , possibly with dij = 0.
Our assumption implies that, for each u 6= v ∈ V , we can denote by k(u, v) the commodity h in K
such that sh = u and th = v. Each commodity in the new set can be identified by its source node u
and contains |V | − 1 sink nodes. For each u, v ∈ V , we denote by duv the demand at node v for the
commodity corresponding to source node u. This value is equal to −

∑
v∈V \{u} d

k(u,v), if u = v, or

to dk(u,v), if u 6= v. For aggregated commodities, uncertainty set Ub becomes

Uaggb ≡

{
d ∈ R|V |×|V |

∣∣∣∣∣ ∃δ ∈ [0, 1]|K| :
∑
k∈K

δk ≤ Γ,
duv = d̄k(u,v) + δk(u,v)d̂k(u,v)

duu = −
∑
v∈V \{u}(d̄

k(u,v) + δk(u,v)d̂k(u,v))
, u 6= v ∈ V

}
.

(13)

As we did before, we denote by Uagg the aggregated version of a generic uncertainty set U and by
Uaggb the aggregated version of Ub. Let fuji(d) be a variable representing the flow for commodity

u on edge (i, j) ∈ A when realization d occurs. Vector x̄ ∈ Bdyn if the problem below admits a
non-positive solution.

max
d∈Uagg

min α

s.t.
∑

j∈N(i)

(fuji(d)− fuij(d)) = dui u 6= i ∈ V (14a)

∑
u∈V

(fuij(d) + fuji)(d) ≤ x̄e + α e = {i, j} ∈ E (14b)

f , α ≥ 0

Let π denote the dual variables corresponding to constraints (14a) and let µ denote the dual variables
of constraints (14b). If we restrict to Uaggb and dualize the inner minimization problem, we obtain
the following bilinear program:

max −
∑
e∈E

µex̄e +
∑

u 6=v∈V

(d̄k(u,v) + δk(u,v)d̂k(u,v))πuv

s.t.
∑
k∈K

δk ≤ Γ k ∈ K (15a)

πui − πuj ≤ µ{i,j} a = (i, j) ∈ A, u ∈ V (15b)∑
e∈E

µe ≤ 1 (15c)

πvv = 0 v ∈ V (15d)

δ ∈ [0, 1]|K| (15e)

µ,π ≥ 0. (15f)

One easily sees that the optimal solution is reached at some binary vector δ, so that we can replace
(15e) by δ ∈ {0, 1}|K|. By representing the product δk(u,v)πuv by an auxiliary variable ρuv for each
u 6= v ∈ V , we obtain the problem below. The replacement can be done without introducing big-M
coefficients, because any solution of (15) satisfies πuv ≤ 1 for each u, v ∈ V .

FeasDyn(x̄) max −
∑
e∈E

µex̄e +
∑

u6=v∈V

(d̄k(u,v)πuv + d̂k(u,v)ρuv ) (16a)

9



s.t. ρuv ≤ δk(u,v) u 6= v ∈ V (16b)

ρuv ≤ πuv u 6= v ∈ V (16c)

ρuv ≥ πuv + δk(u,v) − 1 u 6= v ∈ V (16d)∑
k∈K

δk ≤ Γ k ∈ K (16e)

πui − πuj ≤ µ{i,j} a = (i, j) ∈ A, u ∈ V (16f)∑
e∈E

µe ≤ 1 (16g)

πvv = 0 v ∈ V (16h)

δ ∈ {0, 1}|K| (16i)

µ, π ≥ 0 (16j)

ρ ≥ 0 (16k)

LetDdyn be the polytope defined by constraints (16f), (16g) and (16j). Then, the Benders formulation
of the Robust Network Loading Problem with dynamic routing is the following.

bDRNL min
∑
e∈E

cexe

s.t.
∑
e∈E

µexe ≥
∑

u 6=v∈V

dk(u,v)πuv (π,µ) ∈ vert(Ddyn) (17a)

x ≥ 0,x ∈ Z|E|

4 Polyhedral results

In this section we illustrate, from a polyhedral point of view, what happens when the routing or the
flows policy changes. Differently from the previous section, here we consider a general demand poly-
hedron U , four routing policies (static, volume, affine and dynamic routing) and two flows policies
(splittable and unsplittable flows). Let R = {stat, vol, aff, dyn} be the set of the considered routing
schemes and let F = {spl, uns} be the set of the flows policies. Comments about the possibility to
generalize some results for dynamic routing and splittable flows to the problem with static/affine
routing or unsplittable flows were already made in [33]. We integrate and formalize them in the
results below. In Section 4.1 we give general results characterizing the polyhedra corresponding
to the considered routing and flows policies. We also state conditions explaining when and how
valid inequalities and facets of the polyhedron corresponding to one routing/flows pair are related
to valid inequalities and facets of the polyhedron for another routing/flows pair. Following [2, 33],
we formally prove that facets for a given problem can be derived from facets of a reduced problem
corresponding to a partition of the node set, under mild assumptions. In Section 4.2 we provide
examples of inequalities (non-negativity constraints and robust cutset inequalities [26, 33, 34]) being
facets for all the considered polyhedra under the same assumptions. In Section 4.3 we present a new
class of valid inequalities, namely, the robust 3-partition inequalities, which represents the first class
of valid inequalities that can be proved to provide facets for some routing/flow policies, but not for
all of them, under the same assumptions. The robust 3-partition inequalities are the robust version
of the 3-partition inequalities in [2, 29].

With little abuse of notation, we define the inclusion between routing and flows policies as below.

Definition 1. Let r and r′ be two routing policies and let p, p′ be two flows policies, then:

1. r′ includes r (r′ ⊇ r or, equivalently, r ⊆ r′), if any routing that is feasible for policy r is also
feasible for policy r′;

2. p′ includes p (p′ ⊇ p or, equivalently, p ⊆ p′), if any flows that are feasible for policy p are also
feasible for policy p′.

10



It is easy to see that Definition 1 is independent of U . We denote by BrI (p) the convex-hull of the
integer vectors x supporting a feasible routing for the demands when routing policy r and flows
policy p are considered. Sets BrI (spl) for r ∈ R and U = Ub, correspond to the convex-hull of the
integer feasible solutions of the formulations presented in Section 3.

4.1 General results

We first state conditions that have some relevant consequences.

Theorem 2. It holds that:

1. BrI (p) ⊆ Br
′

I (p) ⊆ R|E|+ ∀r, r′ : r ⊆ r′,∀p;

2. BrI (p) ⊆ BrI (p′) ⊆ R|E|+ ∀p, p′ : p ⊆ p′,∀r;

Proof. The proof is in two parts.

Part 1. If r ⊆ r′, then any routing that is feasible for policy r is also feasible for policy r′, hence any
solution x that supports policy r also supports policy r′ under the same flow policy p.

Part 2. If p ⊆ p′, then any flows that are feasible for policy p are also feasible for policy p′, hence
any solution x that supports policy p also supports policy p′ under the same routing policy r.

