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a LIA, Université d’Avignon et des Pays des Vaucluse, Avignon, France
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Abstract

We experiment an alternative routing scheme for the Robust Network Loading prob-
lem. Named k-adaptive, it is based on the fact that the decision-maker chooses k
second-stage solutions and then commits to one of them only after realization of the
uncertainty. This routing scheme, with its corresponding k-partition of the uncer-
tainty set, is dynamically defined under an iterative method to sequentially improve
the solution. The method has an inherent characteristic of multiplying the number
of variables and constraints after each iteration, so that additional measures are
introduced in the solution strategy in order to control its tractability. We compare
our k-adaptive results with the ones obtained through other routing schemes and
also verify the effectiveness of the methods utilized using several realistic instances
from SNDlib.
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1 Introduction

This study is about a robust linear optimization approach for the network load-
ing problem under demand uncertainty (RNL). Given a graph G(V,E) and
a set of point-to-point uncertain demands as commodities origin-destination
flows, we want to define minimum cost capacity installations for the edges (in-
vestment decisions), such that all commodities can be routed simultaneously
on the network (routing decisions defining a routing scheme).

RNL has a intrinsic separation between first stage decisions and second
stage decisions: investment decisions must be made before we observe the
results of the demand uncertainty, while the routing decisions made by the
decision maker have to route whatever demand occurred. One can decide
which route to take based on actual demands and the design of the demand
uncertainty impacts the quality and robustness of the solution.

Uncertainty in demands and the question of how to adapt commodities
flows to different realizations of demand lead to the concept of routing schemes.
Two extremes routing schemes are defined as static (oblivious) and dynamic.
Static routing means that for every commodity the same paths are used with
the same splitting independently of the realization of demand. On the con-
trary, dynamic routing permits full flexibility in re-routing according to de-
mand changes and, in consequence, is potentially less costly.

It has been shown by [9] that the robust network design with dynamic rout-
ing is NP-hard for polyhedral uncertainty. This difficulty has been addressed
in the literature (see [11] and [14]) by restricting the second stage variables
to be affine functions of the uncertain data, in a routing scheme called affine
adaptability that provides intermediary solutions between static and dynamic.
An alternative routing scheme that can be considered, studied in [2], is the k-
adaptive routing, where the decision-maker chooses k second-stage solutions,
and then commits to one of them only after seeing the realization of the un-
certainty. The decision-maker selects a set of a partition of the uncertainty
set among k (possibly non-disjoint) regions (see also [1] and [13]).

The inequalities Static(P ) ≥ kAdapt(P ) ≥ Dynamic(P ), meaning a com-
parison between different routings solutions for the same problem P , hold in
general. On the other hand, in [2], the authors affirm that their k-adaptability
proposal is not comparable to affine adaptability: in some cases affine adapt-
ability fails where k-adaptability succeeds, and vice versa. The quality of
solutions obtained with a k-adaptive approach depends on how the partition
is built. Therefore there is a natural trade-off between the number of sets
of a partition (and the solution time) and how “close” the solution is to the



dynamic solution. Hence, a goal when using k-adaptability is to identify a
partitioning scheme that is near the efficient frontier of this trade-off.

In [3] and [15] the authors independently introduce strategies to re-optimize
the solution based on a new k-partitioning of the uncertainty set. The strate-
gies include the following main steps:

• They analyze the optimal solution to a static version of a problem to gain
insight into which regions of the uncertainty set are restricting the objective
function value.

• The information above is used to construct partitions of the uncertainty
set, leading to a k-adaptable formulation of the problem with potentially
improved objective function value.

• This process is iterative and further improves the objective until a bound
gap or other termination criterion is reached. An equivalent static robust
problem is resolved at each iteration.

The pseudo code below reflects these main steps and defines the algorithm
implemented in our experiment. Each step is further explained in the solution
strategy below.

