Occurrence of α , ω -dicarboxylic acids and ω -oxoacids in surface waters of the Rhone River and fluxes into the Mediterranean Sea Richard Sempere, Bruno Charrière, Javier Castro-Jimenez, Kimitaka Kawamura, Christos Panagiotopoulos # ▶ To cite this version: Richard Sempere, Bruno Charrière, Javier Castro-Jimenez, Kimitaka Kawamura, Christos Panagiotopoulos. Occurrence of α , ω -dicarboxylic acids and ω -oxoacids in surface waters of the Rhone River and fluxes into the Mediterranean Sea. Progress in Oceanography, 2017, 10.1016/j.pocean.2017.07.002 . hal-01768630v1 # HAL Id: hal-01768630 https://hal.science/hal-01768630v1 Submitted on 17 Apr 2018 (v1), last revised 27 Feb 2019 (v2) **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Occurrence of α , ω -dicarboxylic acids and ω -oxoacids in surface waters of the Rhone River and fluxes into the Mediterranean Sea Richard Sempéré*¹, Bruno Charrière^{1,2}, Javier Castro-Jiménez¹, Kimitaka Kawamura³, Christos Panagiotopoulos¹ ¹Aix-Marseille Univ., Mediterranean Institute of Oceanography (M I O), Marseille, Université de Toulon, CNRS /IRD, France ²CEFREM, Université de Perpignan, CNRS, 66860 Perpignan Cedex, France ³Chubu Institute for Advanced Studies. Chubu University, Kasugai, Aichi 487-8501 Japan *Corresponding author. Tel: +33 4 86 09 05 88 *E-mail address: richard.sempere@mio.osupytheas.fr Keywords: Rhone River, Bifunctional carboxylic acids, Northwestern Mediterranean Sea, anthropogenic signatures, fluxes, biogenic inputs. Progress in Oceanography, MERMEX special issue Decembre 2017 http://dx.doi.org/10.1016/j.pocean.2017.07.002 ### Abstract 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 32 The Mediterranean Sea is a semi-enclosed marine environment surrounded by densely populated areas. This ecosystem is under strong anthropogenic pressure at present. Riverine waters are important input pathways of water-soluble organic compounds that potentially contribute to the dissolved organic carbon (DOC) pool. Here, we report the first ever measurements of bi-functional carboxylic acids such as α, ω-dicarboxylic acids (or diacids) and related polar compounds ω-oxoacids (or ketoacids) (BCAs = α , ω -dicarboxylic acids + ω -oxoacids), along with the DOC levels in Rhone River waters. Surface water samples were collected from February 2006 to June 2009 approximately 50 km above the Rhone River mouth, which is the main supplier of freshwater to the Mediterranean Sea. The BCA concentrations averaged $32.4 \pm 15.3 \,\mu g \, l^{-1}$, and exhibited a wide range of values from 13.2 $\mu g l^{-1}$ (Spring 2008) to 71.2 $\mu g l^{-1}$ (winter 2007). The contribution of carbon from BCAs to the DOC pool (BCA-C) accounted for 0.28 to 1.42% of the DOC. Although no seasonal trend was evident in the studied period, our results showed that the highest BCA concentrations did not always follow high water discharges. α , ω -dicarboxylic acids are the most abundant compound class (20.7 ± 10.6 µgl⁻¹ ¹), which is followed by ω -oxoacids (11.7 \pm 6.2 μ gl⁻¹). The Rhone River was estimated to deliver between 1.37 and 16.4 t d⁻¹ of BCA to the Gulf of Lions. Assuming a mean water discharge of ~ 1790 m³ s⁻¹, a broad estimate suggests a loading of 750-4000 t yr⁻¹ BCAs to the northwestern Mediterranean Sea. Our results indicated that glyoxylic acid (ωC_2) was the most abundant BCA followed by oxalic acid (C₂di) and fumaric acid (trans configuration of unsaturated C₄ diacid). This result indicates that there is a different molecular distribution between the aquatic and atmospheric compartments, including rainwaters and aerosols, for which previous studies highlighted a predominance of oxalic acid, which was followed by malonic and/or succinic acid. Runoff and riverine biological process (rather than photochemical oxidation reactions) are hypothesized to control the BCA occurrence and molecular distribution in the Rhone River and thus their inputs to the coastal NW Mediterranean Sea, although the environmental implications of this stock of BCA are still unknown. ### 1. Introduction 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 59 Low-molecular-weight (LMW: C₂-C₉) α, ω-dicarboxylic acids (diacids) and related polar compounds such as ω-oxoacids (or ketoacids) hereafter called BCAs (bi-functional carboxylic acids =diacids + ketoacids) are ubiquitous water-soluble organic compounds. These chemicals have been detected in a variety of environmental compartments and regions, including atmospheric aerosols and precipitation (Sempéré and Kawamura, 1996; Kawamura and Bikkina, 2016), snowpacks and ice cores (Narukawa et al., 2002; Kawamura et al., 2001), marine sediments (Gogou et al., 2000), lakes (Bertilsson et al., 2000; Brinkmann et al., 2003) and seawaters (Goldstone et al., 2002; Tedetti et al., 2006). BCAs can originate in the atmosphere from several natural processes, such as direct biogenic emission (Kawamura and Gagosian, 1990), ozonolysis, as well as photooxidation of precursor organic compounds (Sempéré, and Kawamura, 2003; Kawamura et al., 2005, Rinaldi et al., 2011). These chemicals can also be released to the atmospheric compartment at important levels by several anthropogenic sources, such as incomplete combustion of fossil fuels and biomass burning (Kawamura et al., 2016). In streams and seawater, BCAs may be produced by phytoplankton photorespiration (Steinberg and Bada, 1984) photochemical degradation of dissolved organic matter (DOM) (Kirk, 1994; Pullin et al., 2004) and microbial degradation of long-chain lipids (Kester, 1963). BCAs can also reach to seawater by diffusion from surface sediments (especially for oxalic acid) (Peltzer and Bada., 1981), inputs of terrigenous material from rivers (Pullin et al., 2004) and wet and dry depositions processes (Sempéré and Kawamura, 2003). Aerosol particles enriched with BCAs can play important roles in several biogeochemical and physical processes, contributing to the radiative forcing at the Earth's surface. The BCA hygroscopic properties make these chemicals capable of acting as cloud condensation nuclei (Kerminen et al., 2000). BCAs also participate in many biological processes in aquatic systems, such as by serving as important intermediates in the tricarboxylic acid and glyoxylate cycles as well the catabolism and anabolism of amino acids (Steinberg and Bada, 1982). In addition, BCAs could represent a non-negligible fraction of LMW DOM and have a potential role in the organic carbon cycle in the natural environment (Tedetti et al., 2006). However, because of analytical difficulties, studies on the BCA occurrence in seawaters are limited to a few measurements performed in coastal waters from the Pacific Ocean where one dicarboxylic acid, i.e., oxalic acid, and two ketocarboxylic acids (glyoxylic and pyruvic) were detected (Steinberg and Bada 1982, and 1984) and the Sargasso Sea and coastal waters off Florida, where ketocarboxylic acids (glyoxylic and pyruvic) and dicarbonyls (methylglyoxal and glyoxal) were measured (Mopper and Stahovec, 1986; Kieber and Mopper, 1987; Zhou, and Mopper, K., 1997). Even fewer data exist for semi-enclosed marine environments, such as the Mediterranean Sea. Only one study reported the surface water concentrations of a homologous series of BCA from samples collected in 2005 at levels of approximately 50 µgl⁻¹ in the northwestern (NW) Mediterranean Sea (Tedetti et al., 2006). The Mediterranean Sea is under strong anthropogenic pressure (e.g. industrial, urban, agriculture, and intense maritime traffic (The MERMEX group, 2011 and references therein, UNEP/MAP, 2012) and it has been reported to be largely impacted by persistent organic pollutants (POPs) and related anthropogenic contaminants, some of which have similar atmospheric sources as BCA, such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) (The MERMEX group, 2011; Berrojalbiz et al., 2011; Guigue et al., 2011, 2014; Castro-Jiménez et al., 2008, 2010, 2012). For example, common anthropogenic sources of BCA and PAHs to the atmosphere are direct combustion processes such as fossil fuels and biomass burning (Kawamura et al., 2013; Castro-Jiménez et al., 2012), as well as photochemical oxidation of precursor aromatic hydrocarbons during long range transport in the atmosphere (Kawamura and Bikkina, 2016 and references therein). In addition to atmospheric deposition processes, riverine inputs are major entry pathways for organic species to the Mediterranean coastal areas, especially the Gulf of Lions (the NW Mediterranean Sea), which is under the influence of the Rhone River (Sempéré et al. 2000; Panagiotopoulos et al., 2012). Although little is known about its chemical composition, riverine DOM influences the bacterioplankton community structure and function (Crump et al., 2009). At a global scale, previous studies showed that riverine DOC, that contains both degraded remains of aged and recent vascular plant materials (Hedges et al., 1997), is modern and younger than particular organic carbon (POC) (Raymond et al., 2007; Spencer et al., 2012). Such apparent degraded biochemical signature of riverine DOM, along with modern radiocarbon ages of the DOC, has been reported in 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
