
HAL Id: hal-01768638
https://hal.science/hal-01768638v1

Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimizing the weighted sum of completion times under
processing time uncertainty

Zacharie Alès, Thi Sang Nguyen, Michael Poss

To cite this version:
Zacharie Alès, Thi Sang Nguyen, Michael Poss. Minimizing the weighted sum of completion times
under processing time uncertainty. Electronic Notes in Discrete Mathematics, 2018, 64, pp.15 - 24.
�10.1016/j.endm.2018.01.003�. �hal-01768638�

https://hal.science/hal-01768638v1
https://hal.archives-ouvertes.fr

Minimizing the weighted sum of completion
times under processing time uncertainty

Zacharie ALES 2

Laboratoire Informatique d’Avignon
University of Avignon

84911 Avignon, France

Thi Sang NGUYEN 3

International Francophone Institute
C3- 144, Xuan Thuy, Hanoi, Vietnam

Michael POSS 1

UMR CNRS 5506 LIRMM, Université de Montpellier, 161 rue Ada, 34392
Montpellier Cedex 5, France

Abstract

We address the robust counterpart of a classical single machine scheduling problem
by considering a budgeted uncertainty and an ellipsoidal uncertainty. We prove that
the problem is NP-hard for arbitrary ellipsoidal uncertainty sets. Then, a mixed-
integer linear programming reformulations and a second order cone programming
reformulations are provided. We assess the reformulations on randomly generated
instances, comparing them with branch-and-cut algorithms.

Keywords: Integer programming, robust optimization, scheduling.

1 Introduction

Scheduling is a rich topic within combinatorial optimization that has wit-
nessed a large amount of research in the past decades, including applications
oriented works, integer programming formulations, polyhedral studies, and
approximation algorithms. In this work, we focus in this work on one of the
simplest scheduling problem, which can be defined as follows. We are given
a set J = {1, . . . , n} of jobs, each having a processing time pj and a weight
wj, and we would like to order the jobs so as to minimize the weighted sum of
their completion times. Formally, letting σ(i) be the position of job i for the

permutation σ and Cj(σ) =
∑σ(j)

i=1 pσ−1(i) be the completion time of job j for
permutation σ, we want to solve the optimization problem

min
σ∈P (n)

∑
j∈J

wjCj(σ), (1)

where P (n) represents the set of permutations of {1, . . . , n}. It is well-known
that Problem (1) can be solved in polynomial time by ordering the jobs ac-
cording to their non-decreasing value of pj/wj, which is known as Smith’s rule
[12].

In practical scheduling problems, the parameters of the problem are usually
subject to variations, and this is particularly true for the vector of process-
ing times p, whose value can be affected by various hazardous events, such
as machine breakdowns, working environment changes, worker performance
instabilities, to cite a few. We address this issue herein through the lens of
min max robust optimization. Specifically, we assume that the uncertainty
over p is characterized by a given convex set U ⊂ Rn, and we study the robust
counterpart of (1) that is defined as

min
σ∈P (n)

max
p∈U

∑
j∈J

wjCj(σ, p), (2)

where Cj(σ, p) =
∑σ(j)

i=1 pσ−1(i) denotes the completion time of job j for per-
mutation σ and the vector of processing times taking value p.

For arbitrary uncertainty sets U , it is well known that Problem (2) is
NP-hard, see [14], even when wj = 1 for each j ∈ J and U is the convex

1 Email: michael.poss@lirmm.fr
2 Email: zacharie.ales@univ-avignon.fr
3 Email: ntsang@ifi.edu.vn

hull of two vectors. This is not a surprising result, as it is well-known that ro-
bust combinatorial optimization problems with arbitrary uncertainty sets are,
more often than not, harder than their deterministic counterparts [1]. While
arbitrary uncertainty sets offer little hope for efficient algorithmic solutions,
Bertsimas and Sim [4] have proposed a specific uncertainty set that preserves
the complexity of many robust combinatorial optimization problems. In our
context, their set can be defined as follows. Given two positive vectors p and
p̂ that respectively represent the nominal value of and the deviation of p, and
a positive integer Γ, we consider the set

UΓ ≡

{
p ∈ Rn : pj = pj + δj p̂j, j ∈ J , δ ∈ {0, 1}n, j ∈ J ,

∑
j∈J

δj ≤ Γ

}
.