Indeed, Theorem 2 implies the following result.

Corollary 3. It holds that:

1. if aTx ≥ b is valid for BrI (p), then aTx ≥ b is valid for Br′I (p′), for any r′ ⊆ r, p′ ⊆ p;

2. if aTx ≥ b is not valid for BrI (p), then it is not valid for Br′I (p′), for any r′ ⊇ r, p′ ⊇ p.

Proof. It follows directly from Theorem 2.

Another consequence of Theorem 2 is Corollary 4 below.

Corollary 4. It holds that:

1. BstatI (p) ⊆ BvolI (p) ⊆ BaffI (p) ⊆ BdynI (p) ⊆ R|E|+ p ∈ F ;

2. BrI (uns) ⊆ BrI (spl) r ∈ R.

Proof. The proof is in three parts.

Part 1. As explained in Section 2, volume and static routing are subclasses of affine routing. Static
routing is obtained from volume routing by settings f0 = 0. Affine routing is obtained from dynamic
routing by imposing to satisfy additional constraints (3). Then, stat ⊆ vol ⊆ aff ⊆ dyn and the
result follows from Theorem 2.

Part 2. Unsplittable flows are obtained from splittable ones by imposing additional integrality
requirements on the f variables. Then, uns ⊆ spl and again the result follows from Theorem
2.

A vector a ∈ R|E|+ is a metric if, for any e = {i, j} ∈ E, it holds that ae ≤
∑
t∈Pe

at, where Pe is
a ij-shortest path in G(V,E) according to weights a. Denote by Ra(r, p) the optimal cost of the
Robust Network Loading Problem when a are the objective costs, r is the routing policy and p is
the flows policy. An inequality aTx ≥ b with a metric and b = Ra(r, p) is often referred to as tight
metric [6, 30, 33].

Theorem 5. For any r ∈ R and p ∈ F , the following holds:

11



1. BrI (p) is full-dimensional;

2. if aTx ≥ b is a valid inequality for BrI (p), then a ≥ 0;

3. if aTx ≥ b is a facet for BrI (p), then a is a metric and b = Ra(r, p).

Proof. The proof is in three parts.

Part 1. Let M >
⌈
maxd∈U

∑
k∈K dk

⌉
be a suitably large number. For every e ∈ E, let xe ∈ Z|E|+ be

the vector having xee = M + 1 and xeh = M for all h 6= e. Let xM ∈ Z|E|+ be the vector having all
entries equal to M . Vectors xM and xe for e ∈ E are |E| + 1 affinely independent vectors of BrI (p)
for any r ∈ R and p ∈ F .

Part 2. Assume that aTx ≥ b is a valid for BrI (p) and that there exists e such that ae < 0. Let x̄ be
a feasible solution. Consider the solution xM having xMh = x̄h for h ∈ E \ {e} and xMe = x̄e + M .
Vector xM is feasible but, for M sufficiently large, aTxM < b.

Part 3. Assume that aTx ≥ b is a facet and that a is not a metric. That is, there exist an edge e

and a path Pe between the endpoints of e such that
∑
h∈Pe

ah < ae. Let µ ∈ R|E|+ be the metric

having µh = ah for h ∈ E \ {e} and µe =
∑
h∈Pe

ah. If µTx ≥ b is valid, then aTx ≥ b is not a

facet, because it is dominated by µTx ≥ b, as µ < a by construction. Suppose that µTx ≥ b is
not valid and let w be a feasible solution such that µTw < b. Let w̄ be the feasible vector having
w̄e = 0, w̄h = we + wh for h ∈ Pe, w̄h = wh otherwise. Then, aT w̄ = µTw < b and, hence, aTx ≥ b
is not valid too. It follows that µTx ≥ b must be valid and, therefore, aTx ≥ b is not a facet. Any
inequality with b > Ra(r, p) is trivially not valid. Suppose now that b < Ra(r, p). If so, it is easy to
see that inequality aTx ≥ b is dominated by aTx ≥ Ra(r, p).

We now establish relations among the facets of the polyhedra corresponding to different routing
schemes.

Theorem 6. For any r ∈ R, p ∈ F , the following holds:

1. if aTx ≥ b is not a facet of BrI (p), then it is not a facet of Br′I (p′), for any r′ ⊆ r, p′ ⊆ p;

2. if aTx ≥ b is a facet of BrI (p) and it is valid for Br′I (p′), then it is a facet of Br′I (p′), for any
r′ ⊇ r, p′ ⊇ p.

Proof. The proof is in two parts.

Part 1. By Theorem 2, BrI (p) ⊇ Br
′

I (p′) for any r ⊇ r′ and p ⊇ p′ and by Theorem 5, for all r ∈ R and
p ∈ F the corresponding BrI (p) is full-dimensional. If there are no |E| affinely independent feasible
solutions in BrI (p) satisfying the inequality with equality, then such vectors cannot be found in any

Br′I (p′) ⊆ BrI (p).

Part 2. Using the same argument, if there exist |E| affinely independent feasible solutions in BrI (p)
satisfying aTx ≥ b with equality, the same solutions also belong to Br′I (p′) for any r′ ⊇ r, p′ ⊇ p.

Let Vl = [S1 : . . . : Sl] be a partition of the node set and let the corresponding l-node problem be the
problem obtained by shrinking each subset of the partition into a single node. We may have parallel
edges and commodities. Let lG(Vl, lE) be the corresponding graph. Let E{i,j} ⊆ E be the edges
having one endpoint in set Si and the other in set Sj . The parallel edges in E{i,j} can be merged
into a unique edge {i, j} ∈ lE. The parallel commodities can be merged into a unique commodity
for splittable flows, but not for the unsplittable ones. We say that a partition Vl is connected if Si
is connected for any Si ∈ Vl. Let lBrI (p) be the convex-hull of the integer feasible solutions of the
l-node problem. The following result holds.

Theorem 7. Let
∑
e∈lE aexe ≥ b be a valid inequality for lBrI (p), then:
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1. inequality
∑
e={i,j}∈lE

∑
q∈E{i,j}

aexq ≥ b is valid for Br′I (p′), for any l ≥ 2, r′ ⊇ r, p′ ⊇ p;

2. if it is a facet of lBrI (p), then
∑
e={i,j}∈lE

∑
q∈E{i,j}

aexq ≥ b is a facet of Br′I (p′), for any

l ≥ 2, Vl connected, r′ ⊇ r, p′ ⊇ p.

Proof. We first prove that the results holds for lBrI (p) and BrI (p). Then, we show that it holds for

any Br′I (p′) with r′ ⊇ r, p′ ⊇ p.

Part 1. Suppose that
∑
e∈lE aexe ≥ b is valid for lBrI (p), but

∑
e={i,j}∈lE

∑
q∈E{i,j}

aexq ≥ b

is not valid for BrI (p). Let w ∈ BrI (p) be a solution such that
∑
e={i,j}∈lE

∑
q∈E{i,j}

aewq < b.

