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We prove a Liouville property for uniformly almost localized (up to translations) H 1 -global solutions of the Camassa-Holm equation with a momentum density that is a non negative finite measure. More precisely, we show that such solution has to be a peakon. As a consequence, we prove that peakons are asymptotically stable in the class of H 1 -functions with a momentum density that belongs to M + (R). Finally, we also get an asymptotic stability result for train of peakons.

Introduction

The Camassa-Holm equation (C-H), (1.1)

u t -u txx = -3uu x + 2u x u xx + uu xxx , (t, x) ∈ R 2 ,
can be derived as a model for the propagation of unidirectional shalow water waves over a flat bottom by writing the Green-Naghdi equations in Lie-Poisson Hamiltonian form and then making an asymptotic expansion which keeps the Hamiltonian structure ( [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], [START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF]). A rigorous derivation of the Camassa-Holm equation from the full water waves problem is obtained in [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF] and [START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi Equations Arch[END_REF]. (C-H) is completely integrable (see [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], [START_REF] Camassa | An new integrable shallow water equation[END_REF], [START_REF] Constantin | On the scattering problem for the Camassa-Holm equation[END_REF] and [START_REF] Constantin | Inverse scattering transform for the Camassa-Holm equation[END_REF]) and enjoys also a geometrical derivation (cf. [START_REF] Kolev | Lie groups and mechanics: an introduction[END_REF], [START_REF] Kolev | Poisson brackets in hydrodynamics[END_REF]). It possesses among others the following invariants (1.2)

M (v) = R (v-v xx ) dx, E(v) = R v 2 (x)+v 2 x (x) dx and F (v) = R v 3 (x)+v(x)v 2 x (x) dx
and can be written in Hamiltonian form as

(1.3) ∂ t E ′ (u) = -∂ x F ′ (u) .
It is also worth noticing that (1.5) can be rewritted as (1.4) y t + uy x + 2u x y = 0 which is a transport equation for the momentum density y = u -u xx . Camassa and Holm [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] exhibited peaked solitary waves solutions to (C-H) that are given by

u(t, x) = ϕ c (x -ct) = cϕ(x -ct) = ce -|x-ct| , c ∈ R * .
They are called peakon whenever c > 0 and antipeakon whenever c < 0. Note that the initial value problem associated with (C-H) has to be rewriten as (1.5)

u t + uu x + (1 -∂ 2 x ) -1 ∂ x (u 2 + u 2 x /2) = 0 u(0) = u 0 ,
to give a meaning to these solutions.

Their stability seems not to enter the general framework developed for instance in [START_REF] Benjamin | The stability of solitary waves[END_REF], [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF], especially because of the non smoothness of the peakon. However, Constantin and Strauss [START_REF] Constantin | Stability of peakons[END_REF] succeeded in proving their orbital stability by a direct approach. This approach is based on two optimal inequalities: one involving E(uϕ) and max R u and the other one involving E(u), F (u) and max R u.

In a series of papers (see for instance [START_REF] Martel | Asymptotic stability of solitons for subcritical generalized KdV equations[END_REF], [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF]) Martel and Merle developped an approach, based on a Liouville property for uniformly almost localized global solutions close to the solitary waves, to prove the asymptotic stability for a wide class of dispersive equations. The Liouville property is based on the study of a dual equation related to the linearized equation around the solitary waves. Such approach to prove the Liouville property seems not to be applicable for the C-H equation. Indeed, first working with the dual problem requires more regularity on the solution and, in contrast to KdV-like equations, one cannot require the asymptotic objects of the C-H equation to be smooth (see the peakon !). Second, for the same reasons for which there is no proof of the orbital stability by the spectral method, it seems very difficult to get a non negative property on the underlying linear operator.

In this paper we prove a Liouville result for uniformly almost localized (up to translations) global solutions to the CH equation and then follows the general strategy developed by Martel and Merle to deduce the asymptotic stability of the peakon. The main ingredient to prove our Liouville result is the finite speed propagation of the momentum density of the solution. We would like to underline that our arguments are not specific to the Camassa-Holm equation but can be adapted for a wide class of equations with peakons as we will show in a forthcoming work.

In this paper we will work in the framework of the solutions constructed in [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF]. This class corresponds to solutions emanating from initial data that belong to H 1 (R) with a density momentum that is a non negative finite measure. It has the advantage to contain the peakon and to enjoy good properties as global existence, uniqueness and H 1 -continuity of the flow.