Algorithm 1 Iterative k-Adaptive routing

Initialize . No partition at first round
repeat

Solve Equivalent Static RNL Problem
Calculate Bound
if Bound gap ≥ Threshold then

Calculate Active Uncertain Parameters
Formulate Nested Partitioning

end if
until Termination Criteria reached

2 Problem definition

We work with two cases: one in which flows are unsplittable, or nonbifurcated,
and must use a single path, and another one in which flows are splittable,
or bifurcated, and can be fractionally split along several paths. The cost
for routing flows is zero. Each commodity q ∈ Q is associated with the
uncertain demand dq, within a given uncertainty set. Specifically the demand
for commodity q ∈ Q varies around a given nominal demand d̄q ≥ 0 with a



maximal possible deviation of d̂q ≥ 0, that is, dq(ξ) = d̄q + ξqd̂q for ξ ∈ Ξ
where Ξ ⊆ [0, 1]q.

We focus on a simplification of RNL where each commodity q can be routed
along a predetermined set of paths P (q). In many practical applications there
are limits on the number of different configurations of paths that can be imple-
mented, so that we exercise the flexibility of routing schemes to mitigate the
static solution conservativeness even with this simplification. It has been used
in several papers, see for instance [11] and [12]. These paths are represented
by δijqp that is equal to 1 if edge ij is contained in path p ∈ P (q), for some
q ∈ Q and is equal to 0 otherwise. They were predetermined as many shortest
paths weighted by edges costs for each commodity.

The formulation contains integer investment decision variables x, where
xij equals the planned installed capacity for edge ij, at a unit cost of cij.
considering only one type of facility. It contains continuous (for bifurcated
flows) or binary (for nonbifurcated flows) routing decision variables yqp, where
yqp equals the fraction of commodity q ∈ Q assigned to path p ∈ P (q).

Given a partition Ξ1 ∪ · · · ∪ ΞK of the uncertainty set Ξ, the k-adaptive
routing scheme restricts the routing functions to piece-wise constant functions
defined as yqp(ξ) = ykqp ⇔ ξ ∈ Ξk. The formulation follows, where Y ≡ {0, 1}
for nonbifurcated flows and Y ≡ [0, 1] ⊂ R for bifurcated flows:

(kRNL) min
∑
ij∈E

cijxij

s.t. ∑
q∈Q

∑
p∈P (q)

(d̄q + d̂qξq)δijqpy
k
qp ≤ xij ∀ij ∈ E,∀ξ ∈ Ξk, (1)

k ∈ {1, ..., K}∑
p∈P (q)

ykqp = 1 ∀q ∈ Q, k ∈ {1, ..., K}

ykqp ∈ Y, xij ≥ 0, xij ∈ Z ∀q ∈ Q,∀p ∈ P (q),

∀ij ∈ E,
k ∈ {1, ..., K}

3 Solution strategy

Dynamic Partitioning In [3], the authors identify that there is a set of ac-
tive uncertain parameters ξ̂ that restricts the objective function. The active
uncertain parameters are the values of the uncertain parameters that corre-



spond to the constraints with minimum slacks. In kRNL the only constraints
that involve uncertainty are constraints (1). We can define the set Ξ̂k, of the
active uncertain parameters for a set Ξk of the partition as follows. Given a
solution (x̃ij, ỹ

k
qp) we define Ξ̂k = {ξ̂ | ξ̂ = arg min

ξ∈Ξk

(x̃ij −
∑

q∈Q
∑

p∈P (q)(d̄
q +

d̂qξq)δijqpỹ
k
qp),∀ij ∈ E}, where only one element will be selected for each con-

straint (1). This shows that we must partition the uncertainty set in such a
way as to guarantee that the uncertain parameters for the active constraints
do not all lie in one set of the partition. The authors use Voronoi diagrams
to further partition each set Ξk of the current partition as follows. They
impose that each element selected of Ξ̂k belongs to a single set of the new
partition. Hence, their approach creates a partition tree, called nested parti-
tioning, where the children of an element represent the sets partitioning the
element.

Bounds We implement two bounds to improve computational tractability.
The first bound provides an estimate of the gap between the k-adaptive so-
lution and a dynamic solution. The set of all active uncertain parameters
generated along the iterations are collected and used to obtain a lower bower
bound on the dynamic solution. A useful property of this bound is that as we
obtain more samples the lower bound improves. The second bound is an upper
bound on the objective value of a subsequent iteration of the algorithm. The
objective values using the nested approach do decrease monotonically through
iterations, and a solution to a k-partition (xij, y

k
qp) at one iteration provides

feasible solution for their children partitions at the next iteration.