Let w̄ ∈ lBrI (p) be the vector having w̄e =
∑
q∈E{i,j}

wq for each e = {i, j} ∈ lE. Since w

is feasible for the original problem, then w̄ is feasible for the l-node problem. It holds that∑
e∈lE aew̄e =

∑
e={i,j}∈lE

∑
q∈E{i,j}

aewq < b and, hence,
∑
e∈lE aexe ≥ b is not valid for lBrI (p).

Part 2. Let aTx ≥ b be a facet of lBrI (p). Then there exist v1, . . . , v|lE| affinely independent vectors
of lBrI (p) satisfying it with equality. Let EI = E \ ∪{i,j}∈lEE{i,j} represent the edges of E having
both endpoints in the same set of the partition. For every set E{i,j}, choose a representative edge
t{i,j} ∈ E{i,j}. Let M be a suitably large value. For any e = {i, j} ∈ lE and f ∈ E{i,j} define

vector wef ∈ BrI (p) as: wefh = M for h ∈ EI ; weff = vee ; w
ef
h = 0 for h ∈ E{i,j} \ {f}; wefh = veuv for

h = t{u,v}, E{i,j} 6= E{u,v}; w
ef
h = 0 for h ∈ E{u,v} \ {t{u,v}}, E{i,j} 6= E{u,v}. Let w̄ be one of such

vectors. For any e ∈ EI , let x̄e ∈ BrI (p) be the vector having x̄eq = w̄q for q 6= e and x̄ee = M + 1.

Vectors x̄e for e ∈ EI and wef for e = {i, j} ∈ lE, f ∈ E{i,j} are |E| affinely independent vectors of
BrI (p) satisfying aTx ≥ b with equality.

Part 3. By Corollary 3 and Theorem 6, if aTx ≥ b is (valid) facet for BrI (p), then it is (valid) facet

for any Br′I (p′) with r′ ⊇ r, p′ ⊇ p.

4.2 Non-negativity constraints and robust cutset inequalities

We now provide examples of inequalities that are facets for BrI (p) for any routing policy r ∈ R and
flows policy p ∈ F . Indeed, to the best of our knowledge, these are the only examples of inequalities
having this property. These inequalities are already known in the literature and their facet status
for some of the considered polyhedra has already been established (see for example [33]). Here we
provide a comprehensive proof, showing that they are facets in all the considered settings. We say
that an edge is a bridge if its removal disconnects at least one origin-destination pair sk-tk having
dk > 0 for at least one d ∈ U .

Lemma 8. Inequality xe ≥ 0 is a facet of BrI (p) for any r and p, if and only if e is not a bridge.

Proof. If e is a bridge, no feasible solution can satisfy the inequality with equality. For any t ∈ E\{e}
consider vector xt having xte = 0, xtt = M + 1 and xth = M otherwise. For M suitably large, since
e is not a bridge, xt is feasible and satisfies the inequality with equality. The same holds for vector
xM having xMe = 0 and xMh = M for all h 6= e. Moreover, xt for t ∈ E \ {e} and xM are |E| affinely
independent vectors of BrI (p).

Consider a partition of V given by sets S1 and S2, and let E(S1, S2) and K(S1, S2) be the set of
the edges and the commodities with endpoints in different sets of the partition. The robust cutset
inequality associated with partition V2 = [S1 : S2] states that the amount of capacity installed on
edges in E(S1, S2) should not be less than the rounded up sum of the maximum demands of the
commodities in K(S1, S2). Formally,

∑
e∈E(S1,S2)

xe ≥

max
d∈U

∑
k∈K(S1,S2)

dk

 . (18)
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It is easy to see that inequalities (18) are valid, as they correspond to necessary conditions [34].
Here we give a proof that they are facets, based on Theorem 7, that is, we first prove that they are
facet-defining for a 2-node problem and then we use Theorem 7 to extend the result to the original
problem. Let V2 = [S, V \ S] be a partition of the node set. Denote by 2G({u1, u2}, {{u1, u2}})
be the graph corresponding to the 2-node problem related to partition V2 and let 2BrI (p) be the
associated polyhedron.

Theorem 9. Robust cutset inequality (18) is facet defining for 2BrI (p), for any r ∈ R, p ∈ F and U ,

if and only if
⌈
maxd∈U

∑
k∈K(S,V \S) d

k
⌉
> 0.

Proof. Consider the unique non-trivial cut [{u1} : {u2}] of the 2-node problem and letD2 be the right-
hand-side of the corresponding robust cutset inequality. If D2 = 0, then the inequality is dominated
by the non-negativity constraints. The 2-node problem has one edge {u1, u2} and possibly multiple
commodities. To prove that an inequality is a facet it is sufficient to provide a not identically zero
vector satisfying it with equality. The vector is xu1u2

= D2.

Corollary 10. If V2 is connected, the robust cutset inequality (18) is facet defining for BrI (p), for
any r ∈ R, p ∈ F and U .

Proof. It follows from Theorems 7 and 9.

4.3 The robust 3-partition inequalities

In this section we present a new class of valid inequalities and illustrate their polyhedral properties.
They can be proved to be facets for some routing/flows policies, but not for all of them under
the same assumptions. Indeed, they are the first example of valid inequalities with this property.
Consider a 3-partition of the nodes V3 = [S1 : S2 : S3] and let S̄i = V \ Si for i = 1, 2, 3. The robust
3-partition inequality associated with the partition is obtained by summing the three robust cutset
inequalities associated with partitions V2 = [Si : S̄i] for i = 1, 2, 3, dividing by two each side of the
resulting inequality and rounding up its right-hand-side. Namely, let rhsi be the right-hand-side of
inequalities (18) with V2 = [Si : S̄i] for i = 1, 2, 3, and let E(S1, S2, S3) be the set of edges with
endpoints in different sets of the partition, the robust 3-partition inequality is∑

e∈E(S1,S2,S3)

xe ≥
⌈

1

2
(rhs1 + rhs2 + rhs3)

⌉
. (19)

In the following we prove under which conditions (19) is facet-defining for the problem with dynamic
routing and splittable flows. We also provide examples showing that the result does not extend to
the other routing/flows policies considered in this paper.

Theorem 11. Inequality (19) is facet-defining for 3BdynI (spl) if and only if the following conditions
are satisfied:

1. rhs1 + rhs2 + rhs3 is odd;

2. rhsi > 0 for each i = 1, . . . , 3;

3. q =
⌈
rhs1+rhs2+rhs3

2

⌉
> rhsi for each i = 1, . . . , 3.

Proof. We first prove the necessity and then the sufficiency.