Following the notations of [6,9], let us denote Problem (2) for set UΓ by
1||UΓ

p |
∑

j wjCj. When wj = 1 for each j ∈ J , which is denoted 1||UΓ
p |
∑

j Cj,

Bougeret et al. [6] have proved that the problem can be solved in O(n5).
Tadayon and Smith [13] have proposed a faster algorithm when p̂j = κpj for
some κ > 0, running in O(n log n). On the negative side, the problem is
NP-hard in the strong sense for arbitrary weights [6].

The hardness result of [6] was the initial motivation for the current work.
Specifically, our first contribution is to provide a preliminary mixed-integer lin-
ear programming study of 1||UΓ

p |
∑

j wjCj. Our second contribution concerns

Problem 1||UΩ
p |
∑

j wjCj, which is defined as Problem (2) when considering
the ellipsoidal uncertainty set defined by the positive definite matrix Σ ∈ Rn×n

UΩ ≡
{
p ∈ Rn : pj = pj + δj p̂j, j ∈ J , ‖Σ−

1
2 δ‖2 ≤ Ω

}
.

We prove that 1||UΩ
p |
∑

j wjCj is NP-hard and assess its numerical difficulty
through mixed-integer second order cone programming reformulations. The
hardness result is provided in Section 2. Section 3 presents our integer pro-
gramming formulations and Section 4 reports our numerical experiments.

2 Complexity of 1||UΩ
p |
∑

j wjCj

Suppose that wj = 1 for each j ∈ J . Given any permutation σ ∈ P (n), notice
that ∑

j∈J

Cj(σ, p) =
∑
j∈J

(n+ 1− σ(j))pj. (3)

To obtain a more compact writing for (3), we define in the following σ∗(j)
= n + 1 − σ(j). We deduce from the definition of UΩ and a well-known
result in convex optimization that maxp∈UΩ

∑
j∈J Cj(σ, p) =

∑
j∈J σ

∗(j)pj +

Ω
√∑

i∈J
∑

j∈J σ
∗(i)σ∗(j)p̂ip̂jΣij. We prove below that problem

min
σ∈P (n)

∑
j∈J

σ∗(j)pj + Ω

√∑
i∈J

∑
j∈J

σ∗(i)σ∗(j)p̂ip̂jΣij (4)

is NP-hard for positive semi-definite matrices Σ. Strictly speaking, Problem
(4) is more general that Problem 1||UΩ

p |
∑

j wjCj because the former allows Σ

to a be a singular matrix, in which case UΩ is not defined. However, one can
show that both problems are equivalent by perturbing any singular matrix by
a very small term to make it positive definite, see [7] for details.

Theorem 2.1 Problem 1||UΩ
p |
∑

j wjCj is NP-hard.

Proof. Let p1 and p2 be two arbitrary vectors in Rn
+. Yang and Yu [14] proved

that the problem

minσ∈P (n) max
p∈{p1,p2}

∑
j∈J

Cj(σ, p) (5)

is NP-hard. We prove below that Problem (5) reduces to (4) by appropriate

choices of p, p̂, Σ and Ω. Specifically, for each j ∈ J , we let pj =
p1
j+p2

j

2
and

p̂j =
p1
j−p2

j

2
, and define Ω = 1 and Σij = 1 for each i, j ∈ J . Consider any

σ ∈ P (n). The objective function of (4) becomes

∑
j∈J

σ∗(j)
p1
j + p2

j

2
+

√√√√∑
i∈J

∑
j∈J

σ∗(i)σ∗(j)
p1
i − p2

i

2

p1
j − p2

j

2

=
∑
j∈J

σ∗(j)
p1
j + p2

j

2
+

√√√√√
∑
j∈J

σ∗(j)
p1
j − p2

j

2

2

=
∑
j∈J

σ∗(j)
p1
j + p2

j

2
+

∣∣∣∣∣∣
∑
j∈J

σ∗(j)
p1
j − p2

j

2

∣∣∣∣∣∣
=
∑
j∈J

σ∗(j)
p1
j + p2

j

2
+ max

∑
j∈J

σ∗(j)
p1
j − p2

j

2
,
∑
j∈J

σ∗(j)
p2
j − p1

j

2

= max

∑
j∈J

σ∗(j)p1
j ,
∑
j∈J

σ∗(j)p2
j

 = max
p∈{p1,p2}

∑
j∈J

Cj(σ, p),

proving the result. 2

3 Integer programming formulations

Next, we introduce two classical mathematical formulations for the problem.