Benders Decomposition Dynamic partitioning suffers from an inherent
characteristic of multiplying the number of variables and constraints after
each iteration. This impacts tractability of problem resolution, so that de-
composition techniques are introduced in order to minimize the impact of this
characteristic. For the bifurcated case, we take advantage of the natural stair-
case block structure of the kRNL formulation, where each block is related
to a set of the partition, to implement a Benders based decomposition. We
use a branch-and-cut approach and break the problem into one that designs
edge capacities (master problem defining variables xij, ij ∈ E) and a sequence
of other problems that checks feasibility of the designed edge capacities with
respect to the uncertain demand requirements.

Specifically, given an integer solution x̃ij for the master problem (typi-
cally obtained at an integer node of the branch-and-bound tree of the master



problem), we solve a feasibility subproblem for each element of the partition
k ∈ K. Notice that each subproblem is the following robust linear program

min
∑
ij∈E

sij

s.t.
∑
q∈Q

∑
p∈P (q)

dq(ξ)y
k
qpδ

p
ij − sij ≤ x̃ij,

∀ij ∈ E,∀ξ ∈ Ξk∑
p∈P (q)

ykqp = 1,∀q ∈ Q

sij ≥ 0,

where variables sij are additional slack variables. If the optimal solution cost
of subproblem k is positive, we use the dual optimal solution (π̃ij, µ̃q) to add
a strengthened Benders cut to the master problem:

∑
ij∈E

d π̃ij
m
exij ≤ d

∑
q∈Q−µ̃q
m

e,

where m = min
ij∈E

π̃ij. Non zero values of slack variables complement and round

up master problem solutions and are used as upper bounds for next iteration
of master problem. We finally improve our algorithm by using robust cut set
inequalities (e.g. [5],[8]).

4 Implementation and Results

The purpose of our experiment is two-fold:

• For nonbifurcated flows, we show the cost reductions provided by k-adaptive
routing scheme over static. This is the first attempt to improve static solu-
tions as the integrality of the second stage variables prevents us from enu-
merating the extreme points of Ξ (see [14]) or using classical decomposition
algorithms (see [7]).

• For bifurcated flows, we compare the solution times and costs of k-adaptive
routing scheme with those of static and volume routings.

Instances Network instances (6) available from SNDlib [10] were utilized
with the characteristics given in Table 1a. The uncertainty set is given by



Ξ = {ξ | ξ ∈ [0, 1]|Q|,
∑

q∈Q ξ
q ≤ Γ} and we define two Γs based on the proba-

bilistic bound of 25% and 1% (e.g. [4],[8]).

Algorithms Specification Algorithms were coded in Julia [6] using JuMP
and JuMPeR packages and Gurobi 6.1. All algorithms were run in an Intel
CORE i7 CPU 3770 machine. A limit of 3600 seconds of computing time
was given for each instance and iteration. We run all algorithms according to
configuration Table 1c. The different methods were used to solve the equiva-
lent robust static problem at each iteration, according to formulation kRNL.
Original formulation is formulation kRNL solved using JuMPeR package from
Julia by cutting plane method. For Decomposition method, Benders primal
subproblems were solved through robust deterministic reformulation set using
JuMP lazy callback functions. The subproblem are solved through the the
dual simplex method to leverage the fact that only the right hand side (x̃ij)
of constraints change.

Routing schemes We test bifurcated and nonbifurcated flows routing schemes
according to configuration Table 1b. The volume routing scheme, a variant
of affine routing and only valid for bifurcated flows, was implemented based
on [8], where each path variable was defined as ykqp = y0k

qp + y1k
qpd

q. Full parti-
tioning means k-adaptive routing scheme where at the end of each iteration
we add active uncertain parameters for all capacity constraints (1) of our for-
mulation. Partial partitioning means k-adaptive routing scheme where (i) we
only add active uncertain parameters referent to the set of the partition that
is restricting the objective value and (ii) we restrict to 10 active uncertain
parameters referent to the constraints of this set with minimum slack. We do
this as a trade off between computational tractability and quality of the so-
lution. Static routing scheme solution is provided as a result of first iteration
of our k-adaptive solution. We have predetermined a maximum of 7 paths for
each commodity (if they exist).