Necessity. Suppose that condition 1 is not satisfied. Then, the robust 3-partition inequality is dom-
inated by the sum of the robust cutset inequalities. Therefore it cannot be facet-defining. Suppose
that condition 2 is not satisfied. Then, there exists a cutset inequality i such that rhsi = 0. Let us
suppose that i = 1. It follows that rhs2 = rhs3 and hence rhs1 + rhs2 + rhs3 is not odd. Thus,
by the proof of condition 1, the robust 3-partition inequality cannot be facet-defining. Suppose that
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x12 x13 x23

case (i)
q − rhs3 rhs3 0
rhs1 0 q − rhs1

0 q − rhs2 rhs2

case (ii)
q − rhs3 rhs3 0
rhs1 0 q − rhs1

rhs1 + rhs2 − q q − rhs2 q − rhs1

case (iii)
q − rhs3 rhs3 0
q − rhs3 rhs1 + rhs3 − q q − rhs1

rhs1 + rhs2 − q q − rhs2 q − rhs1

case (iv)
q − rhs3 q − rhs2 rhs2 + rhs3 − q
q − rhs3 rhs1 + rhs3 − q q − rhs1

rhs1 + rhs2 − q q − rhs2 q − rhs1

Table 1: Affinely independent vectors for Theorem 11.

condition 3 is not satisfied. Then, there exists robust cutset inequality i such that rhsi ≥ q. Hence,
the robust 3-partition inequality is dominated by the robust cutset inequality i.

Sufficiency. We suppose without loss of generality that rhs1 ≥ rhs2 ≥ rhs3. According to the values
of q and rhsi for i = 1, . . . 3, we distinguish four case: (i) q ≥ rhs1+rhs2 ≥ rhs1+rhs3 ≥ rhs2+rhs3;
(ii) rhs1 + rhs2 > q ≥ rhs1 + rhs3 ≥ rhs2 + rhs3; (iii) rhs1 + rhs2 ≥ rhs1 + rhs3 > q ≥ rhs2 + rhs3;
(iv) rhs1 +rhs2 ≥ rhs1 +rhs3 ≥ rhs2 +rhs3 > q. For each case we provide in Table 4.3 three affinely
independent vectors that are feasible for the problem and satisfy the robust 3-partition inequality
with equality. Since the dynamic problem on 3 nodes has the robust cut property [34], the feasibility
of a solution can be tested checking the robust cutset inequalities only. It is easy to see that for
each case the listed vectors satisfy the robust cutset inequalities. Moreover, one readily verifies that
Conditions 1–3 imply that the four 3× 3 matrices from Table 4.3 are non-singular.

Therefore, we can prove what follows.

Corollary 12. Inequalities (19) corresponding to connected partitions [S1 : S2 : S3] that satisfy the

conditions of Theorem 11 are facet-defining for BdynI (spl).

Proof. The result follows from Theorems 7 and 11.

We provide next an example of robust 3-partition inequality that satisfies the conditions of Theo-
rem 11, but it is not facet-defining for static routing, not even for the budgeted uncertainty set.

Example 13. Consider a complete undirected graph with 3 nodes and let U = Ub. Let the nominal
demands be d̄12 = d̄13 = 1, d̄23 = 0, the deviations be d̂12 = d̂13 = 1, d̂23 = 0, and let Γ = 1. The
robust cutset inequalities and the corresponding robust 3-partition inequality are reported below.

c1 : x12 + x13 ≥ 3

c2 : x12 + x23 ≥ 2

c3 : x13 + x23 ≥ 2

3p : x12 + x13 + x23 ≥ 4

The conditions of Theorem 11 are satisfied, but it is not possible to find three affinely independent
integer vectors in 3BstatI (spl) that satisfy 3p with equality. In fact, the only capacity allocation
x ∈ 3BstatI (spl) that satisfies 3p with equality is x12 = x13 = 2, x23 = 0.

One can construct similar examples for 3BvolI (spl) and 3BaffI (spl), using the property that affine

routing reduces to static routing whenever the uncertainty set contains the corner of R|K|+ [44].

Example 14 shows that 3-partitions are facet for BdynI (spl), but not for BdynI (uns).
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Example 14. Consider the problem in Example 13 and assume that the routing is dynamic, but the
flows are unsplittable. The uncertainty set includes traffic matrices A and B, where dA12 = 2, dA13 = 1,
dB12 = 1, dB13 = 2, dA23 = dB23 = 0. The only solution of value 4 that allows an unsplittable routing for
both A and B is x12 = x13 = 2, x23 = 0.

By Theorem 6, if the robust 3-partitions are not facets for the dynamic problem, they cannot be
facets for the static, affine or volume problem under unplittable flows. Indeed, the 3-partitions are
not even facets for the deterministic problem, when the flows are unsplittable.

Example 15. Consider a complete undirected graph with 3 nodes and demands d12 = d23 =
0.4, d13 = 0.7. Cutset and three-partition inequalities are:

c1 : x12 + x13 ≥ 2

c2 : x12 + x23 ≥ 1

c3 : x13 + x23 ≥ 2

3p : x12 + x13 + x23 ≥ 3

The only unsplittable solution of value 3 is x12 = x13 = x23 = 1, then 3p is not a facet.

We remark again the all the results in Section 4 are independent of the uncertainty set U . Moreover,
any inequality that is valid for the capacity formulation is also valid for the flow formulation of the
corresponding problem.

5 Test-bed and implementation

Now we consider the Benders formulations from a computational perspective. We restrict to splittable
flows and to Ub. The purpose of the computational experiments presented in this section is two-fold.
First, we test the solvability of the Robust Network Loading Problem using different formulations
and settings, on real-life instances. The scope is to show which are the approaches that can be used
on problems coming from real applications and which are the approaches that are computationally
problematic on such instances. Second, we compare the optimal solution values on both realistic
instances and randomly generated ones. Let opt(r) denote the optimal solution of the problem when
routing policy r is considered. Then, we see immediately that the following ordering holds:

opt(dyn) ≤ opt(aff) ≤ opt(vol) ≤ opt(stat).

Our purpose is to show the trade-off between the value of the produced solution (flexibility) and the
required time.

5.1 The test-bed

Our test bed contains two classes of instances, that we denote by realistic and random. The first class
of instances includes 12 realistic network instances available from SNDlib [39]. Networks abilene,
germany, and geant come from [26], where the authors build nominal demand values and deviations
according to historical traffic data. Notice that our instances may differ slightly from the instances
from [26], because we kept only commodities whose nominal demand value was greater than 0.001,
to avoid numerical issues. For the other seven networks, we define the nominal demand value as the
deterministic one and let the deviation be 50% of the nominal demand, as in [8, 44]. The purpose of
the realistic instances is to test the performances of the different approaches on real-life instances.
The second class of instances includes 12 randomly generated instances. Networks are randomly
generated so that each node has at least two incoming edges to avoid trivial problems. Demands
are computed generating random numbers is [1, 9] and then dividing them by 10. Edge costs are
randomly generated integer numbers in {1, . . . , 5}. The purpose of the random instances is to provide
instances that can be solved to optimality by all the approaches to compare the corresponding costs,
without being possibly biased by the unsolved instances. Hence, they are much easier to solve than
the realistic instances, with minimal differences in the computing times depending on the routing
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policy.

