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Abstract

We address the robust counterpart of a classical single machine scheduling problem
by considering a budgeted uncertainty and an ellipsoidal uncertainty. We prove that
the problem is NP-hard for arbitrary ellipsoidal uncertainty sets. Then, a mixed-
integer linear programming reformulations and a second order cone programming
reformulations are provided. We assess the reformulations on randomly generated
instances, comparing them with branch-and-cut algorithms.
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1 Introduction

Scheduling is a rich topic within combinatorial optimization that has wit-
nessed a large amount of research in the past decades, including applications
oriented works, integer programming formulations, polyhedral studies, and
approximation algorithms. In this work, we focus in this work on one of the
simplest scheduling problem, which can be defined as follows. We are given
a set J = {1, . . . , n} of jobs, each having a processing time pj and a weight
wj, and we would like to order the jobs so as to minimize the weighted sum of
their completion times. Formally, letting σ(i) be the position of job i for the

permutation σ and Cj(σ) =
∑σ(j)

i=1 pσ−1(i) be the completion time of job j for
permutation σ, we want to solve the optimization problem

min
σ∈P (n)

∑
j∈J

wjCj(σ), (1)

where P (n) represents the set of permutations of {1, . . . , n}. It is well-known
that Problem (1) can be solved in polynomial time by ordering the jobs ac-
cording to their non-decreasing value of pj/wj, which is known as Smith’s rule
[12].

In practical scheduling problems, the parameters of the problem are usually
subject to variations, and this is particularly true for the vector of process-
ing times p, whose value can be affected by various hazardous events, such
as machine breakdowns, working environment changes, worker performance
instabilities, to cite a few. We address this issue herein through the lens of
min max robust optimization. Specifically, we assume that the uncertainty
over p is characterized by a given convex set U ⊂ Rn, and we study the robust
counterpart of (1) that is defined as

min
σ∈P (n)

max
p∈U

∑
j∈J

wjCj(σ, p), (2)

where Cj(σ, p) =
∑σ(j)

i=1 pσ−1(i) denotes the completion time of job j for per-
mutation σ and the vector of processing times taking value p.

For arbitrary uncertainty sets U , it is well known that Problem (2) is
NP-hard, see [14], even when wj = 1 for each j ∈ J and U is the convex
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hull of two vectors. This is not a surprising result, as it is well-known that ro-
bust combinatorial optimization problems with arbitrary uncertainty sets are,
more often than not, harder than their deterministic counterparts [1]. While
arbitrary uncertainty sets offer little hope for efficient algorithmic solutions,
Bertsimas and Sim [4] have proposed a specific uncertainty set that preserves
the complexity of many robust combinatorial optimization problems. In our
context, their set can be defined as follows. Given two positive vectors p and
p̂ that respectively represent the nominal value of and the deviation of p, and
a positive integer Γ, we consider the set

UΓ ≡

{
p ∈ Rn : pj = pj + δj p̂j, j ∈ J , δ ∈ {0, 1}n, j ∈ J ,

∑
j∈J

δj ≤ Γ

}
.

Following the notations of [6,9], let us denote Problem (2) for set UΓ by
1||UΓ

p |
∑

j wjCj. When wj = 1 for each j ∈ J , which is denoted 1||UΓ
p |
∑

j Cj,

Bougeret et al. [6] have proved that the problem can be solved in O(n5).
Tadayon and Smith [13] have proposed a faster algorithm when p̂j = κpj for
some κ > 0, running in O(n log n). On the negative side, the problem is
NP-hard in the strong sense for arbitrary weights [6].

The hardness result of [6] was the initial motivation for the current work.
Specifically, our first contribution is to provide a preliminary mixed-integer lin-
ear programming study of 1||UΓ

p |
∑

j wjCj. Our second contribution concerns

Problem 1||UΩ
p |
∑

j wjCj, which is defined as Problem (2) when considering
the ellipsoidal uncertainty set defined by the positive definite matrix Σ ∈ Rn×n

UΩ ≡
{
p ∈ Rn : pj = pj + δj p̂j, j ∈ J , ‖Σ−

1
2 δ‖2 ≤ Ω

}
.

We prove that 1||UΩ
p |
∑

j wjCj is NP-hard and assess its numerical difficulty
through mixed-integer second order cone programming reformulations. The
hardness result is provided in Section 2. Section 3 presents our integer pro-
gramming formulations and Section 4 reports our numerical experiments.