It is worth noticing that, recently 1 , Bressan and Constantin ( [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF], [START_REF] Bressan | Global dissipative solutions of the Camassa-Holm equation[END_REF]) succeed to construct global conservative and dissipative solutions of the (1.5) for initial data in H 1 (R) by using scalar conservation laws techniques. The uniqueness of the conservative solution has been shown very recently by Bressan-Chen-Zhang [START_REF] Bressan | Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics[END_REF] but its continuity with values in H 1 (R) is not known. In consequence, the orbital stability of the peakon with respect to these solutions is still an open problem. In this direction, note that a Lipschitz metric on H 1 -bounded sets has been very recently constructed in [START_REF] Cai | Lipschitz metric for the Novikov equation[END_REF].

Before stating our results let us introduce the function space to which our initial data belong. Following [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF], we introduce the following space of functions (1.6) Y = {u ∈ H 1 (R) such that u -u xx ∈ M(R)}

1 See for instance [START_REF] Molinet | On well-posedness results for Camassa-Holm equation on the line: a survey[END_REF] for a survey on previous existence results.

where M(R) is the space of finite Radon measures on R. We denote by Y + the closed subset of Y defined by Y + = {u ∈ Y / u -u xx ∈ M + } where M + is the set of non negative finite Radon measures on R.

Let C b (R) be the set of bounded continuous functions on R, C 0 (R) be the set of continuous functions on R that tends to 0 at infinity and let I ⊂ R be an interval. A sequence {ν n } ⊂ M is said to converge tightly (resp. weakly) towards ν ∈ M if for any φ ∈ C b (R) (resp. C 0 (R)), ν n , φ → ν, φ . We will then write ν n ⇀ * ν tightly in M (resp. ν n ⇀ * ν in M).

Throughout this paper, y ∈ C ti (I; M) (resp. y ∈ C w (I; M)) will signify that for any φ ∈ C b (R) (resp. φ ∈ C 0 (R)) , t → y(t), φ is continuous on I and y n ⇀ * y in C ti (I; M) (resp. y n ⇀ * y in C w (I; M)) will signify that for any φ ∈ C b (R) (resp.

C 0 (R)), y n (•), φ → y(•), φ in C(I).

Definition 1.1. We say that a solution u ∈ C(R; H 1 (R)) with u-u xx ∈ C w (R; M + ) of (1.5) is Y -almost localized if there exist c > 0 and a C 1 -function x(•), with ẋ ≥ c > 0, for which for any ε > 0, there exists R ε > 0 such that for all t ∈ R and all Φ ∈ C(R) with 0 ≤ Φ ≤ 1 and supp Φ ⊂

[-R ε , R ε ] c . (1.7) R (u 2 (t) + u 2 x (t))Φ(• -x(t)) dx + Φ(• -x(t)), u(t) -u xx (t) ≤ ε . Theorem 1.1. Let u ∈ C(R; H 1 (R)), with u -u xx ∈ C w (R; M +
), be a Y -almost localized solution of (1.5) that is not identically vanishing. Then there exists c * > 0 and x 0 ∈ R such that u(t) = c * ϕ(• -x 0 -c * t), ∀t ∈ R .

Remark 1.1. This theorem implies, in particular, that a Y -almost localized solution with non negative momentum density cannot be smooth for any time. More precisely, if u ∈ C(R; H 1 ), with u -u xx ∈ C w (R; M + ), is a Y -almost localized solution of the Camassa-Holm equation that belongs to H 3 2 (R) for some t ∈ R then u must be the trivial null solution.

As a consequence we get the asymptotic stablity of the peakons : Theorem 1.2. Let c > 0 be fixed. There exists a universal constant 0 < η 0 ≪ 1 such that for any 0 < θ < c and any u 0 ∈ Y + satisfying

(1.8) u 0 -ϕ c H 1 ≤ η 0 θ c 8 , there exists c * > 0 with |c -c * | ≪ c and a C 1 -function x : R → R with lim t→∞ ẋ = c * such that (1.9) u(t, • + x(t)) ⇀ t→+∞ ϕ c * in H 1 (R) ,
where u ∈ C(R; H 1 ) is the solution emanating from u 0 . Moreover,

(1.10) lim t→+∞ u(t) -ϕ c * (• -x(t)) H 1 (]θt,+∞[) = 0 .
Remark 1.2. Using that (1.5) is invariant by the change of unknown u(t, x) → -u(t, -x), we obtain as well the asymptotic stability of the antipeakon profile cϕ with c < 0 in the class of H 1 -function with a momentum density that belongs to M -(R).