We choose the value of Γ according to the probabilistic bound introduced in [15]. Namely, we set
four levels of guaranteed probabilistic bound (denoted ε): 0.25, 0.10, 0.05, and 0.01. Then, for each
value of ε, the corresponding Γε is such that all feasible solutions for the dynamic and the affine
problem satisfy the following property: if demands are symmetric and independent random variables
distributed in [d̄− d̂, d̄+ d̂], then, for each a ∈ A, the probability that the flow exceeds the capacity
installed on arc a is less than ε. In this way we obtain 48 instances for the realistic instances and 48
instances for the random instances. A description of the realistic instances is reported in Table 2,
while Table 3 refers to the random instances.

name |V | |E| |K| Γ0.25 Γ0.10 Γ0.05 Γ0.01

abilene1 12 15 66 6 11 14 19
abilene2 12 15 65 6 11 14 19

germany17 17 26 106 7 14 18 24
geant1 22 36 181 10 18 23 32
geant2 22 36 170 9 17 22 31
di-yuan 11 42 22 4 7 8 11

pdh 11 34 24 4 7 9 12
polska 12 18 66 6 11 14 19

nobel-us 14 21 91 7 13 16 23
atlanta 15 22 105 7 14 17 24

newyork 16 49 120 8 15 19 26
france 25 45 300 12 23 29 41

Table 2: Realistic instances description

name |V | |E| |K| Γ0.25 Γ0.10 Γ0.05 Γ0.01

n10e14d14 1 10 14 14 3 6 7 10
n10e14d14 2 10 14 14 3 6 7 10
n10e14d14 3 10 14 14 3 6 7 10
n10e14d19 1 10 14 19 4 6 8 11
n10e14d19 2 10 14 19 4 6 8 11
n10e14d19 3 10 14 19 4 6 8 11
n10e19d14 1 10 19 14 3 6 7 10
n10e19d14 2 10 19 14 3 6 7 10
n10e19d14 3 10 19 14 3 6 7 10
n10e19d19 1 10 19 19 4 6 8 11
n10e19d19 2 10 19 19 4 6 8 11
n10e19d19 3 10 19 19 4 6 8 11

Table 3: Random instances description

5.2 Implementation

The solution approaches have been coded in JAVA using Cplex Concert Technology using default
cut generation parameters. All computations were run on a computer equipped with an Intel(R)
Xeon(R) CPU E5540 2.53GHz processor and 16 GB of RAM, using CPLEX 12.6 [21]. We allow
7200 seconds of computing time for each instance. For the affine and the dynamic problem only
the Benders formulation is considered. For the static and the volume problem, two approaches are
used. The first approach solves the compact formulations fV RNL and fSRNL, enhanced by the
separation of robust cutset and robust 3-partition inequalities at the root node. The second approach
addresses the problems via a Benders decomposition algorithm. The algorithm starts with a master
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problem that contains one robust cutset inequality for each node of the network, then the problem
is solved by branch-and-cut generating robust cutset, robust 3-partition and Benders inequalities
according to the considered setting. In the following, we refer shortly to these two approaches as
Compact and Benders, respectively. Then, the Benders inequalities are generated at each integer
solution and, possibly, at the root node on any solution. We generate robust cutset and 3-partition
inequalities, according to one of the following configurations:

0 : No cuts.

1 : Heuristic and exact separation of robust cutset inequalities at the root node only.

2 : 1+ heuristic separation of robust 3-partition inequalities at the root node only.

3 : Heuristic and exact separation of robust cutset inequalities at the root node and at integer
solutions.

4 : 3+ heuristic separation of robust 3-partition inequalities at the root node and at integer solutions.

Notice that for the Compact formulation approach, only the first three implementations are tested.
We also test whether it is better to generate Benders inequalities only at integer solutions (I) or
at integer solutions and at the root node (R&I). Hence, we compare 10 approaches for Benders
decomposition: R&I and I for each m ∈ {0, 1, 2, 3, 4}. For each of these configuration, the inequalities
are separated in this order: 1) heuristic separation of robust cutset inequalities, 2) heuristic separation
of robust 3-partition inequalities, 3) exact separation of robust cutset inequalities, 4) separation of
Benders inequalities (only for Benders decomposition approaches). The problems are solved by a
branch-and-cut algorithm, both for the Compact and for the Benders approach. That is, instead
of solving the Benders master problem to integrality at every iteration as in [27], we solve the
linear relaxation, as in a traditional branch-and-cut framework. This approach is known to yield
much faster algorithms (see for example [24]). As soon as an inequality is found violated, the other
inequalities are skipped and the linear programming relaxation is solved again. Another important
characteristic of the Benders decomposition algorithm is the primal heuristic provided at the root
node. Namely, the linear programming relaxation is first solved for the static problem using the
compact formulation and the resulting capacities are rounded up to the nearest integer values.
Although negligible, the solution time of this heuristic is included in the total solution time. We also
tried, in some preliminary computations, the automatic Benders decomposition of CPLEX 12.7, but
our ad-hoc approach turned out to have better performances.

Separation of robust cutset inequalities When the budgeted uncertainty set is used, the robust
cutset inequalities are rewritten as:

∑
e∈E(S1,S2)

xe ≥


∑

k∈K(S1,S2)

d̄k + max
Q⊆K(S1,S2),|Q|≤Γ

∑
k∈Q

d̂k

 .
We separate them using two approaches. The first approach separates the cut heuristically as follows.
We randomly partition the nodes into two subsets and then perform a local search picking up one
node and moving it to the other subset, until there is no more improvement in the violation. If no
violated inequality has been found, we choose another partition, up to a maximum of 5 iterations.
The second approach separates the inequalities exactly through the following formulation.

max −
∑
e∈E

xeµe + β

s.t. µe ≥ max{ri − rj , rj − ri} e ∈ E (20a)

µe ≤ min{ri + rj , 2− rj − ri} e ∈ E (20b)

νk ≥ max{rsk − rtk , rtk − rsk} k ∈ K (20c)

νk ≤ min{rsk + rtk , 2− rsk − rtk} k ∈ K (20d)

18



`k ≤ min{γk, νk} k ∈ K (20e)

β ≤
∑
k∈K

d̄kνk +
∑
k∈K

d̂k`k + 1− ε (20f)∑
k∈K

γk = Γ

γ, ` ∈ {0, 1}|K|,µ ∈ {0, 1}|E|,ν ∈ {0, 1}|K|

β ∈ Z, r ∈ {0, 1}|V |

Variable ri is one if node i belongs to set S of the partition and zero otherwise. Variable `k and
constraints (20e) represent product γkµk. Constraints (20a)–(20d) ensure that µe (resp. νk) are
equal to one if and only if the endpoints of the edge (resp. commodity) belong to different subsets
of the partition. We remind that the robust cutset inequalities belong to the first Chvátal closure
and, under some assumptions, they are facets of the problem for all the considered routing policies.