2 Complexity of 1||UΩ
p |
∑

j wjCj

Suppose that wj = 1 for each j ∈ J . Given any permutation σ ∈ P (n), notice
that ∑

j∈J

Cj(σ, p) =
∑
j∈J

(n+ 1− σ(j))pj. (3)



To obtain a more compact writing for (3), we define in the following σ∗(j)
= n + 1 − σ(j). We deduce from the definition of UΩ and a well-known
result in convex optimization that maxp∈UΩ

∑
j∈J Cj(σ, p) =

∑
j∈J σ

∗(j)pj +

Ω
√∑

i∈J
∑

j∈J σ
∗(i)σ∗(j)p̂ip̂jΣij. We prove below that problem

min
σ∈P (n)

∑
j∈J

σ∗(j)pj + Ω

√∑
i∈J

∑
j∈J

σ∗(i)σ∗(j)p̂ip̂jΣij (4)

is NP-hard for positive semi-definite matrices Σ. Strictly speaking, Problem
(4) is more general that Problem 1||UΩ

p |
∑

j wjCj because the former allows Σ

to a be a singular matrix, in which case UΩ is not defined. However, one can
show that both problems are equivalent by perturbing any singular matrix by
a very small term to make it positive definite, see [7] for details.

Theorem 2.1 Problem 1||UΩ
p |
∑

j wjCj is NP-hard.

Proof. Let p1 and p2 be two arbitrary vectors in Rn
+. Yang and Yu [14] proved

that the problem

minσ∈P (n) max
p∈{p1,p2}

∑
j∈J

Cj(σ, p) (5)

is NP-hard. We prove below that Problem (5) reduces to (4) by appropriate

choices of p, p̂, Σ and Ω. Specifically, for each j ∈ J , we let pj =
p1
j+p2

j

2
and

p̂j =
p1
j−p2

j

2
, and define Ω = 1 and Σij = 1 for each i, j ∈ J . Consider any

σ ∈ P (n). The objective function of (4) becomes

∑
j∈J

σ∗(j)
p1
j + p2

j

2
+

√√√√∑
i∈J

∑
j∈J

σ∗(i)σ∗(j)
p1
i − p2

i

2

p1
j − p2

j

2

=
∑
j∈J

σ∗(j)
p1
j + p2

j

2
+

√√√√√
∑
j∈J

σ∗(j)
p1
j − p2

j

2

2

=
∑
j∈J

σ∗(j)
p1
j + p2

j

2
+

∣∣∣∣∣∣
∑
j∈J

σ∗(j)
p1
j − p2

j

2

∣∣∣∣∣∣
=
∑
j∈J

σ∗(j)
p1
j + p2

j

2
+ max

∑
j∈J

σ∗(j)
p1
j − p2

j

2
,
∑
j∈J

σ∗(j)
p2
j − p1

j

2


= max

∑
j∈J

σ∗(j)p1
j ,
∑
j∈J

σ∗(j)p2
j

 = max
p∈{p1,p2}

∑
j∈J

Cj(σ, p),



proving the result. 2

3 Integer programming formulations

Next, we introduce two classical mathematical formulations for the problem.

Precedence formulation Let xij be a binary variable equal to 1 if and only
if job i is scheduled prior to job j. We obtain the following formulation:

minimize
x∈{0,1}n2

max
p∈U

∑
i∈J

∑
j∈J

piwjxij

 (6)

s.t. xij + xji = 1, i, j ∈ J , i 6= j (7)

xij + xjk ≤ xik + 1, i, j, k ∈ J (8)

xii = 1, i ∈ J . (9)

Using classical techniques, the objective function (6) can be rewritten as:

UΓ: The objective function (6) is replaced by
∑

i∈J
∑

j∈J piwjxij + Γz0 +∑
i∈J zi, where z0 and zi are n + 1 additional non-negative variables that

satisfy the additional constraints z0 + zi ≥ p̂i
∑

j∈J wjxij for each i ∈ J ,
leading to a mixed-integer linear programming reformulation.

UΩ: The objective function (6) is replaced by
∑

i∈J
∑

j∈J piwjxij +
∥∥x̃TΣx̃

∥∥
2

where x̃i =
∑

j∈J p̂iwjxij, leading to a mixed-integer second order cone
programming reformulation.