106 107 108 109 110 111 112 113 systems from the Arctic to the Equator (Raymond et al., 2007; Spencer et al., 2012). Compared to the rest of global ocean, the flux of riverine DOM to the Mediterranean Sea constitutes a major source of reduced carbon to the Mediterranean Sea (Sempéré et al., 2000). The occurrence of BCA in riverine surface waters and relative inputs of BCA to Mediterranean waters are poorly characterized, and to best of our knowledge no data exist for the Rhone River which is the main supplier of organic carbon to the whole Mediterranean Sea. The objectives of this study are: (1) to provide the first assessment on the concentrations of α , ω -dicarboxylic acids and ω -oxoacids in surface waters from the Rhone River as well as their relative abundance within the dissolved organic carbon (DOC) pool, (2) to estimate the fluxes of α , ω -dicarboxylic acids and ω -oxoacids from the Rhone River into the Mediterranean Sea and (3) to investigate the possible organic matter and BCA sources in relation to the degradation mechanisms occurring in the area. 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 115 116 117 118 119 120 121 122 123 124 125 126 ## 2. Experimental # 2.1. Sampling area description The Rhone River is 816 km long with a drainage basin area of 100 x 103 km² and average annual discharge of 53 x 10⁹ m³ of water and 2-10 Mt of sediments (Ibanez et al., 1997; Sempéré et al., 2000; Pont et al., 2002; Durrieu de Madron et al., 2003; Rabouille et al., 2008, Eyrolle et al., 2012, Sadaoui et al., 2016). The river stage fluctuates by 2 to 6 m annually, and it has a peak discharge in early spring and late autumn and a minimum in the summer (Pont et al., 2002). The Rhone Delta is divided into two outlets, the Petit Rhone and the Grand Rhone, corresponding to 20% and 80% of the water flow, respectively (Ibanez et al., 1997). The water samples analyzed in this study were collected between June 2006 and June 2009 at the town of Arles (Fig. 1), which is located on the Grand Rhone (47.5 km upstream of the Mediterranean Sea). The collection site was chosen from routinely studied sites over the last two decades by French scientific community (Sempéré et al., 2000; Pont et al., 2002; Sicre et al., 2008; Ollivier et al., 2010; Panagiotopoulos et al., 2012). Water samples were collected at SORA observatory the Compagnie Nationale the station near du Rhone (CNR: http://www.cnr.tm.fr/fr/) gauging station in Arles at 7 m from the right bank and 0.5 m under the surface. During the sampling period, the Rhone water discharge varied from 450 to 3821 m³ s⁻¹ (mean $$144 = 1787 \pm 835 \text{ m}^3 \text{ s}^{-1}$$). **Figure 1.** Rhone River mouth area and sampling location (Arles). Gd Rhone and Pt Rhone indicate "Grand Rhone" and "Petit Rhone", respectively, which are the two functional arms of the river. # 2.2. Sample collection Rhone River water (1-2 L) samples were collected between February 2006 and June 2009 (Table 1) using pre-cleaned glass bottles (rinsed with a 2% HCl solution and baked for 6h at 450°C). The bottles were rinsed three times with the sample, closed with Teflon-lined screw caps, and kept in the dark at 4°C until filtration. The samples were brought to the laboratory on dry ice (< 24 h) and filtered through 0.7-µm filters (GF/F-47 mm precombusted for 6h at 500°C; P<50 mm Hg) to remove the water particulate phase. Prior to filtration, the 0.7-µm GF/F filters were flushed with (100 ml) Milli-Q water and a small volume of the sample to minimize contamination (Yoro et al., 1999). Triplicate sub-samples were collected for DOC analyses and transferred into 10-ml glass ampoules (Wheaton®), which were previously precombusted for 6h at 450°C and rinsed 3 times with sample. Then, 20 µL of H₃PO₄ acid was added as a preservative (final pH~ 2), and the ampoules were flame-sealed. The ampoules were stored in darkness at 4°C until further analyses. The remaining sample was used for dissolved BCA analyses and stored in precombusted (6 h, 450°C) Pyrex bottles with a bactericide HgCl₂ (10 mg l⁻¹), in dark at -4°C. ### 2.3. Diacids and ketoacids determination α , ω-dicarboxylic acids (or diacids) and ω-oxoacids (or ketoacids) (Fig. 2) were determined by the method of Tedetti et al. (2006). Briefly, 100 ml of the sample was first concentrated to 3-4 ml using a rotary evaporator under vacuum. The sample was then transferred into a 25-ml pear-shaped flask, further concentrated by the rotary evaporator, and finally concentrated to almost dryness under a nitrogen stream. A total of 0.25 ml of 14% BF₃/1-butanol was immediately added to the sample, and the flask was sealed with a glass stopper, Teflon tape, and clamp. The organic acids and reagent were mixed under ultrasonication for 1 min and then heated at 100°C for 30 min to derive dibutyl esters for the carboxyl group and dibutoxy acetal for the aldehyde group. The derivatives were extracted with 5 mL of *n*-hexane after adding 3 ml of Milli-Q water and 0.2 ml of acetonitrile. The hexane layer was further washed with Milli-Q water (3x3 ml). The derivatives were dried using a rotary evaporator, and a nitrogen stream, and were finally dissolved in 100 μ l of *n*-hexane. Figure 2. Chemical structure of dicarboxylic acids and ketoacids detected in the Rhone River water. Cn means dicarboxylic acid, and M and F are abbreviations for the unsaturated diacids maleic and fumaric acids, respectively. $Cn\omega$ indicates ω -oxocarboxylic acid with n carbons and Gly means glyoxylic acid. A volume of 1 μl of the n-hexane solution containing the derivatives was injected onto an Agilent 6850 gas chromatograph equipped with a 7683B split/splitless auto-injector that was used in the pulsed splitless mode. The GC was interfaced with an Agilent 5975C mass spectrometer that was configured in the electron impact (EI) mode. Chromatographic separation of dibutyl esters was accomplished with a fused-silica capillary Agilent J&W GC HP-5MS column (Agilent Technologies, 30 m, phase: (5%-phenyl-methylpolysiloxane). Compounds were identified by comparison of the retention times and mass spectra with those of standards and quantified using a spike experiment of diacids in a natural Rhone sample by GC-MS selected ion monitoring mode (SIM) (Tedetti et al., 2006). Samples were analyzed in duplicate, and all identified compounds showed good reproducibility, with relative standard deviation (RSD) less than 10%. Blanks had Milli-Q water as the sample; the blanks for oxalic acid were < 5% of real samples. The blank values were subtracted for all samples. Concentrations of BCAs in water samples were determined using spike experiments. For each spike experiment, a standard solution containing a known amount of the targeted compounds was added to one Rhône sample. From these five experiments we established a linear regression between spikes concentration of BCAs and the measured peak areas. The method responds linearly to the increasing concentrations of BCAs in Rhône water for all the compounds. The slopes of these linear regressions, that are significantly different from zero (r2 = 0.95 and their slopes and y-intercepts are significantly (p<0.01) different from zero (t-test), were used to determine the concentrations of the targeted compounds in unknown water samples. Different ranges of spiked concentrations were used depending on the initial concentration of the compound in seawater. ### 2. 