Separation of robust 3-partition inequalities We separate the robust 3-partition inequalities
heuristically as follows. We randomly partition the nodes into three subsets and then perform a local
search picking one node and moving it to another subset, until there is no more improvement in the
violation. If no violated inequality has been found, we choose another partition, up to a maximum of
5 re-starts. Is is also possible to develop an exact algorithm based on a generalization of formulation
(20). We have a set of variables and constraints for every cut, plus extra binary variables η and integer
Θ representing the 3-partition and the right-and-side of the inequality, to be computed rounding
the right-hand-sides of the robust cutset inequalities. However, a preliminary testing proved this
formulation to be quite slow in practice, therefore we rely on the heuristic approach, as usually done
in the literature for partition-based inequalities other than cutsets, even for the problem without
uncertainty [1]. We remark that the robust 3-partition inequalities are facets under some conditions
of the problem with dynamic routing, while they belong to the second Chvátal closure for the other
routing schemes, as they are obtained combining the robust cutset inequalities, that belong to the
first Chvátal closure.

Separation of Benders inequalities Benders inequalities are separated exactly by solving prob-
lems (11) and (16), depending on the routing scheme. After finding a violated inequality µTx ≥ b,
its coefficients and right-hand-side are rounded using the following approach, originally proposed in
[16]. It consists of replacing the inequality by∑

e∈E

⌈
µe
µmin

⌉
xe ≥

⌈
b

µmin

⌉
,

where µmin is the smallest positive entry of µ. In the unlikely situation where the rounded cut is not
violated, instead, we add the original cut. We note that one could directly separate inequalities with
integer µ and b being the upper integer of the corresponding Benders cut (also known as rounded
metric inequalities). However, a preliminary testing proved that separating Benders inequalities in
their non-rounded form and then strengthening them, is computationally more efficient than solving
the integer separation problem. We note that the strengthened Benders cuts we use here belong
to the first Chvátal closure, as they are obtained (heuristically) rounding a single inequality of the
formulation.

6 Results

This section is organized as follows. First we discuss the information obtained about the costs
corresponding to the different routing schemes using the random instances, then we analyze in detail
the results obtained on the realistic instances.
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Solution costs Best solution time/Best gap
name 1− ε optstat redvol(%) redaff (%) reddyn(%) stat vol aff dyn

abilene1

0.25 31 0.0 0.0 0.0 1 3 2416 8
0.1 32 0.0 0.0 0.0 1 3 1379 13
0.05 33 0.0 0.0 0.0 2 3 1532 5
0.01 33 0.0 0.0 0.0 1 4 1780 3

abilene2

0.25 20 5.0 5.0 5.0 2 2 1568 16
0.1 22 0.0 0.0 0.0 2 3 3986 7
0.05 22 0.0 0.0 0.0 1 2 1838 3
0.01 22 0.0 0.0 0.0 1 3 1686 3

germany17

0.25 35 2.9 ≥ 0.0 2.9 65 12 28% 54
0.1 36 0.0 0.0 0.0 7 20 27% 32
0.05 36 0.0 0.0 0.0 8 14 28% 932
0.01 36 0.0 0.0 0.0 7 10 26% 13

geant1

0.25 30 0.0 0.0 0.0 72 142 M 2551
0.1 31 3.2 ≥ 0.0 ≥ 0.0 1849 138 M 35%
0.05 31 3.2 ≥ 0.0 ≥ 0.0 200 142 M 33%
0.01 31 0.0 ≥ 0.0 ≥ 0.0 78 65 M 22%

geant2

0.25 34 2.9 ≥ 0.0 2.9 662 134 M 837
0.1 34 0.0 ≥ 0.0 ≥ 0.0 72 53 M 18%
0.05 34 0.0 ≥ 0.0 ≥ 0.0 79 126 M 36%
0.01 34 0.0 ≥ 0.0 ≥ 0.0 343 93 M 15%

di-yuan

0.25 5240900 8.5 9.6 9.6 79 6 118 4
0.1 5366800 1.9 3.6 3.7 8 119 1697 17
0.05 5371400 1.1 2.6 2.8 6 32 5390 6
0.01 5371400 0.0 0.0 0.0 1 2 96 1

pdh

0.25 850604.8 4.8 6.2 6.5 279 282 4202 12
0.1 852303.1 0.1 0.0 0.6 41 149 1% 15
0.05 852585.8 0.0 0.0 0.1 8 22 1558 3
0.01 853009.8 0.0 0.0 0.0 6 10 913 3

polska

0.25 261.2 12.4 ≥ 0.0 ≥ 0.0 21 44 18% 18%
0.1 287.4 12.8 ≥ 9.3 ≥ 0.0 31 17 20% 19%
0.05 293.5 10.9 14.5 ≥ 0.0 878 95 6337 17%
0.01 295.1 5.1 8.8 ≥ 0.0 101 28 6329 12%

nobel-us

0.25 294886.5 10.5 ≥ 0.0 ≥ 0.0 37 266 18% 18%
0.1 315622.5 9.2 ≥ 0.0 ≥ 0.0 34 1137 16% 16%
0.05 319814.5 7.9 ≥ 0.0 ≥ 0.0 113 324 15% 15%
0.01 322963.5 4.3 ≥ 0.0 ≥ 0.0 499 956 12% 12%

atlanta

0.25 200105 4.7 ≥ 0.0 5.4 20 163 11% 1902
0.1 209610 3.4 ≥ 0.0 ≥ 0.0 41 74 8% 8%
0.05 211680 2.7 ≥ 0.0 ≥ 0.0 130 26 8% 8%
0.01 214480 1.7 ≥ 0.0 ≥ 0.0 81 27 6% 6%

newyork

0.25 985.2 0.0 0.0 0.0 49 110 82% 22
0.1 985.2 0.0 0.0 0.0 47 140 82% 32
0.05 985.2 0.0 0.0 0.0 51 114 83% 34
0.01 985.2 0.0 0.0 0.0 38 162 83% 20

france

0.25 10.4 7.7 ≥ 0.0 ≥ 0.0 4074 2196 M 20%
0.1 11 6.4 ≥ 0.0 ≥ 0.0 678 4136 M 21%
0.05 11.2 5.4 ≥ 0.0 ≥ 0.0 599 3961 M 73%
0.01 11.5 4.3 ≥ 0.0 ≥ 0.0 1% 1% M 19%

Table 4: Overview of the results.
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(c) Varying |E|.

Figure 1: Cost reductions from the static routing solution on the instances from Table 3.

Random instances The purpose of the experiments here is to compare the costs associated with
the different routing policies. In order to do that, we compare the objective values obtained solving
the problem corresponding to each routing policy. Hence, as said above, these instances are generally
much easier to solve than the realistic instances, with no relevant differences between the routing
policies. We present in Figure 1 the average cost reductions over static routing for the instances
described in Table 3. Globally, the results show that the cost reductions obtained for volume and
affine routing are close to those obtained for dynamic routing. In addition, Figure 1(a) highlights
that decreasing the value of ε (i.e. increasing the value of Γ) reduces significantly all cost reductions,
while Figure 1(b) illustrates how increasing the number of commodities increases all cost reductions.
Regarding the number of edges of the network, Figure 1(b) shows that networks with more edges
yield a slight increase in the cost reduction obtained by affine and dynamic routing while the opposite
holds for volume routing.