Whenever Γ = 1, one readily verifies that there exists an optimal solution
with zj = 0 for each j ∈ J . We obtain the objective function

∑
i∈J
∑

j∈J piwjxij+
z0 combined with the additional constraints z0 ≥ p̂i

∑
j∈J wjxij for each i ∈ J .

Assignment formulation Let yij be a binary variable equal to 1 if and only
if job i is scheduled in position j. We obtain the following formulation:

minimize
y∈{0,1}n2

max
p∈U

∑
i∈J

∑
j∈J

∑
k∈J

j∑
l=1

piwkyijykl

 (10)

s.t.
∑
i∈J

yij = 1, j ∈ J∑
j∈J

yij = 1, i ∈ J



which is a special case of the quadratic assignment problem. We linearize
the products between variables yij and ykl by introducing new real variables
zijkl satisfying zijkl ≤ yij, zijkl ≤ ykl, and zijkl ≥ yij + ykl − 1. Then, the two
classical reformulations described for the precedence formulation can be used
to reformulate the linearized objective function (10).

4 Numerical experiments

We compare the different formulations presented in the previous section for
the two uncertainty sets. We solve the formulation using the aforementioned
reformulation or using branch-and-cut algorithms, which is further detailed
below.

Instances and implementation details The instances were randomly gen-
erated as follows. For each j ∈ J , the processing times pj ,p̂j, and weight wj
have been uniformly generated in the intervals [1, 2n], [1, n] and [1, n], respec-
tively. The algorithms are coded in Julia language, using the package Jump
[8], and solved by Gurobi 6.5. The experiments are carried out on a computer
equipped with a CPU at 2.67 GHz and 125 GB of memory. A time limit of
1800 seconds was imposed for each instance and all solution times are reported
in seconds.

Value-at-risk The values of Γ and Ω have been computed using the proba-
bilistic bounds provided in [5] and [2], respectively. Specifically, these values
ensure that the optimal solution of (2) provides a conservative approximation

to the value-at-risk optimization problem min
σ∈P (n)

VaRε

[
max
p∈U

∑
j∈J

wjCj(σ, p)

]
,

whenever p is any random vector and

VaRε

[
max
p∈U

∑
j∈J

wjCj(σ, p)

]
= inf

{
t : P

(
max
p∈U

∑
j∈J

wjCj(σ, p) ≥ t
)
≤ ε

}
,

see also [10,11] for more details on the relation between UΓ and probabilistic
constraints 4 . Given a probability ε ∈]0, 1[, we obtain (see [2]) that Ω(ε) =√
−2 ln ε while the formula is more complex for Γ, for which we refer to [5].

4 Notice that the less conservative model proposed in [10,11] cannot be used here to reduce
the conservatism of UΓ because all coefficients of p are non-zero in the objective function.



Branch-and-cut algorithm In addition to the reformulations described in
Section 3, we solve the precedence formulation via branch-and-cut algorithms
in the line of [3]. Specifically, the algorithm considers a restricted master
problem formed by constraints (7)–(9), with the additional constraint γ ≥∑

i∈J
∑

j∈J piwjxij, and minimizes variable γ. Then, at each integer node,
we solve the separation problem

z = max
p∈U

(∑
i∈J

∑
j∈J

piwjx
∗
ij

)
, (11)

where x∗ and γ∗ denote the current values of x and γ, respectively. If z > γ∗,
we add the cutting plane γ ≥

∑
i∈J
∑

j∈J p
∗
iwjxij where p∗ ∈ U is an optimal

solution of (11). Notice that for UΓ and UΩ, the separation problem amounts
to sort a vector and to compute an L2-norm, respectively (see [3] for details).

Results Table 1 compares the precedence formulation with the assignment
formulation using dualized reformulations. The table reports the times spent
solving the linear programming relaxation as well as the full problems, and
the root gaps. The results shows that the assignment formulation is weaker
and takes a longer time to be solved than the precedence formulation. Table 2
compares the classical dualization with the specialized reformulation proposed
above when Γ = 1. The table seems to indicate that both formulations behave
similarly with Gurobi. Table 3 compares dualizations with branch-and-cut
algorithms for the two uncertainty sets. It appears that the dualization is
faster for UΓ while the branch-and-cut algorithm outperforms the dualization
for UΩ. Table 4 finally compares the solution costs of the two models for the
same levels of probability. The results show that the approximation of the
value-at-risk provided by UΩ is cheaper than the one provided by UΓ.
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