4. DOC determination The DOC was measured using a Shimadzu (Model TOC-V total) carbon analyzer with a quartz combustion column filled with 1.2% Pt on silica pillows (Sempéré et al., 2008). Prior to analysis, samples were sparged for 10 min by CO_2 -free pure air to remove inorganic carbon. A four-point calibration curve was conducted daily using standards prepared by diluting a stock solution of potassium hydrogen phthalate in Milli-Q water. Then, 100 μ l of sample was injected 3–4 times for each sample and standard; the analytical precision of the procedure was an average of 2%. Low carbon water (LCW) and deep sea water reference (DSR) were kindly provided by the Bermuda Biological station and were measured daily to monitor the accuracy and stability of the TOC analysis. The precision of the TOC analysis was determined by the standard deviation of triple or quadruple analysis of the same sample. The accuracy of the instrument and the system blank were determined by analyzing reference materials (D. Hansell, Rosenstiel School of Marine and Atmospheric Science, Miami, USA), including the Deep Atlantic Water (DAW) and low carbon water (LCW) reference materials. The average DOC concentrations in the DAW and LCW reference standards were $45 \pm 2 \mu$ MC, n=24 and $1 \pm 0.3\mu$ M C, n=24, respectively. The nominal analytical precision of the procedure was within 1%. ### 3. Results and discussion # 3.1. Water discharge and DOC concentrations in the Rhone River General information regarding the Rhone River annual discharge as well as the bulk parameter features (water discharge, total suspended matter, organic carbon content of particles, and POM concentrations) during the sampling period (Feb. 2006-June 2009) are described in detail in Panagiotopoulos et al. (2012). Briefly, during the sampling period, water discharges ranged from 450 to 3820 m³ s⁻¹, with peak values occurring during the "flood" events of April 2008 (3244 m³ s⁻¹), May 2008 (3821 m³ s⁻¹), September 2008 (2983 m³ s⁻¹), and October 2008 (3817 m³ s⁻¹) (Table 1). It is worth noting that the events that occurred in May and September 2008 were not related to physical phenomena resulting in floods (i.e., artificial water release from dam); therefore, they were not considered in the annual fluxes estimates (Panagiotopoulos et al., 2012). The DOC concentrations were generally > 1000 μ g Γ ¹, averaging 1640±372 μ g Γ ¹; however, their maximum values did not
always coincide with the high water discharge values, as one would expect (Table 1). Such DOC values are slightly lower, but in good agreement with previous studies carried out in the Rhone River (Sempéré et al., 2000). **Table 1:** The Rhone River water discharge (Q); dissolved organic carbon (DOC); bi-functional carboxylic acids, including the sum of the dicarboxylic acid and ketoacid (BCA) concentrations and fluxes; the fraction of carbon in BCAs (BCA-C) concentrations and the BCA-C/DOC ratios measured in the Rhone River during the period from February 2006 to June 2009. | Date | Q $(m^3 s^{-1})$ | DOC
(µgl ⁻¹) | BCAs (µgl ⁻¹) | BCA's
Fluxes (t d ⁻¹) | BCA-C
(µgl ⁻¹) | BCA-C/DOC
(%) | |--------------|--------------------|-----------------------------|---------------------------|--------------------------------------|-------------------------------|------------------| | 02/12/2006 | 450 | 1596 | 35.19 | 1.37 | 11.8 | 0.74 | | 04/20/2006 | 2200 | 2172 | 34.68 | 6.59 | 11.1 | 0.51 | | 05/05/2007 | 750 | 1752 | 40.95 | 2.65 | 13.1 | 0.75 | | 06/26/2007 | 1910 | 1404 | 26.86 | 4.43 | 8.8 | 0.63 | | 12/11/2007 | 2660 | 2016 | 71.21 | 16.36 | 22.3 | 1.11 | | 01/17/2008 | 2823 | 2388 | 64.87 | 15.82 | 20.1 | 0.84 | | 02/05/2008 | 1835 | 1620 | 42.57 | 6.75 | 13.3 | 0.82 | | 03/11/2008 | 1233 | 1440 | 32.49 | 3.46 | 10.5 | 0.73 | | 03/25/2008 | 1852 | 1488 | 13.26 | 2.12 | 4.1 | 0.28 | | 04/08/2008 | 1458 | 2028 | 37.85 | 4.77 | 28.9 | 1.42 | | 04/22/2008 * | 3244 | 2028 | 54.02 | 15.14 | 16.8 | 0.83 | | 05/30/2008 * | 3821 | 1440 | 25.19 | 8.32 | 8.2 | 0.57 | | 07/01/2008 | 1366 | 960 | 20.93 | 2.47 | 6.9 | 0.72 | | 09/08/2008 * | 2983 | 2592 | 41.69 | 10.74 | 13.8 | 0.53 | | 10/22/2008 | 932 | 1536 | 23.33 | 1.88 | 7.2 | 0.47 | | 11/18/2008 | 1341 | 1692 | 25.65 | 2.97 | 8.1 | 0.48 | | 12/03/2008 | 1444 | 1644 | 20.12 | 2.51 | 6.1 | 0.37 | | 03/10/2009 | 1950 | 1464 | 38.36 | 6.46 | 11.9 | 0.81 | | 03/24/2009 | 1400 | 1440 | 25.31 | 3.06 | 8.1 | 0.56 | | 04/07/2009 | 1600 | 1392 | 14.49 | 2.00 | 4.6 | 0.33 | | 04/22/2009 | 1600 | 1284 | 17.37 | 2.40 | 5.4 | 0.42 | | 05/05/2009 | 1000 | 1320 | 16.26 | 1.40 | 5.2 | 0.39 | | 06/08/2009 | 1250 | 1560 | 22.87 | 2.47 | 7.0 | 0.45 | | Mean | 1787 | 1663 | 32.41 | 5.48 | 11.0 | 0.64 | | SD | 835 | 381 | 15.34 | 4.72 | 6.2 | 0.27 | 243 *Flood event # 3.2. BCA concentrations, BCA/DOC ratios, and fluxes The BCA concentrations (as sum of compounds) exhibited a wide range of values from 13.2 μg Γ^1 (March 2008) to 71.2 μg Γ^1 (December 2007) (Fig. 3). The arithmetic mean concentration is 32.4 μg Γ^1 (sum of concentrations Γ^1 (sum of concentrations Γ^1 (sum of concentrations Γ^1 (sum of concentration of carbon from BCAs to the DOC pool (BCA-C) accounted for 0.28 to 1.42 % of DOC (Table 1, Fig. 4). Individual BCA concentrations are presented in Table 2. The Γ^1 (sum of concentrations are prese \pm 10.6 μ g l⁻¹) and (11.7 \pm 6.2 μ g l⁻¹), respectively and they were detected for the first time in the Rhone River (Table 2). Although no seasonal trend was evident during the study period, the results showed, as for the DOC, that the highest BCA concentrations did not always follow high water discharges (flood events). The highest values were found in winter 2007 and, to a lower extent by the end of winter 2008 (Fig. 3). This is the first study to report a complete series of homologous dicarboxylic and ketoacids in River waters. The Rhone River BCA levels are close to those reported for Mediterranean coastal seawaters (15.9 to 58.3 µg l⁻¹; 1-2.5% DOC; Tedetti et al. 2006) and wet deposition (22.6-1040 μg 1⁻¹; 1-5% of DOC; Sempéré and Kawamura, 1994; Sempéré and Kawamura, 1996). It is worth noting that our BCA-C/DOC values are comparable to those recorded for the water- soluble fraction of marine aerosol particles (2-15% WSOC; Sempéré and Kawamura, 2003). A comparison with other identified organic compounds within the DOC pool for the Rhone River indicated that our BCA concentrations are two to three orders of magnitude higher than the reported values of dissolved water phase PAHs (0.003 – 0.12 μgl⁻¹), one of the most abundant classes of organic contaminant in the marine environment (Bouloubassi and Saliot, 1993, Sicre et al. 2008), and/or the sum of dissolved water phase phthalates (0.61 µg l⁻¹; Paluselli et al., 2017, this issue). Our BCA values are on the same order of magnitude as natural compounds, such as polysaccharides (180-558 µgl⁻¹; Panagiotopoulos et al., 2012) measured in the Rhone River or glycolic acid in the western Mediterranean Sea (24 to 89 µg 1⁻¹; Leboulanger et al., 1994). These BCA levels are close to the concentration of the sum of some mono- (acetic, formic) and dicarboxylic/ketoacids acids (pyruvic, oxalic, malonic and succinic acids: equal to 34 µg l⁻¹) recorded in Bog Lake drain in Germany (Brinkmann et al., 2003), and they fall within the lower range of values reported for pyruvic (75-6680 µg l⁻¹) and oxalic (50-1510 µg l⁻¹) acids in sediment pore waters (Xiao et al., 2010). These compounds accounted for 6.4% and 0.7-18% of the DOC, respectively in Bog Lake drain, Germany (Xiao et al., 2010), and in sediment pore waters in Bosten Lac, China (Xiao et al., 2010), and they agree with the present study. 