Precedence formulation Let xij be a binary variable equal to 1 if and only
if job i is scheduled prior to job j. We obtain the following formulation:

minimize
x∈{0,1}n2

max
p∈U

∑
i∈J

∑
j∈J

piwjxij

 (6)

s.t. xij + xji = 1, i, j ∈ J , i 6= j (7)

xij + xjk ≤ xik + 1, i, j, k ∈ J (8)

xii = 1, i ∈ J . (9)

Using classical techniques, the objective function (6) can be rewritten as:

UΓ: The objective function (6) is replaced by
∑

i∈J
∑

j∈J piwjxij + Γz0 +∑
i∈J zi, where z0 and zi are n + 1 additional non-negative variables that

satisfy the additional constraints z0 + zi ≥ p̂i
∑

j∈J wjxij for each i ∈ J ,
leading to a mixed-integer linear programming reformulation.

UΩ: The objective function (6) is replaced by
∑

i∈J
∑

j∈J piwjxij +
∥∥x̃TΣx̃

∥∥
2

where x̃i =
∑

j∈J p̂iwjxij, leading to a mixed-integer second order cone
programming reformulation.

Whenever Γ = 1, one readily verifies that there exists an optimal solution
with zj = 0 for each j ∈ J . We obtain the objective function

∑
i∈J
∑

j∈J piwjxij+
z0 combined with the additional constraints z0 ≥ p̂i

∑
j∈J wjxij for each i ∈ J .

Assignment formulation Let yij be a binary variable equal to 1 if and only
if job i is scheduled in position j. We obtain the following formulation:

minimize
y∈{0,1}n2

max
p∈U

∑
i∈J

∑
j∈J

∑
k∈J

j∑
l=1

piwkyijykl

 (10)

s.t.
∑
i∈J

yij = 1, j ∈ J∑
j∈J

yij = 1, i ∈ J

which is a special case of the quadratic assignment problem. We linearize
the products between variables yij and ykl by introducing new real variables
zijkl satisfying zijkl ≤ yij, zijkl ≤ ykl, and zijkl ≥ yij + ykl − 1. Then, the two
classical reformulations described for the precedence formulation can be used
to reformulate the linearized objective function (10).

4 Numerical experiments

We compare the different formulations presented in the previous section for
the two uncertainty sets. We solve the formulation using the aforementioned
reformulation or using branch-and-cut algorithms, which is further detailed
below.

Instances and implementation details The instances were randomly gen-
erated as follows. For each j ∈ J , the processing times pj ,p̂j, and weight wj
have been uniformly generated in the intervals [1, 2n], [1, n] and [1, n], respec-
tively. The algorithms are coded in Julia language, using the package Jump
[8], and solved by Gurobi 6.5. The experiments are carried out on a computer
equipped with a CPU at 2.67 GHz and 125 GB of memory. A time limit of
1800 seconds was imposed for each instance and all solution times are reported
in seconds.

Value-at-risk The values of Γ and Ω have been computed using the proba-
bilistic bounds provided in [5] and [2], respectively. Specifically, these values
ensure that the optimal solution of (2) provides a conservative approximation

to the value-at-risk optimization problem min
σ∈P (n)

VaRε

[
max
p∈U

∑
j∈J

wjCj(σ, p)

]
,

whenever p is any random vector and

VaRε

[
max
p∈U

∑
j∈J

wjCj(σ, p)

]
= inf

{
t : P

(
max
p∈U

∑
j∈J

wjCj(σ, p) ≥ t
)
≤ ε

}
,

see also [10,11] for more details on the relation between UΓ and probabilistic
constraints 4 . Given a probability ε ∈]0, 1[, we obtain (see [2]) that Ω(ε) =√
−2 ln ε while the formula is more complex for Γ, for which we refer to [5].