Outline of the results on realistic instances We present first an overview of the results,
paying a particular attention to the cost reductions offered by volume and dynamic routing. Then,
we compare the efficiency of the different algorithms for solving each type of routing, but affine
routing, where our approach could solve only one third of the instances. This step is carried out by
comparing the arithmetic and the geometric means of the solution times and the number of unsolved
instances. It is worth recalling that the arithmetic mean gives more weight to hard instances, while
the geometric mean considers equally all instances, regardless of their difficulty. Notice also that
this approach hides a part of the difficulty of the unsolved instances, since their solution times count
for 7200 seconds in all computations. Hence, we report actual lower bounds for the true (unknown)
means. This comment is particularly important for dynamic routing, for which some instances could
not be solved. In spite of this, these aggregated results give us valuable insight for choosing the
approach that seems the best for each routing. After studying each routing individually, we compare
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Formulation Compact Benders
Inequalities 0 1 2 I0 I1 I2 I3 I4 R&I0 R&I1 R&I2 R&I3 R&I4

Arithm mean 2467 1935 1592 2308 1858 1629 1466 1535 1941 1490 1338 1017 930
Geom mean 309 228 130 449 266 217 135 125 304 224 168 125 93

Unsolved 13 7 6 6 5 4 4 4 9 5 4 4 4

Table 5: General comparison of the approaches for static routing.

the best approaches for the different routings, study their sensitivity to the value of ε and study the
gap closed by the valid inequalities.

6.1 Realistic instances: a global overview

We provide in Table 4 a global view of our computational results. The first and second columns
describe the instance and the level of protection, respectively. Column optstat reports the optimal
solution cost with static routing, while columns redvol, redaff , and reddyn report the percentage de-
crease in solution costs with volume routing, affine routing, and dynamic routing, respectively. When
the problems could not be solved to optimality, we report these reductions preceded by symbol ≥.
The next columns provide insights into the computational difficulty of the optimization problems.
Namely, columns Best solution time/Best gap provide the solution time in seconds of the best ap-
proach if the instance could be solved to optimality. Otherwise, the column reports the best gap
found after 7200 seconds of computing, unless a memory limit hit happened while constructing the
linear program, which is denoted by M.

The table shows that solution times for volume routing are not much higher than those for static
routing; in some cases, they are even smaller. Recall, however, that this comparison is not rigorous
because we compare different algorithms for different types of routing and instances. A better
comparison is realized below, after having selected the best algorithm for each routing. Regarding
the solution costs, we see that volume routing yields a positive cost reduction in 26 instances out of
48, which ranges up to 12.8 %. In most cases, the cost reduction is higher when the protection level
is high (and thus, Γ is small). Notice also the limited variations in the solution costs of instances
abilene1, abilene2, germany, geant1, and geant2, which is due to the particular cost structure of
these instances (ce = 1 for each e ∈ E). Dynamic routing is, as expected, harder to solve than static
and volume and 21 instances could not be solved within the time limit. However, for pdh, di-yuan,
and newyork, dynamic routing is easier to solve than the two others. Dynamic routing improves over
volume routing by up to 1.8 additional percent (reached for di-yuan, ε = 0.1). The results for affine
routing are quite disappointing. This routing scheme is even harder to solve than dynamic routing,
with 31 unsolved instances due either to time or memory restrictions. Not surprisingly, the difficulty
of affine routing is essentially due to the large formulations since even the linear programming
relaxation can be hard to solve exactly. For instance, the linear programming relaxation could not
be solved for instances geant1, geant2, and france because of memory limitations. In spite of this,
affine routing shows interesting cost reductions for polska, improving over the reduction offered by the
volume routing for two cases for which the dynamic routing could not be solved close to optimality.
Because of the high number of unsolved instances, we disregard affine routing in the detailed study
below. One can notice that for networks polska, nobel-us, and atlanta some of the end gaps are
identical for the affine and dynamic models. This is due to the fact that the best upper bound is
provided by the root heuristic described in Section 5.2, while the lower bound is provided by robust
cutset and 3-partition inequalities, which are identical for the two routings.

6.2 Realistic instances: a more detailed analysis

Here we analyze the performances of each routing policy, compare them, discuss the sensitivity with
respect to ε and the performances of the considered inequalities. Finally, we report the complete
tables of the results for the best approaches.
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Formulation Compact Benders
Inequalities 0 1 2 I0 I1 I2 I3 I4 R&I0 R&I1 R&I2 R&I3 R&I4

Arithm mean 3338 2995 2544 2590 2180 1854 1005 1029 2539 1890 1642 961 1003
Geom mean 972 515 311 713 380 296 109 96 566 378 298 123 97

Unsolved 16 15 16 6 4 2 2 1 7 5 3 2 3

Table 6: General comparison of the approaches for volume routing.
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Figure 2: Performance profile comparing Benders-R&I3 and Benders-I4 for volume routing.

Static routing Table 5 presents an aggregated comparison of the solution times for the 13 ap-
proaches. Solution times of unsolved instances are set to 7200 seconds. The table shows the sig-
nificant improvement offered by the robust 3-partition inequalities: Compact-2 is much faster than
Compact-1 and leaves fewer instance unsolved; the inclusion of partition inequalities yields similar
comments for the Benders approaches. Namely, Benders-I2 is faster than Benders-I1, Benders-I4
is faster than Benders-I3, Benders-R&I2 is faster than Benders-R&I1, and Benders-R&I4 is faster
than Benders-R&I3. The table shows that Benders-R&I4 is the fastest solution algorithm. The full
statistics are provided in Table 8.

Volume routing Table 6 is the counterpart of Table 5 for volume routing, presenting an aggre-
gated comparison of the solution times for the thirteen approaches. The table shows again the
improvement offered by the robust 3-partition inequalities which holds for the aforementioned pair
of algorithms but Benders-R&I4 and Benders-R&I3 for which the latter is not outperformed by the
former. In contrast with the situation observed in Table 5, there is no absolute winner for volume
routing. Namely, Benders-R&I3 yields the best arithmetic mean, while Benders-I4 has the best ge-
ometric mean and solves more instances than the others. Benders-R&I3 and Benders-I4 (together
with Benders-I3 and Benders-R&I4) are further compared through the performance profile shown in
Figure 2, which confirms the modest advantage of Benders-I4 over the other approaches. The full
details of Benders-I4 are provided in Table 9. Interestingly, compact formulations are less efficient
for the problem with volume routing than they are for the one with static routing, which is probably
due to the larger number of variables and constraints present in fV RNL. Nevertheless, Benders
decomposition algorithms seem to perform comparably well for both routings. Analyzing tables 8
and 9, one can explain these good results by the numbers and the efficiency of the generated valid
inequalities. On the one hand, Volume-Benders-I4 loses more time generating Benders cuts than
Static-Benders-RI4 because the separation problem for Benders cuts is more difficult for volume
routing than for static routing. On the other hand, robust 3-partition inequalities are tighter for the
problem with volume routing than they are for the one with static routing, as BstatI (spl) ⊆ Bvol(spl).
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Formulation Benders
Inequalities I0 I1 I2 I3 I4 R&I0 R&I1 R&I2 R&I3 R&I4

Arithm mean 4565 4335 4125 3546 3520 4928 4582 4345 3893 3834
Geom mean 971 703 664 393 349 1765 885 739 600 524

Unsolved 29 28 26 23 22 30 29 27 25 24

Table 7: General comparison of the approaches for dynamic routing.
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Figure 3: Performance profile comparing Static-Benders-R&I4, Volume-Benders-I4, and Dynamic-
Benders-I4.