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 **Table 2.** Concentration ranges and average concentrations of individual dicarboxylic acids and ketoacids collected in the Rhone River (n = 23) during the period from February 2006 to June 2009. | | Concentrations (µgl ⁻¹) | | Relative abundance (%) | | |-------------------------------------|-------------------------------------|-----------------|------------------------|---------------| | | Range | Average | Range | Average | | Oxalic acid (C ₂) | 3.35-23.01 | 9.08±5.54 | 15.9-42.6 | 27.1±7.0 | | Malonic (C ₃) | 1.05-5.98 | 2.56±1.50 | 4.0-16.2 | 8.0-3.2 | | Maleic acid (C ₃) | 0.16-8.04 | 0.86 ± 1.70 | 0.82-11.29 | 2.12±2.65 | | Succinic Acid (C ₄) | 0.88-4.18 | 2.00 ± 0.88 | 4.3-11.9 | 6.4±1.6 | | Fumaric acid (C ₄) | 1.41-9.68 | 4.73±2.16 | 10.3-21.4 | 14.7±2.7 | | Glyoxylic acid (ωC_2) | 3.77-26.43 | 11.37-6.20 | 14.1-50.7 | 35.8±10.3 | | Glutaric acid (C ₅) | 0.11-0.70 | 0.35±0.15 | 0.65-2.11 | 1.13±0.38 | | Adipic acid (C ₆) | 0.15-3.00 | 0.62 ± 0.57 | 0.89-7.33 | 1.98±1.44 | | 4-oxobutanoic acid (ωC_4) | 0.10-2.98 | 0.31 ± 0.58 | 0.29-7.16 | 0.95±1.37 | | Pimelic acid (C ₇) | 0.00-0.23 | 0.07 ± 0.08 | 0-0.81 | 0.19±0.25 | | Suberic acid (C ₈) | 0.05-0.44 | 0.16 ± 0.10 | 0.22-1.08 | 0.49 ± 0.24 | | Azealic acid (C9) | 0.08-0.79 | 0.32 ± 0.18 | 0.46-3.77 | 1.06±0.71 | **Figure 3.** The total BCA concentrations ($\mu g \, l^{-1}$) and water discharge ($m^3 \, s^{-1}$) in the Rhone River during the period from February 2006 to June 2009. During the sampling period (Feb. 2006-June 2009), the Rhone River discharge varied from 450 to 3821 m³ s⁻¹, which corresponds to daily flux levels of the DOC and BCA on the order of 62.1-668 and 1.37-16.36 t d⁻¹, respectively (Table 1). Assuming a mean water discharge during our study of 1787 m³ s⁻¹, a broad estimate suggests that Rhone River provides 750-4000 t yr⁻¹ BCAs to the Mediterranean Sea [load = BCA concentrations (min or max in $\mu g.l^{-1}$) * mean flow rate (Q in m³ yr⁻¹)]. The estimates of BCA concentration ranges are based on 23 daily samples, representative of the Rhone River flow. These fluxes estimates mainly depends of the annual river flow which, on a 10 years study (Sempéré et al., 2000), vary from 1300 to 2000 m³s⁻¹ (our calculation is based on a mean river flow of 1787 m³ s⁻¹ during our study period). The mean annual flux, calculated as the BCAs weighted mean concentration (35.5 μg l⁻¹) multiplied by the mean flow rate (1787 m³ s⁻¹) over the studied period is estimated to 2003 t yr⁻¹. Compared to other identified compounds within the Rhone in the same period of sampling, the above BCAs fluxes are approximately one order of magnitude lower than those of dissolved carbohydrates (10-31 kt yr⁻¹) (Panagiotopoulos et al. 2012). **Figure 4.** Contribution of the BCA-C (BCA-C are the contribution of carbon from BCAs) to the DOC content (%) in
the Rhone River during the period from February 2006 to June 2009. ### 3.3. Molecular composition and relative abundance of BCAs Among diacids, short-chain diacids were found to be the most abundant compound class in the Rhone River. Oxalic acid (C_2) was most abundant ($27.1 \pm 7.0\%$) diacid, followed by fumaric (unsaturated C_4), malonic (C_3) and succinic (C_4) acids. On the other hand, two oxoacids glyoxylic acid (ωC_2) and 4-oxobutanoic acid (ωC_4), were detected, and ωC_2 was always predominant (Table 2, Fig. 5 a, b). Other oxoacids (ωC_3 - ωC_9) were not detected or found at trace levels, and they were not quantified or presented in this study. Short-chain diacids (C_2 - C_4) are more abundant than longer-chain diacids, which is a common trend with aerosol and rainwater molecular distributions (Kawamura and Bikkina, 2016 and references therein). Surprisingly, ωC_2 is usually the most abundant BCA (18 out of 23 followed by oxalic and fumaric acids) (Table 2; Fig. 5 a, b, and 6). Interestingly, such a molecular distribution differs from that usually reported in the atmosphere for which a predominance of oxalic acid is usually more abundant than ωC_2 which is followed either by malonic (C_3) or succinic (C_4) acid according to aging of the aerosols (Sempéré et al., 2003; Kawamura and Bikkina, 2016). Long-chain diacids are generally less abundant, while there are similar proportions of glutaric (C_5), adipic (C_6) and azelaic (C_9) acids. It is of interest that such a predominance of glyoxylic acid over oxalic acid was also reported for a seawater study based on a limited number of coastal seawater samples (Tedetti et al., 2006) (Fig. 7). This lower relative abundance of oxalic acid might also be due to a lower efficiency of photochemical oxidation reactions producing oxalic acid in surface waters than in the aqueous phase of the atmosphere. Indeed hydroxyl radical (•OH) a strong oxidant in natural waters, involved in oxalic acid formation, react preferentially with scavengers such as bromide in sea water (i.e. 93% of •OH react with Br- in sea water (Mopper and Zhou, 1990)) while •OH scavenger in atmospheric waters are dissolved organic compounds, which are poorly characterized (Araki et al., 2013). Moreover Warneck (2003) and Ervens et al. (2003, 2004) evidenced the photochemical production of oxalic acid in marine atmosphere from acetylene, ethylene and aromatic compounds with glyoxal as an intermediate compound of oxidation reactions. Oxalic acid is the main dicarboxylic acid since it represents the end product of the oxidation of several organic chemical compounds (Ervens et al., 2004). **Figure 5.** The Mean BCA's concentration (μgl^{-1}) distributions (a) and Oxalic (C_2) and Glyoxylic acids (ωC_2) concentrations $(\mu g l^{-1})$ (b) in the Rhone River during the period from February 2006 to June 2009. Two aliphatic unsaturated diacids were also detected in Rhone River samples, maleic (cis configuration and) and fumaric acid (trans configuration). The cis/trans ratios are, for most samples, lower than 1 (0.16 \pm 0.2). The highest values were found in December 2006 (0.6) and December 2007 (1.1), indicating a large predominance of fumaric over maleic acid. Notably, the trans configuration is usually more abundant than the cis configuration in the marine atmosphere, whereas the opposite trend was reported for continental samples (Kawamura and Ikushima, 1993; Sempéré and Kawamura, 2003). In the atmosphere, the predominance of the precursor cis configuration has been explained by the photochemical oxidation of benzene or toluene, whose cis configuration is preserved in the structure of the oxidation product. The maleic acid may further be photochemically isomerized to the trans configuration (fumaric acid) in the atmosphere under solar radiation (Kawamura and Ikushima, 1993). These results suggest that the predominance of fumaric acid over maleic acid cannot only be explained by photochemical isomerization of maleic acid. Because the highest relative abundance of fumaric acid was found in December, photochemical oxidation reactions alone cannot explain the variations in the M/F ratios. Fumaric acid is also observed in fungi and lichen, and it can also carried from the land through the Rhone River runoff. Moreover, as an intermediate in the citric acid cycle that is used by prokaryotes and eukaryotes, fumaric acid is formed by the oxidation of succinate with succinate dehydrogenase (Krebs and Weitzman, 1987). Although a strict origin of fumarate is difficult to determine, the biological origin of fumarate cannot be precluded. These data suggest that biological processes largely contribute to the molecular distribution of BCAs in aquatic systems. **Figure 6.** The Relative BCA distribution (%) in the Rhone River during the period from February 2006 to June 2009. **Figure 7**. Mean relative distribution of BCA's in three contrasted environments: Mediterranean Sea waters (Tedetti et al., 2006), Rhone River waters (this study) and Marine aerosols (data from Fu *et al.