4 Notice that the less conservative model proposed in [10,11] cannot be used here to reduce
the conservatism of UΓ because all coefficients of p are non-zero in the objective function.

Branch-and-cut algorithm In addition to the reformulations described in
Section 3, we solve the precedence formulation via branch-and-cut algorithms
in the line of [3]. Specifically, the algorithm considers a restricted master
problem formed by constraints (7)–(9), with the additional constraint γ ≥∑

i∈J
∑

j∈J piwjxij, and minimizes variable γ. Then, at each integer node,
we solve the separation problem

z = max
p∈U

(∑
i∈J

∑
j∈J

piwjx
∗
ij

)
, (11)

where x∗ and γ∗ denote the current values of x and γ, respectively. If z > γ∗,
we add the cutting plane γ ≥

∑
i∈J
∑

j∈J p
∗
iwjxij where p∗ ∈ U is an optimal

solution of (11). Notice that for UΓ and UΩ, the separation problem amounts
to sort a vector and to compute an L2-norm, respectively (see [3] for details).

Results Table 1 compares the precedence formulation with the assignment
formulation using dualized reformulations. The table reports the times spent
solving the linear programming relaxation as well as the full problems, and
the root gaps. The results shows that the assignment formulation is weaker
and takes a longer time to be solved than the precedence formulation. Table 2
compares the classical dualization with the specialized reformulation proposed
above when Γ = 1. The table seems to indicate that both formulations behave
similarly with Gurobi. Table 3 compares dualizations with branch-and-cut
algorithms for the two uncertainty sets. It appears that the dualization is
faster for UΓ while the branch-and-cut algorithm outperforms the dualization
for UΩ. Table 4 finally compares the solution costs of the two models for the
same levels of probability. The results show that the approximation of the
value-at-risk provided by UΩ is cheaper than the one provided by UΓ.

Acknowledgements

We would like to thank Janis Kurtz for providing us with reference [7].

References

[1] H. Aissi, C. Bazgan, and D. Vanderpooten. Min-max and min-max regret
versions of combinatorial optimization problems: A survey. European Journal
of Operational Research, 197(2):427–438, 2009.

n Γ Precedence formulation Assignment formulation

time LP time IP Gap time LP time IP Gap

5 4.12 0.005 0.002 0 2.418 0.0056 100

10 5.226 0.014 0.006 0.294 292.193 0.171 100

15 6.11 0.137 0.0219 0.142 1800 1.144 100

20 6.854 0.670 0.075 0.344 1800 4.437 100

Table 1
Comparison of the precedence formulation and the assignment formulation for UΓ

n Γ Classical dualization Specialized reformulation

50 1 10.8840 5.5348

60 1 17.2279 24.9224

70 1 18.3319 16.0779

80 1 14.5652 15.4387

90 1 26.8292 32.3861

100 1 32.8103 26.9855

110 1 75.4261 89.5468

120 1 86.2200 80.9256

130 1 100.4396 100.9902

140 1 108.2194 135.1086

150 1 145.8819 157.2395

200 1 427.3675 489.7448

Table 2
Comparisons of the solution times of the two formulations under the uncertainty

set UΓ with Γ = 1

[2] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming
problems contaminated with uncertain data. Math. Program., 88(3):411–424,
2000.

[3] D. Bertsimas, I. Dunning, and M. Lubin. Reformulation versus cutting-planes
for robust optimization. Computational Management Science, 13(2):195–217,
2016.

[4] D. Bertsimas and M. Sim. Robust discrete optimization and network flows.
Math. Program., 98(1-3):49–71, 2003.

[5] D. Bertsimas and M. Sim. The price of robustness. Operations Research,
52(1):35–53, 2004.