Dynamic routing Table 7 is the counterpart of Tables 5 and 6 for dynamic routing, presenting an
aggregated comparison of the solution times for the twenty approaches. The table shows again the
constant improvement offered by the robust 3-partition inequalities. However, these improvements
are still not enough for many of the instances and we see that each algorithm leaves many more
unsolved instances than the algorithms presented for the other routings. In view of the high numbers
of unsolved instances, the reported means should be taken very lightly. Still, the results seem to
indicate that the winner among all approaches is Benders-I4, followed closely by Benders-I3. The
full details of Benders-I4 are provided in Table 10.

Comparing the different routings and sensitivity to ε We present in Figure 3 a performance
profile that compares the best algorithms for the three routings. Figure 3 confirms that the efficiency
of the approaches for static routing and volume routing can hardly be ordered. The plot also shows
that Dynamic-Benders-I4 is usually slower than the other algorithms. We present in Figure 4 the
sensitivity of the three best algorithms to the variations of ε. The figure shows that the geometric
means of the solution times for Volume-Benders-I4 and Dynamic-Benders-I4 are not monotonically
impacted by the value of ε. The results are different for Static-Benders-R&I4, however, for which
larger values of ε consistently yield harder optimization problems.

Gap closed by the inequalities We study next the effect of the robust cutset and 3-partition
inequalities on the gap at the root node. For each network and static or volume routing, let RootGap
be the root gap obtained from the linear relaxation of fSRNL or fV RNL, respectively, and let
CutsetGap and ThreePartitionGap be the root gaps obtained after having separated the robust
cutset and 3-partition inequalities, respectively. Then, we compute the proportion of the gap closed
by the robust cutset and 3-partition inequalities as

RootGap− CutsetGap
RootGap

, and
CutsetGap− ThreePartitionGap

CutsetGap
,
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(a) RootGap reduction by cutset inequalities.
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(b) CutsetGap reduction by robust 3-partition in-
equalities.

Figure 5: Arithmetic means of the gap closed by the valid inequalities.

We report in Figure 5 the arithmetic means of these gaps taken over the four different values of ε.
For Figure 5(a), we have set to 0 the negative value obtained for abilene1 and static routing, see the
explanation below. Network france is not included for volume routing because its optimal solution
is unknown. Two important conclusions can be drawn from the figures. First, the robust 3-partition
inequalities succeed in closing a large part of the CutsetGap, confirming again their efficiency. Sec-
ond, gap reductions are almost always more significant for volume routing than for static routing,
which was expected because of Theorem 2. We also mention that cuts are heuristically separated
through randomly generated partitions and this may also affect the results, because different cuts
may be generated for the different approaches. A similar argument explains the presence of the neg-
ative number set to zero for Figure 5(a): the robust cutset inequalities generated when computing
the CutsetGap and the ThreePartitionGap may not have been the same. Unfortunately, we cannot
provide similar results for dynamic routing, for which no compact formulation is available.

Detailed results Tables 8–10 report the full results for the three most efficient algorithms. Columns
TTime, CTime, 3PTime, and BTime report the total solution times and the time to generate, respec-
tively, robust cutset inequalities, robust 3-partition inequalities, and Benders inequalities. Columns
CCuts, 3PCuts, and BCuts report the number of cutting planes generated, respectively, robust cut-
set inequalities, robust 3-partition inequalities, and Benders inequalities; C3PICuts further reports
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the number of robust cutset and robust 3-partition inequalities generated at integer nodes. Column
endGap provides the gap at the of the algorithm (equal to 0 when solved to optimality) and column
nodes provides the number of nodes searched along the branch-and-bound algorithm. We see that
separating robust 3-partition inequalities can be done in a negligible amount of time. Robust cut-
set inequalities take more time to separate. For all Benders decomposition algorithms, we see that
separating Benders cuts takes large amounts of time. For static and volume routings, CTime and
BTime consume both large and comparable proportions of the total computational times, BTime
being larger, on average. The situation is different for dynamic routing since Table 10 shows that
almost all computational time is spent in the separation of the Benders inequalities.

7 Conclusion

The main scope of the paper is to study the Robust Network Loading Problem. We show what
happens from the theoretical point of view when the flows or the routing policy changes. We also
provide computational results on the capacity formulation of the problem with splittable flows and
the budgeted uncertainty set illustrating what happens, from a computational perspective, when
different routing policies are considered. Results for the compact formulations for the static, affine
and volume problem are discussed, as well. It is the first time that such a comprehensive study is
accomplished.

The theoretical study allowed to characterize the polyhedra corresponding to the capacity formula-
tions of all the considered routing schemes, under two different flows policies, namely splittable and
unsplittable flows. We also underlined the relations that exist among the polyedra corresponding to
different routing/flows policies. We discussed two classes of inequalities (non-negativity constraints
and robust cutset inequalities) that can be proved to be facet defining under the same assumptions
in all the considered settings. So far, these are the only examples of inequalities having this prop-
erty. Then, we introduced a new class of valid inequalities, the robust 3-partition inequalities. We
proved that they are facets for the problem with dynamic routing and splittable flows, but they are
not facets, under the same assumption, for the problem with unsplittable flows or for other routing
schemes. This is the first example of inequalities with this property.

The computational study shed light on the following issues. First, affine routing is hardly tractable,
even using decomposition algorithms, due to the large linear programming formulation. Second,
volume routing, obtained from affine routing by keeping only two non-zero coefficients for each
affine function, behaves extremely well. Namely, our results suggest that volume routing yields
cost reductions close to those obtained using dynamic routing but requires computational times
similar to those obtained for static routing. Volume routing seems to offer the best trade-off between
flexibility and tractability, while requiring as little information as static routing when it comes to
decentralized implementations. While for static routing compact formulations can be as fast as
Benders decomposition algorithms, the situation is different for volume routing for which Benders
decomposition clearly outperforms the compact formulation. Third, we show that dynamic routing
can be used to solve many real-life instances and, although some instances cannot be solved to
optimality in the considered time limit, it performs better than affine routing. Finally, we confirm the
efficiency of robust cutset inequalities and show that the generalization of the 3-partition inequalities
to the robust context further reduces root gaps and computational times.
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