*, 2013) that are representative of the global Ocean marine aerosols including Mediterranean. 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 ### 3.4. Origin of BCAs in the Rhone River To the best of our knowledge these are the first data on the baseline concentrations and distributions of BCAs in surface river water, yet little is known about the origin and degradation of such compounds in freshwater ecosystems. The present data set does not allow for a comprehensive study of the origin of BCA in the study area, but some hypothesis about their potential sources can be drawn as follows: (1) Atmospheric emissions, formation and deposition. The incomplete combustion of fossil fuels (Kawamura and Kaplan, 1987) and biomass burning (Andreae et al., 1994; Stephanou and Stratigakis, 1993; Novakov and Corrigan 1996) could represent important emissions of BCAs to the atmosphere in an area that is largely urbanized and under a strong anthropogenic pressure such as the Gulf of Lions. This airborne release of BCAs, together with their direct formation (as water-soluble fraction of the aerosols), may generate BCA atmospheric stock subject to dry and wet deposition processes which likely contributed to the BCA stock of riverine DOM (Sempéré and Kawamura, 2003). This is consistent with riverine ¹⁴C-DOC studies demonstrating that some part of riverine DOM may be delivered from anthropogenic aerosols in European rivers (Stubbins et al., 2012). In addition, the high levels of hydrocarbons present in the air-water interphase in the study area (Berrojalbiz et al., 2011; Guigue et al., 2011, 2014; Castro-Jiménez et al., 2012) could support the indirect in situ formation of BCAs and enhance their atmospheric deposition. The oxidation of precursor aromatic hydrocarbons and/or unsaturated molecules (e.g., long chain unsaturated fatty acids) has been reported as a potential source of BCAs in the atmosphere (Kawamura and Bikkina, 2016). Available estimates show that approximately 15 tons of PAHs (dissolved + particle water phase) can be delivered annually by the Rhone River to the NW Mediterranean Sea (Sicre et al., 2008). This PAH riverine input is small when compared with our estimates of BCA fluxes from the Rhone (750-4000 t y⁻¹), suggesting that the indirect BCA formation from PAHs offers a minor contribution to the amounts measured in surface waters. However, we compare fluxes that were estimated with different methodologies and based on measurements performed in different years, resulting in large variability. In addition, there is no information on the potential formation of BCA from PAHs on the photic zone, where photodegradation of potential precursors of BCAs, such as PAHs or aliphatic hydrocarbons, could also occurs. - (2) Riverine DOM from terrestrial origin. The Rhone River, like other rivers, carries the DOM of autochthonous origin, as well as the DOM of terrestrial origin, including the degrading remains of vascular plant materials in aged-soils (Hedges et al., 1997; Raymond and Saiers, 2010) and the DOC derived from recent vascular plant production (Spencer et al., 2012). Such a material can undergo a variety of biogeochemical processes during transport to a coastal area and exhibits an acidic/aldehyde ratio that increases with the diagenetic state (Opsahl and Benner, 1998) although this trend could also be due to abiotic processes, such as adsorption and dissolution of DOM (Hernes et al., 2007). Soil organic matter includes a variety of exudates released from macro- and microorganisms such as simple monocarboxylic and oxalic acids (Schnitzer, 1978) and other organic acids, which are commonly present at a relatively high concentration around plant roots (Drever and Vance, 1994). These substances can easily be leached by runoff and then transported towards river water. Other organic compounds can be decomposed by prokaryotes during river transport producing LMW organic acids, including BCAs. Note that these molecules are known to be readily metabolized by bacteria and their residence time in the soil is likely to be short (a matter of days of less). The concentrations of the molecules are maintained by continuous production from the biota. - (3) Autochthonous production. Although no report has evaluated the local biological production in freshwaters, the autochthonous origin of BCAs in the Rhone cannot be precluded. When considering marine organism metabolism linked to BCA production, it is also well known that tri- and dicarboxylic acids are involved in the citric acid cycle during carbohydrate degradation. Then, prokaryotic and eukaryotic activities are probably one of the sources of BCAs. Microbial degradation of long chain lipids (Kester and Foster, 1963) that have been
reported for marine waters, is also probably a source of BCAs in freshwaters. These observations strongly support an autochthonous production of BCAs in the Rhone River samples. - (4) Photochemical degradation processes of riverine DOM. DOM degradation processes could play an important role in the BCA formation in the water column and may support the production of BCAs in surface waters from the Rhone River. Previous studies indicated that photochemical oxidation of marine DOM by solar irradiation may provide LMW compounds, such as formaldehyde, pyruvate, oxalate and other LMW organic acids (Kirk, 1994; Kieber et al., 1997; Bertilsson and Tranvick, 1998; 2000; Pullin et al., 2004), and these processes are probably the source of BCAs in freshwater. Similarly, Tedetti et al. (2007) reported high production of C₂-C₉ diacids (particularly C₉di) and C₂-C₉ oxooacids from (OH)-induced photochemical oxidation of oleic acid (cis-9octadecenoic) diluted in Milli-Q water in laboratory-controlled conditions. Photochemical oxidative reactions may also occur on terrestrial DOM, which is rich in carboxyl-rich aliphatic molecules (Hetkorn et al., 2006). For instance lignin is susceptible to produce BCAs, as previously shown in the atmosphere (Kawamura and Bikkina, 2016). Direct photochemical reactions can be enhanced through sensitizer production of hydroxyl (OH) radicals, which are the most reactive oxidants in aquatic systems (E=1.83 V) (Zafiriou et al., 1984) and are essentially produced by nitrate and nitrite photolysis with initiation by UV-B and UV-A (315-400 nm) (Vaughan and Blough, 1998; Mack and Bolton, 1999; Zhou and Mopper, 1990). Both the high solar radiation encountered in this area (Sempéré et al., 2015) and the high level of nitrates/nitrites carried by the Rhone River (Moutin et al., 1998) suggest that photochemical oxidation reactions of DOM may induce BCA production in the Rhone River. It is important to note that in situ phytoplanktonic activity and photo-oxidation of biogenic emissions from the ocean producing azelaic acid (C₉di) has already been suggested (Kawamura and Gagosian, 1990). The occurrence of BCAs in the surface waters of the Rhone River is likely driven by a combination of the afore-mentioned sources, and there is a predominant role of DOM in their formation. Further research is needed to ascertain the major BCA sources in the area. 439 440 441 442 443 444 445 446 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 # 4. Summary and conclusion Most diacids and two oxoacids were detected for the first time in riverine surface waters. The concentrations of BCAs are lower than those carbohydrates, but they are two to three orders of magnitude higher than those of representative waterborne anthropogenic compounds such as PAHs or phthalates. The relative abundance of BCAs in surface waters were found to be different from previous results reported for atmospheric samples, and glyoxylic acid was more abundant than oxalic acid in most samples. Different processes might generate these organic acids. The results indicated that the Rhone River delivers significant levels of diacids and oxoacids to the northwestern Mediterranean Sea. A similar situation could be expected for other rivers that drain the Mediterranean Sea, but experimental