[6] M. Bougeret, A. Pessoa, and M. Poss. Robust scheduling with budgeted
uncertainty. Working paper, 2016.

n ε UΓ UΩ

Dualization B&C Dualization B&C

0.01 5.3192 17.7836 1756.1289 14.4455

50 0.05 2.6841 10.9062 1600.961 16.725

0.1 2.8941 12.0554 1333.4534 5.0623

0.01 44.5364 81.8779 1800 24.6955

60 0.05 31.7562 73.0690 1800 17.7427

0.1 15.0364 26.9620 1800 16.5177

0.01 36.6147 91.0086 1800 48.3793

70 0.05 13.1456 42.1255 1800 30.1910

0.1 3.8862 24.3906 1800 23.7368

0.01 47.1291 130.2417 1800 81.7222

80 0.05 36.2294 130.1191 1800 52.5677

0.1 8.8290 21.0278 1800 44.6953

0.01 27.2781 181.6671 1800 127.6601

90 0.05 27.7035 181.4539 1800 93.1146

0.1 27.2781 170.6671 1800 73.1298

0.01 55.3856 292.3421 1800 232.755

100 0.05 21.8976 89.7856 1800 99.1304

0.1 19.6913 83.9951 1800 82.1937

0.01 33.1948 253.8273 1800 107.6149

110 0.05 30.1278 186.2178 1800 117.9020

0.1 26.5111 101.226 1800 147.3104

0.01 46.9315 247.8843 1800 226.3862

120 0.05 43.7567 199.9976 1800 115.1185

0.1 44.61242 206.2942 1800 193.9772

0.01 81.1503 331.1503 1800 254.1678

130 0.05 59.3245 299.3246 1800 483.1201

0.1 62.1288 202.1288 1800 220.4472

0.01 110.1452 523.3927 1800 523.0023

140 0.05 103.6665 403.6665 1800 549.0178

0.1 95.1212 431.2345 1800 289.8857

0.01 132.7827 732.617 1800 429.1916

150 0.05 112.4356 639.4243 1800 438.6716

0.1 112.7711 572.771 1800 737.3711

0.01 880.156 1800 1800 1219.8972

200 0.05 511.3178 1800 1800 1395.2189

0.1 580.443 1800 1800 1618.8333

Table 3
Solution times for uncertainty sets UΓ and UΩ

n ε UΓ UΩ

0.01 1.236124004e6 1.0973274217e6

50 0.05 1.3787137e6 1.2001925699e6

0.1 1.2636933399e6 1.1033971647e6

0.01 1.643406456e7 1.47192456036e7

100 0.05 2.010210435e7 1.8023336381e7

0.1 1.898526685e7 1.70664998303e7

0.01 8.0721378208e7 7.18727789599e7

150 0.05 8.441931962e7 7.59088424515e7

0.1 7.31019883599e7 6.54991746364e7

0.01 2.8539763498e8 2.4891821698121e8

200 0.05 2.31240831376e8 2.077655828647e8

0.1 2.5827205682e8 2.372011370971e8

Table 4
Solution costs for models UΓ and UΩ

[7] C. Buchheim. Robuste optimierung, 2014. http://www.mathematik.tu-
dortmund.de/lsv/teaching/robopt/Skript.pdf.

[8] I. Dunning, J. Huchette, and M. Lubin. Jump: A modeling language for
mathematical optimization. CoRR, abs/1508.01982, 2015.

[9] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Annals of
discrete mathematics, 5:287–326, 1979.

[10] M. Poss. Robust combinatorial optimization with variable budgeted
uncertainty. 4OR, 11(1):75–92, 2013.

[11] M. Poss. Robust combinatorial optimization with variable cost uncertainty.
European Journal of Operational Research, 237(3):836–845, 2014.

[12] W. E. Smith. Various optimizers for single-stage production. Naval Research
Logistics Quarterly, 3(1-2):59–66, 1956.

[13] B. Tadayon and J. C. Smith. Algorithms and complexity analysis for robust
single-machine scheduling problems. Journal of Scheduling, 18(6):575–592,
2015.

[14] J. Yang and G. Yu. On the robust single machine scheduling problem. Journal
of Combinatorial Optimization, 6(1):17–33, 2002.

	Introduction
	Complexity of 1||Up|jwjCj
	Integer programming formulations
	Numerical experiments
	References