Remark 1.3. This theorem implies the growth of the high Sobolev norms for some smooth solutions of the Camassa-Holm equation. Indeed, it is proven in [START_REF] Constantin | Global existence and blow-up for a shallow water equation[END_REF] that any initial datum

u 0 ∈ H ∞ (R) ∩ Y + gives rise to a solution u ∈ C(R; H ∞ (R))
and the above theorem ensures that if such initial datum satisfies (1.8), then u(t) H 3/2 → +∞ as t → +∞.

Remark 1.4. Theorem 1.2 and especially Theorem 6.2, in Section 6, are first steps towards the peakons decomposition of solutions with a non negative momentum density that is studied by the inverse scattering approach in [START_REF] Eckhardt | Teschl On the isospectral problem of the dispersionless Camassa-Holm equation[END_REF].

This paper is organized as follows : in the next section we recall the wellposedness results for the class of solutions we will work with and, in Section 3, we derive an almost monotonicity result that implies an exponential decay result for Y -almost localized global solutions. Section 4 is devoted to the Liouville theorem for Y -almost localized solutions which is the heart of this work. Finally, in Section 5 and 6, we respectively prove the asymptotic stability of a single peakon and of a train of peakons.

Global well-posedness results

We first recall some obvious estimates that will be useful in the sequel of this paper. Noticing that p

(x) = 1 2 e -|x| satisfies p * y = (1 -∂ 2 x ) -1 y for any y ∈ H -1 (R) we easily get u W 1,1 = p * (u -u xx ) W 1,1 u -u xx M and u xx M ≤ u L 1 + u -u xx M which ensures that (2.1) Y ֒→ {u ∈ W 1,1 (R) with u x ∈ BV (R)} .
It is also worth noticing that since for v ∈ C ∞ 0 (R),

v(x) = 1 2 x -∞ e x ′ -x (v -v xx )(x ′ )dx ′ + 1 2 +∞ x e x-x ′ (v -v xx )(x ′ )dx ′ and v x (x) = - 1 2 x -∞ e x ′ -x (v -v xx )(x ′ )dx ′ + 1 2 +∞ x e x-x ′ (v -v xx )(x ′ )dx ′ , we get v 2 x ≤ v 2 as soon as v -v xx ≥ 0 on R. By the density of C ∞ 0 (R) in Y , we deduce that (2.2) |v x | ≤ v for any v ∈ Y + .
Finally, throughout this paper, we will denote {ρ n } n≥1 the mollifer defined by

(2.3) ρ n = R ρ(ξ) dξ -1 nρ(n•) with ρ(x) = e 1/(x 2 -1) for |x| < 1 0 for |x| ≥ 1
In [START_REF] Constantin | Global existence and blow-up for a shallow water equation[END_REF] a global well-posedness result is shown for smooth solution to (1.5) with a non negative momentum density. This result can be summarized in the following proposition Proposition 2.1. (Global smooth solutions [START_REF] Constantin | Global existence and blow-up for a shallow water equation[END_REF])

Let u 0 ∈ H 3 (R), satisfying y 0 = u 0 -u 0,xx ≥ 0 with y 0 ∈ L 1 (R), then the ini- tial value problem associated with (1.5) has a unique solution u ∈ C(R; H 3 (R)) ∩ C 1 (R; H 2 (R)). This solution satisfies y = u -u xx ≥ 0 on R 2 and M (•), E(•) and F (•) are constant along the trajectory 2 . If moreover u 0 ∈ H ∞ (R) then u ∈ C(R; H ∞ (R)).
Unfortunately, the peakons do not enter in this framework since their profiles do not belong even to H 32 (R). In [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF] an existence and uniqueness result of global solutions to (1.5) in a class of functions that contains the peakon is proved. This result will be crucial in our analysis. We give below a slightly improved version: Proposition 2.2. (Global weak solution [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF]) Let u 0 ∈ Y + be given.

Uniqueness and global existence

: (1.5) has a unique solution u ∈ C 1 (R; L 2 (R))∩ C(R; H 1 (R)) such that y = (1 -∂ 2 x )u ∈ C ti (R; M + ).
Moreover, E(u) F (u) and M (u) = y, 1 are conservation laws .