Results We present here a subset of our results. Table 2 compares solu-
tions provided by different bifurcated and nonbifurcated flows routing schemes.
There are a number of instances that do not achieve an optimal solution un-
der the time limit, marked as M . Due to our strategy to reduce number of
possible paths, volume routing provides same results as static routing. For
bifurcated flows the results for our instances show that the k-adaptive routing
scheme can provide good intermediary solution between an affine (volume)
and dynamic routing. The cost reduction is higher when the protection level



Instance | V | | E| | Q | Γ0.25 Γ0.01

abilene 12 15 65 6 19

polska 12 18 66 6 19

pdh 11 34 24 4 12

di-yuan 11 42 22 4 11

nobel-us 14 21 91 7 23

atlanta 15 22 105 7 24

(a) Instances Profile

Routing Scheme

Static

Volume (Affine)

Full Partitioning

Partial Partitioning

(b) Routing Schemes

Code Method

C Original formulation

C+C Original formulation + Cut Set

D Decomposition

D+C Decomposition + Cut Set

(c) Method Configura-
tion

Table 1
Problem Set Up

Instance Γ Static BF Volume BF* Full partitioning BF* Partial partitioning BF* Static NBF Full partitioning NBF* Partial partitioning NBF*

abilene
6 3.13e+00 0 0.63 0.63 3.22e+00 2.08 2.08

19 3.69e+00 0 0.54 0.54 3.69e+00 0 0

polska
6 2.61e+02 0 4.12 3.10 2.74e+02 M M

19 2.95e+02 0 1.02 0.97 3.02e+02 M M

pdh
4 8.51e+05 0 0 0 8.69e+05 0 0

12 8.60e+05 0 0 0 8.69e+05 0 0

di-yuan
4 5.24e+06 0 2.10 1.12 5.39e+06 0.20 0.20

11 5.37e+06 0 0 0 5.51e+06 0 0

nobel-us
7 2.94e+05 0 2.47 2.30 3.05e+05 M M

23 3.23e+05 0 0.61 0.61 3.26e+05 M M

atlanta
7 2.00e+05 0 2.01 1.50 2.01e+05 1.50 1.50

24 2.15e+05 0 0.93 0.93 2.17e+05 M M

*Results as percentage of reduction: 100 % . (Static-*)/Static

Table 2
Bifurcated (BF) and Non Bifurcated (NBF) Flows Solution

is higher (25%). Partial partitioning was able to give results comparable to
full partitioning.

Table 3 compares time performance between different methods for bifur-
cated routing schemes. We have limited our algorithms to 3 iterations. Larger
instances are more difficult to solve, specially as the problem grows between
iterations, and decomposition could provide a viable alternative to improve
performance in some instances .

5 Conclusions

We have performed a numerical experiment in a search to provide efficient
routings and less conservative solutions to RNL. The k-adaptive routing scheme
was able to provide improved solutions when compared to affine (volume) and
static solutions. The method utilized does suffer of dimensionality issues so
that special techniques to maintain tractability are fundamental. In fact, the



Routing Scheme and Method Code

Static Partial partitioning

Instance Γ C C+C C D C+C D+C

abilene
6 1.23 1.58 20.30 44.86 20.26 17.09

19 3.78 1.83 134.47 103.28 43.56 31.76

polska
6 70.36 59.34 M M 2422.96 1024.28

19 27.50 24.92 M M 3505.23 1823.27

pdh
4 5.27 3.65 104.58 136.53 69.57 26.65

12 2.14 1.14 32.05 105.29 28.87 44.33

di-yuan
4 1.52 1.40 835.09 283.57 980.32 83.68

11 0.90 0.63 38.84 88.60 15.88 23.92

nobel-us
7 60.78 55.21 624.89 M 476.18 1978.23

23 31.27 31.46 M M 1563.33 2053.49

atlanta
7 20.32 14.89 68.10 93.27 31.85 32.24

24 163.70 138.33 500.27 845.23 458.44 248.84

Table 3
Bifurcated Flows Time Performance (s)

k-adaptive partial partitioning can provide good results, when compared to
full partitioning and have better time performance. Our preliminary results
also showed that Benders decomposition can be efficient to speed up instances.
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