confirmation is needed. The concentrations of BCAs are lower than those carbohydrates, but they are two to three orders of magnitude higher than those of representative waterborne anthropogenic compounds such as PAHs or phthalates. The presented findings contribute to a better understanding of the sources and production/degradation mechanisms of these molecules and more generally, of organic matter in aquatic systems, although predominance of glyoxylic acid over oxalic acid merits further investigations. The environmental implications and potential impacts of this stock of BCA in Mediterranean waters remain unknown. In addition, the links between BCA and other important anthropogenic compounds (e.g., PAHs) present in the DOC pool in marine and freshwater ecosystems as well as possible transfer of BCAs from surface waters toward lower atmosphere should be further investigated. ### Acknowledgments This study was conducted as part of the WP3/WP4 MERMEX/MISTRALS project and is a contribution to the international SOLAS, IMBER and LOICZ program and supported by Pole Mer Méditerranée. We acknowledge the financial support from Hokkaido University, Sapporo Japan for R. Sempéré. The authors thank to Michel Fornier from SAM-M I O technical platform for sampling and Natascha Schmidt for drawing Figure 1. This research also contributes to the Labex OT-Med (no. ANR-11-LABX-0061) funded by the French Government "Investissements d'Avenir" (ANR) through - 473 the A*MIDEX project (no ANR-11-IDEX-0001-02). The authors are grateful to two anonymous - referees for their useful and constructive comments during the review process. ### 476 References - 477 Andreae, M.O., Anderson, B.E., Blake, D.R., Bradshaw, J.D., Collins, J.E., Gregory, G.L., Sachse, G.W., - Shipham, M.C., 1994. Influence of plumes from biomass burning on atmospheric chemistry over the - equatorial and tropical South Atlantic during CITE 3. J. Geophys. Res. 99, 12793. doi:10.1029/94JD00263 - 480 Arakaki, T., Anastasio, C., Kuroki, Y., Nakajima, H., Okada, K., Kotani, Y., Handa, D., Azechi, S., Kimura, T., - Tsuhako, A., Miyagi, Y., 2013. A General Scavenging Rate Constant for Reaction of Hydroxyl Radical - with Organic Carbon in Atmospheric Waters. Environ. Sci. Technol. 47, 8196–8203. - 483 doi:10.1021/es401927b - Berrojalbiz, N., Dachs, J., Ojeda, M.J., Valle, M.C., Castro-Jiménez, J., Wollgast, J., Ghiani, M., Hanke, G., - 485 Zaldivar, J.M., 2011. Biogeochemical and physical controls on concentrations of polycyclic aromatic - hydrocarbons in water and plankton of the Mediterranean and Black Seas. Global Biogeochem. Cycles 25, - 487 n/a-n/a. doi:10.1029/2010GB003775 - Bertilsson, Stefan, Tranvik, L.J., 1998. Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton> Limnol. Oceanogr. 43, 885–895. doi:10.4319/lo.1998.43.5.0885 - Bertilsson, S., Tranvik, L.J., 2000. Photochemical transformation of dissolved organic matter in lakes. Limnol. Oceanogr. 45, 753–762. doi:10.4319/lo.2000.45.4.0753 - Bouloubassi, I., Saliot, A., 1993. Dissolved, particulate and sedimentary naturally derived polycyclic aromatic hydrocarbons in a coastal environment: geochemical significance. Mar. Chem. 42, 127–143. doi:10.1016/0304-4203(93)90242-G - Brinkmann, T., Hörsch, P., Sartorius, D., Frimmel, F.H., 2003. Photoformation of Low-Molecular-Weight Organic Acids from Brown Water Dissolved Organic Matter. Environ. Sci. Technol. 37, 4190–4198. doi:10.1021/es0263339 - Carlton, A.G., Turpin, B.J., Altieri, K.E., Seitzinger, S., Reff, A., Lim, H.J., Ervens, B., 2007. Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments. Atmos. Environ. 41, 7588–7602. doi:10.1016/j.atmosenv.2007.05.035 - Castro-Jiménez, J., Deviller, G., Ghiani, M., Loos, R., Mariani, G., Skejo, H., Umlauf, G., Wollgast, J., Laugier, T., Héas-Moisan, K., Léauté, F., Munschy, C., Tixier, C., Tronczyński, J., 2008. PCDD/F and PCB multimedia ambient concentrations, congener patterns and occurrence in a Mediterranean coastal lagoon (Etang de Thau, France). Environ. Pollut. 156, 123–135. doi:10.1016/j.envpol.2007.12.019 - Castro-Jiménez, J., Eisenreich, S.J., Ghiani, M., Mariani, G., Skejo, H., Umlauf, G., Wollgast, J., Zaldívar, J.M., Berrojalbiz, N., Reuter, H.I., Dachs, J., 2010. Atmospheric Occurrence and Deposition of Polychlorinated Dibenzo- p -Dioxins and Dibenzofurans (PCDD/Fs) in the Open Mediterranean Sea. Environ. Sci. Technol. 44, 5456–5463. doi:10.1021/es100718n - Castro-Jiménez, J., Mariani, G., Vives, I., Skejo, H., Umlauf, G., Zaldívar, J.M., Dueri, S., Messiaen, G., Laugier, T., 2011. Atmospheric concentrations, occurrence and deposition of persistent organic pollutants (POPs) in a Mediterranean coastal site (Etang de Thau, France). Environ. Pollut. 159, 1948–1956. doi:10.1016/j.envpol.2011.03.012 - Castro-Jiménez, J., Berrojalbiz, N., Wollgast, J., Dachs, J., 2012. Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: Atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. Environ. Pollut. 166, 40–47. doi:10.1016/j.envpol.2012.03.003 - Crump, B.C., Peterson, B.J., Raymond, P.A., Amon, R.M.W., Rinehart, A., McClelland, J.W., Holmes, R.M., 2009. Circumpolar synchrony in big river bacterioplankton. Proc. Natl. Acad. Sci. 106, 21208–21212. doi:10.1073/pnas.0906149106 - Crump, B.C., Peterson, B.J., Raymond, P.A., Amon, R.M.W., Rinehart, A., McClelland, J.W., Holmes, R.M., 2009. Circumpolar synchrony in big river bacterioplankton. Proc. Natl. Acad. Sci. 106, 21208–21212. doi:10.1073/pnas.0906149106 - Drever, J.I., Vance, G.F., 1994. Role of Soil Organic Acids in Mineral Weathering Processes, in: Organic Acids in Geological Processes. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 138–161. doi:10.1007/978-3-642-78356-2-6 - 525 Durrieu De Madron, X., Denis, L., Diaz, F., Garcia, N., Guieu, C., Grenz, C., Loye-Pilot, M.D., Ludwig, W., - Moutin, T., Raimbault, P., Ridame, C., 2003. Nutrients and carbon budgets for the Gulf of Lion during the - 527 Moogli cruises. Oceanol. Acta 26, 421–433. doi:10.1016/S0399-1784(03)00024-0 - 528 Ervens, B., 2003. CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous - 529 phase mechanism and its application. J. Geophys. Res. 108, 4426. doi:10.1029/2002JD002202 - 530 Ervens, B., Feingold, G., Frost, G.J., Kreidenweis, S.M., 2004. A modeling of study of aqueous production of - dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. J. Geophys. Res. D - 532 Atmos. 109, 1–20. doi:10.1029/2003JD004387 - 533 Eyrolle, F., Radakovitch, O., Raimbault, P.,
Charmasson, S., Antonelli, C., Ferrand, E., Aubert, D., Raccasi, G., - Jacquet, S., Gurriaran, R., 2012. Consequences of hydrological events on the delivery of suspended - sediment and associated radionuclides from the Rh??ne River to the Mediterranean Sea. J. Soils Sediments - 536 12, 1479–1495. doi:10.1007/s11368-012-0575-0 - 537 Fu, P., Kawamura, K., Usukura, K., Miura, K., 2013. Dicarboxylic acids, ketocarboxylic acids and glyoxal in the - marine aerosols collected during a round-the-world cruise. Mar. Chem. 148, 22–32. - 539 doi:10.1016/j.marchem.2012.11.002 - 540 Gogou, A., Bouloubassi, I., Stephanou, E.G., 2000. Marine organic geochemistry of the Eastern Mediterranean: - 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments. Mar. Chem. 68, 265–282. - 542 doi:10.1016/S0304-4203(99)00082-1 - 543 Goldstone, J. V., Pullin, M.J., Bertilsson, S., Voelker, B.M., 2002. Reactions of Hydroxyl Radical with Humic - Substances: Bleaching, Mineralization, and Production of Bioavailable Carbon Substrates. Environ. Sci. - 545 Technol. 36, 364–372. doi:10.1021/es0109646 - Gschwend, P., Zafiriou, O.C., Gagosian, R.B., 1980. Volatile organic compounds in seawater from the Peru - 547 upwelling region1,2. Limnol. Oceanogr. 25, 1044–1053. doi:10.4319/lo.1980.25.6.1044 - 548 Guigue, C., Tedetti, M., Ferretto, N., Garcia, N., Méjanelle, L., Goutx, M., 2014. Spatial and seasonal - variabilities of dissolved hydrocarbons in surface waters from the Northwestern Mediterranean Sea: - Results from one year intensive sampling. Sci. Total Environ. 466–467, 650–662. - 551 doi:10.1016/j.scitotenv.2013.07.082 - Guigue, C., Tedetti, M., Giorgi, S., Goutx, M., 2011. Occurrence and distribution of hydrocarbons in the surface - 553 microlayer and subsurface water from the urban coastal marine area off Marseilles, Northwestern - 554 Mediterranean Sea. Mar. Pollut. Bull. 62, 2741–2752. doi:10.1016/j.marpolbul.2011.09.013 - Hansell, D.A., Carlson, C.A., 2001. Marine Dissolved Organic Matter and the Carbon Cycle. Oceanography 14, 41–49. doi:10.5670/oceanog.2001.05 - 557 Hedges, J.I., Keil, R.G., Benner, R., 1997. What happens to terrestrial organic matter in the ocean? Org. Geochem. 27, 195–212. doi:10.1016/S0146-6380(97)00066-1 - Hedges, J.I., Clark, W.A., Come, G.L., 1988. Fluxes and reactivities of organic matter in a coastal marine bay. Limnol. Oceanogr. 33, 1137–1152. doi:10.4319/lo.1988.33.5.1137 - Hertkorn, N., Benner, R., Frommberger, M., Schmitt-Kopplin, P., Witt, M., Kaiser, K., Kettrup, A., Hedges, J.I., - 562 2006. Characterization of a major refractory component of marine dissolved organic matter. Geochim. - 563 Cosmochim. Acta 70, 2990–3010. doi:10.1016/j.gca.2006.03.021 - 564 Ibanez, C., Pont, D., Prat, N., 1997. Characterization of the Ebre and Rhone estuaries: A basis for defining and classifying salt-wedge estuaries. Limnol. Oceanogr. 42, 89–101. doi:10.4319/lo.1997.42.1.0089 - Kawamura, K., Gagosian, R.B., 1990. Mid-chain ketocarboxylic acids in the remote marine atmosphere: - Distribution patterns and possible formation mechanisms. J. Atmos. Chem. 11, 107–122. - 568 doi:10.1007/BF00053670 - Kawamura, K., Tachibana, E., Okuzawa, K., Aggarwal, S.G., Kanaya, Y., Wang, Z.F., 2013. High abundances - of water-soluble dicarboxylic acids, ketocarboxylic acids and α -dicarbonyls in the mountaintop aerosols - over the North China Plain during wheat burning season. Atmos. Chem. Phys. 13, 8285–8302. - 572 doi:10.5194/acp-13-8285-2013 - Kawamura, K., Yokoyama, K., Fujii, Y., Watanabe, O., 2001. A Greenland ice core record of low molecular - weight dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls: A trend from Little Ice Age to the - 575 present (1540 to 1989 A.D.). J. Geophys. Res. Atmos. 106, 1331–1345. doi:10.1029/2000JD900465 - Kawamura, K., Imai, Y., Barrie, L., 2005. Photochemical production and loss of organic acids in high Arctic - aerosols during long-range transport and polar sunrise ozone depletion events. Atmos. Environ. 39, 599– - 578 614. doi:10.1016/j.atmosenv.2004.10.020 - Kawamura, K., Bikkina, S., 2016. A review of dicarboxylic acids and related compounds in atmospheric - 580 aerosols: Molecular distributions, sources and transformation. Atmos. Res. 170, 140–160. - 581 doi:10.1016/j.atmosres.2015.11.018 - 582 Kawamura, K., Handa, K., Tsunogai, S., 1990. Oxocarboxylic acid in the sediment trap and sediment samples - from the North Pacific: Implication for the transport of photooxidation products to deep-sea environments. - 584 Geochem, J. 24, 217–222. - Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban - atmosphere. Environ. Sci. Technol. 27, 2227–2235. doi:10.1021/es00047a033 - Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban - 588 atmosphere. Environ. Sci. Technol. 27, 2227–2235. doi:10.1021/es00047a033 - Kawamura, K., Kaplan, I.R., 1987. Dicarboxylic acids generated by thermal alteration of kerogen and humic - 590 acids, Geochim. Cosmochim. Acta 51, 3201–3207. doi:10.1016/0016-7037(87)90128-1 - Kerminen, V.M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., Meriläinen, J., 2000. Low-molecular- - 592 weight dicarboxylic acids in an urban and rural atmosphere. J. Aerosol Sci. 31, 349–362. - 593 doi:10.1016/S0021-8502(99)00063-4 - Kester, A.S., Foster, J.W., 1963. Diterminal Oxidation of Long-Chain Alkanes By Bacteria. J. Bacteriol. 85, - 595 859–869. - Kieber, D.J., Mopper, K., 1987. Photochemical formation of glyoxylic and pyruvic acids in seawater. Mar. - 597 Chem. 21, 135–149. doi:10.1016/0304-4203(87)90034-X - 598 Kieber, R.J., Hydro, L.H., Seaton, P.J., 1997. Photooxidation of triglycerides and fatty acids in seawater: - Implication toward the formation of marine humic substances. Limnol. Oceanogr. 42, 1454–1462. - doi:10.4319/lo.1997.42.6.1454 - Kirk, J.T.O., 1994. Optics of UV-B radiation in natural water. Arch. Hydrobiol. Beih. Ergebn. Limnol. 43, 1–16. - 602 Krebs, H.A., Weitzman, P.D., 1987. Krebs' citric acid cycle: half a century and still turning. London: - 603 Biochemical Society. p. 25. ISBN 0-904498-22-0. - Leboulanger, C., Oriol, L., Jupin, H., Desolas-gros, C., 1997. Diel variability of glycolate in the eastern tropical - Atlantic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 44, 2131–2139. doi:10.1016/S0967- - 606 0637(97)00090-3 - Mack, J., Bolton, J.R., 1999. Photochemistry of nitrite and nitrate in aqueous solution: a review. J. Photochem. - 608 Photobiol. A Chem. 128, 1–13. doi:10.1016/S1010-6030(99)00155-0 - Mopper, K., Kieber, D.J., Stubbins, A., 2015. Marine Photochemistry of Organic Matter, in: Biogeochemistry of - 610 Marine Dissolved Organic Matter. Elsevier, pp. 389–450. doi:10.1016/B978-0-12-405940-5.00008-X - Mopper, K., Lindroth, P., 1982. Diel and depth variations in dissolved free amino acids and ammonium in the - Baltic Sea determined by shipboard HPLC analysis1. Limnol. Oceanogr. 27, 336–347. - doi:10.4319/lo.1982.27.2.0336 - 614 Mopper, K., Stahovec, W.L., 1986. Sources and sinks of low molecular weight organic carbonyl compounds in - seawater. Mar. Chem. 19, 305–321. doi:10.1016/0304-4203(86)90052-6 - Mopper, K., Zhou, X., 1990. Hydroxyl Radical Photoproduction in the Sea and Its Potential Impact on Marine - Processes. Science (80). 250, 661–664. doi:10.1126/science.250.4981.661 - Moutin, T., Raimbault, P., Golterman, H.L., Coste, B., 1998. The input of nutrients by the Rhone River into the - Mediterranean Sea: recent observations and comparison with earlier data. Hydrologica 373/374, 237–246. - 620 doi:10.1023/A:1017020818701 - Narukawa, M., Kawamura, K., Li, S.-M., Bottenheim, J., 2002. Dicarboxylic acids in the Arctic aerosols and - snowpacks collected during ALERT 2000. Atmos. Environ. 36, 2491–2499. doi:10.1016/S1352- - 623 2310(02)00126-7 - Novakov, T., Corrigan, C.E., 1996. Cloud condensation nucleus activity of the organic component of biomass - smoke particles. Geophys. Res. Lett. 23, 2141–2144. doi:10.1029/96GL01971 - Ollivier, P., Hamelin, B., Radakovitch, O., 2010. Seasonal variations of physical and chemical erosion: A three- - year survey of the Rhone River (France). Geochim. Cosmochim. Acta 74, 907–927. - 628 doi:10.1016/j.gca.2009.10.037 - 629 Opsahl, S., Benner, R., 1998. Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol. - 630 Oceanogr. 43, 1297–1304. doi:10.4319/lo.1998.43.6.1297 - 631 Paluselli, A., Y. Aminot, Net, S., Galgani, F., Sempéré, R. Determination of phthalates in seawater samples, - application to Mediterranean Sea. Submitted. - 633 Panagiotopoulos, C., Sempéré, R., Para, J., Raimbault, P., Rabouille, C., Charrière, B., 2012. The composition - and flux of particulate and dissolved carbohydrates from the Rhone River into the Mediterranean Sea. - Biogeosciences 9. doi:10.5194/bg-9-1827-2012 - Peltzer, E.T., Bada, J.L., 1981. Low molecular weight α -hydroxy carboxylic and dicarboxylic acids in reducing - 637 marine sediments. Geochim. Cosmochim. Acta 45, 1847–1854. doi:10.1016/0016-7037(81)90015-6 - 638 Pont, D., Simonnet, J.-P., Walter, A.V., 2002. Medium-term Changes in Suspended Sediment Delivery to the - Ocean: Consequences of Catchment Heterogeneity and River Management (Rhone River, France). Estuar. - 640 Coast. Shelf Sci. 54, 1–18. doi:10.1006/ecss.2001.0829 - Pullin, M.J., Bertilsson, S., Goldstone, J. V., Voelker, B.M., 2004. Effects of sunlight and hydroxyl radical on - dissolved organic matter: Bacterial growth efficiency and production of carboxylic acids and other - 643 substrates. Limnol. Oceanogr. 49, 2011–2022. doi:10.4319/lo.2004.49.6.2011 - Rabouille, C., Conley, D.J., Dai, M.H., Cai, W.-J., Chen, C.T.A., Lansard, B., Green, R., Yin, K., Harrison, P.J., - Dagg, M., McKee, B., 2008. Comparison of hypoxia among four river-dominated ocean margins: The - Changjiang (Yangtze), Mississippi, Pearl, and Rhone rivers. Cont. Shelf Res. 28, 1527–1537. -
doi:10.1016/j.csr.2008.01.020 - 648 Raymond, P.A., McClelland, J.W., Holmes, R.M., Zhulidov, A. V., Mull, K., Peterson, B.J., Striegl, R.G., - Aiken, G.R., Gurtovaya, T.Y., 2007. Flux and age of dissolved organic carbon exported to the Arctic - Ocean: A carbon isotopic study of the five largest arctic rivers. Global Biogeochem. Cycles 21, n/a-n/a. - doi:10.1029/2007GB002934 - 652 Raymond, P.A., Saiers, J.E., 2010. Event controlled DOC export from forested watersheds. Biogeochemistry - 653 100, 197–209. doi:10.1007/s10533-010-9416-7 - 654 Remington, S., Krusche, A., Richey, J., 2011. Effects of DOM photochemistry on bacterial metabolism and CO2 - evasion during falling water in a humic and a whitewater river in the Brazilian Amazon. Biogeochemistry - 656 105, 185–200. doi:10.1007/s10533-010-9565-8 - 657 Rinaldi, M., Decesari, S., Carbone, C., Finessi, E., Fuzzi, S., Ceburnis, D., O'Dowd, C.D., Sciare, J., Burrows, - 58 J.P., Vrekoussis, M., Ervens, B., Tsigaridis, K., Facchini, M.C., 2011. Evidence of a natural marine source - of oxalic acid and a possible link to glyoxal. J. Geophys. Res. 116, D16204. doi:10.1029/2011JD015659 - Sadaoui, M., Ludwig, W., Bourrin, F., Raimbault, P., 2016. Controls, budgets and variability of riverine - sediment fluxes to the Gulf of Lions (NW Mediterranean Sea). J. Hydrol. 540, 1002–1015. - doi:10.1016/j.jhydrol.2016.07.012 - Schnitzer, M., 1978. Chapter 1 Humic Substances: Chemistry and Reactions. pp. 1-64. doi:10.1016/S0166- - 664 2481(08)70016-3 - Sempéré, R., Para, J., Tedetti, M., Charrière, B., Mallet, M., 2015. Variability of Solar Radiation and CDOM in - 666 Surface Coastal Waters of the Northwestern Mediterranean Sea. Photochem. Photobiol. - doi:10.1111/php.12434 - 668 Sempéré, R., Tedetti, M., Panagiotopoulos, C., Charrière, B., Van Wambeke, F., 2008. Distribution and bacterial - availability of dissolved neutral sugars in the South East Pacific. Biogeosciences Discuss. 5, 725–750. - 670 doi:10.5194/bgd-5-725-2008 - 671 Sempéré, R., Charrière, B., Van Wambeke, F., Cauwet, G., 2000. Carbon inputs of the Rhone River to the - Mediterranean Sea: Biogeochemical implications. Global Biogeochem. Cycles 14, 669–681. - doi:10.1029/1999GB900069 - 674 Sempére, R., Kawamura, K., 1994. Comparative distributions of dicarboxylic acids and related polar compounds - in snow, rain and aerosols from urban atmosphere. Atmos. Environ. 28, 449–459. doi:10.1016/1352- - 676 2310(94)90123-6 - 677 Sempéré, R., Kawamura, K., 2003. Trans-hemispheric contribution of C 2 -C 10 α, ω-dicarboxylic acids, and - related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to - photochemical oxidation reactions. Global Biogeochem. Cycles 17, n/a-n/a. doi:10.1029/2002GB001980 - 680 Sempéré, R., Kawamura, K., 1996. Low molecular weight dicarboxylic acids and related polar compounds in the 681 remote marine rain samples collected from Western Pacific. Atmos. Environ. 30, 1609–1619. - 682 doi:10.1016/1352-2310(95)00436-X - 683 Sicre, M.-A., Fernandes, M.B., Pont, D., 2008. Poly-aromatic hydrocarbon (PAH) inputs from the Rhone River - to the Mediterranean Sea in relation with the hydrological cycle: Impact of floods. Mar. Pollut. Bull. 56, - 685 1935–1942. doi:10.1016/j.marpolbul.2008.07.015 - 686 Spencer, R.G.M., Butler, K.D., Aiken, G.R., 2012. Dissolved organic carbon and chromophoric dissolved - organic matter properties of rivers in the USA. J. Geophys. Res. Biogeosciences 117, n/a-n/a. - 688 doi:10.1029/2011JG001928 - Steinberg, S.M., Bada, J.L., 1984. Oxalic, glyoxalic and pyruvic acids in eastern Pacific Ocean waters. J. Mar. - 690 Res. 42, 697–708. doi:10.1357/002224084788506068 - 691 Steinberg, S.M., Bada, J.L., 1982. The determination of α-keto acids and oxalic acid in sea-water by reversed - phase liquid chromatographic separation of fluorescent quinoxilinol derivatives. Mar. Chem. 11, 299–306. - 693 doi:10.1016/0304-4203(82)90027-5 - 694 Stephanou, E.G., Stratigakis, N., 1993. Oxocarboxylic and .alpha.,.omega.-dicarboxylic acids: photooxidation - products of biogenic unsaturated fatty acids present in urban aerosols. Environ. Sci. Technol. 27, 1403– - 696 1407. doi:10.1021/es00044a016 - 697 Stubbins, A., Hood, E., Raymond, P.A., Aiken, G.R., Sleighter, R.L., Hernes, P.J., Butman, D., Hatcher, P.G., - Striegl, R.G., Schuster, P., Abdulla, H.A.N., Vermilyea, A.W., Scott, D.T., Spencer, R.G.M., 2012. - Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nat. Geosci. 5, 198– - 700 201. doi:10.1038/ngeo1403 - 701 Tedetti, M., Kawamura, K., Narukawa, M., Joux, F., Charrière, B., Sempéré, R., 2007. Hydroxyl radical-induced - 702 photochemical formation of dicarboxylic acids from unsaturated fatty acid (oleic acid) in aqueous solution. - J. Photochem. Photobiol. A Chem. 188. doi:10.1016/j.jphotochem.2006.11.029 - 704 Tedetti, M., Kawamura, K., Charrière, B., Chevalier, N., Sempéré, R., 2006. Determination of Low Molecular - Weight Dicarboxylic and Ketocarboxylic Acids in Seawater Samples. Anal. Chem. 78, 6012–6018. - 706 doi:10.1021/ac052226w - 707 The Mermex group: Durrieu de Madron, X., Guieu, C., Sempéré, R., Conan, P., Cossa, D., D'Ortenzio, F., - Estournel, C., Gazeau, F., Rabouille, C., Stemmann, L., Bonnet, S., Diaz, F., Koubbi, P., Radakovitch, O., - Babin, M., Baklouti, M., Bancon-Montigny, C., Belviso, S., Bensoussan, N., Bonsang, B., Bouloubassi, I., - 710 Brunet, C., Cadiou, J.-F., Carlotti, F., Chami, M., Charmasson, S., Charrière, B., Dachs, J., Doxaran, D., - Dutay, J.-C., Elbaz-Poulichet, F., Eléaume, M., Eyrolles, F., Fernandez, C., Fowler, S., Francour, P., - Gaertner, J.C., Galzin, R., Gasparini, S., Ghiglione, J.-F., Gonzalez, J.-L., Goyet, C., Guidi, L., Guizien, - K., Heimbürger, L.-E., Jacquet, S.H.M., Jeffrey, W.H., Joux, F., Le Hir, P., Leblanc, K., Lefèvre, D., - Lejeusne, C., Lemé, R., Loÿe-Pilot, M.-D., Mallet, M., Méjanelle, L., Mélin, F., Mellon, C., Mérigot, B., - Merle, P.-L., Migon, C., Miller, W.L., Mortier, L., Mostajir, B., Mousseau, L., Moutin, T., Para, J., Pérez, - T., Petrenko, A., Poggiale, J.-C., Prieur, L., Pujo-Pay, M., Pulido-Villena, Raimbault, P., Rees, A.P., - Ridame, C., Rontani, J.-F., Ruiz Pino, D., Sicre, M.A., Taillandier, V., Tamburini, C., Tanaka, T., Taupier- - Letage, I., Tedetti, M., Testor, P., Thébault, H., Thouvenin, B., Touratier, F., Tronczynski, J., Ulses, C., - 719 Van Wambeke, F., Vantrepotte, V., Vaz, S., Verney, R., 2011. Marine ecosystems' responses to climatic - and anthropogenic forcings in the Mediterranean. Prog. Oceanogr. 91. doi:10.1016/j.pocean.2011.02.003 - 721 UNEP/MAP, 2012. State of the Mediterranean Marine and Coastal Environment, UNEP/MAP Barcelona - 722 Convention, Athens, 2012. - Vaughan, P.P., Blough, N. V., 1998. Photochemical Formation of Hydroxyl Radical by Constituents of Natural Waters. Environ. Sci. Technol. 32, 2947–2953. doi:10.1021/es9710417 - Warneck, P., 2003. In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmos. Environ. 37, 2423–2427. doi:10.1016/S1352-2310(03)00136-5 - Xiao, M., Wu, F., Liao, H., Li, W., Lee, X., Huang, R., 2010. Characteristics and distribution of low molecular weight organic acids in the sediment porewaters in Bosten Lake, China. J. Environ. Sci. 22, 328–337. doi:10.1016/S1001-0742(09)60112-1 - Yoro, S.C., Panagiotopoulos, C., Sempéré, R., 1999. Dissolved organic carbon contamination induced by filters and storage bottles. Water Res. 33, 1956–1959. doi:10.1016/S - Zafiriou, O.C., Joussot-Dubien, J., Zepp, R.G., Zika, R.G., 1984. Photochemistry of natural waters. Environ. Sci. Technol. 18, 358A-371A. doi:10.1021/es00130a711 - Zhou, X., Mopper, K., 1997. Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange. Mar. Chem. 56, 201–213. doi:10.1016/S0304-4203(96)00076-X - Zhou, X., Mopper, K., 1990. Determination of photochemically produced hydroxyl radicals in seawater and freshwater. Mar. Chem. 30, 71–88. doi:10.1016/0304-4203(90)90062-H