Continuity with respect to initial data in

H 1 (R): For any sequence {u 0,n } bounded in Y + such that u 0,n → u 0 in H 1 (R) and (1 -∂ 2 x )u 0,n ⇀ * u 0 -u 0,xx tightly in M, the emanating sequence of solution {u n } ⊂ C 1 (R + ; L 2 (R)) ∩ C(R + ; H 1 (R)) satisfies for any T > 0 (2.4) u n → u in C([-T, T ]; H 1 (R))
and

(2.5) (1 -∂ 2 x )u n ⇀ * y in C ti ([-T, T ], M) . 3.
Continuity with respect to initial data in Y equipped with the weak topology: For any sequence {u 0,n } ⊂ Y + such that3 u 0,n ⇀ * u 0 in Y , the emanating sequence of solution

{u n } ⊂ C 1 (R; L 2 (R)) ∩ C(R + ; H 1 (R)) satisfies for any T > 0, (2.6) u n ⇀ n→∞ u in C w ([-T, T ]; H 1 (R)) , and 
(2.7) (1 -∂ 2 x )u n ⇀ * y in C w ([-T, T ], M) . Proof.
The uniqueness and global existence results are obtained in [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF] except the conservation of M (u) and the fact that y belongs to C ti (R; M + ). In [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF], only the fact that y ∈ L ∞ (R, M + ) is stated. Note also that in [START_REF] Constantin | Global weak solutions for a shallow water equation[END_REF] the results are stated only for positive times but, since the equation is reversible with time, it is direct to check that the results hold as well for negative times.

To prove (2.4), it suffices to notice that, according to the conservation of the H 1norm and (2.1), the sequence of emanating solution

{u n } is bounded in C(R + ; H 1 (R))∩ L ∞ (R; W 1,1 (R)) with {u n,x } bounded in L ∞ (R; BV (R)). Therefore, there exists v ∈ L ∞ (R; H 1 (R)) with (1 -∂ 2 x )v ∈ L ∞ (R; M + (R)
) and an increasing sequence of integers {n k } k≥1 such that, for any T > 0,

u n k ⇀ k→∞ v ∈ L ∞ ([-T, T ]; H 1 (R)) and (1-∂ 2 x )u n k ⇀ k→∞ * (1-∂ 2 x )v in L ∞ (]-T, T [; M + (R)) But, using that {∂ t u n } is bounded in L ∞ (R; L 2 (R) ∩ L 1 (R)
), Helly's, Aubin-Lions' compactness and Arzela-Ascoli's theorems then ensure that v is a solution to (1.5) that belongs to C w ([-T, T ]; H 1 (R)) with v(0) = u 0 and that

(2.8) (1 -∂ 2 x )u n k ⇀ * (1 -∂ 2 x )v in C w ([-T, T ], M) . In particular, v t ∈ L ∞ (] -T, T [; L 2 (R)) and thus v ∈ C([-T, T ]; L 2 (R)). Since v ∈ L ∞ (] -T, T [; H 3 2 -(R)), this actually implies that v ∈ C([-T, T ]; H 3 2 -(R)
) and, using again the equation, it follows that v t ∈ C(R; L 2 (R)). Therefore, v belongs to the uniqueness class which ensures that v = u and thus the above weak convergence results hold for the whole sequence {u n }. The conservation of E(•) together with these weak convergence results then lead to (2.4).

Let us now prove that M (•) is a conservation law for our solutions and that y ∈ C ti (R; M + ). For this we apply the same arguments as above but for a smooth sequence {ũ 0,n } ⊂ H 3 (R) ∩ Y + that converges in the same sense to u 0 ∈ Y + . According to Proposition 2.1, M (•) is a conservation law for the solutions emanating from ũ0,n and, by hypothesis, M (ũ 0,n ) → M (u 0 ). Therefore, the convergence result (2.8) ensures that M (u(t)) ≤ M (u 0 ) for all t = 0. But, approximating in the same way u(t 0 ) for t 0 = 0, the same arguments lead to M (u(t)) ≤ M (u(t 0 )) for all t = t 0 which forces M (•) to be a conservation law. Hence, M (ũ n (t)) → M (u(t)) for all t ∈ R. Since {(1 -∂ 2

x )ũ n (t)} ⊂ M + , it is well-known (see for instance Proposition 9, page 61, in [START_REF] Bourbaki | Eléments de Mathématique, Intégration[END_REF]) that this convergence result together with the weak convergence (2.8) ensure the tight convergence of (1 -∂ 2

x )ũ n (t) towards y(t) for all t ∈ R. Using again that {∂ t ũn } is bounded in L ∞ (] -T, T [; L 1 (R)) and Arzela-Ascoli's theorem, we obtain that y ∈ C ti (R; M + ) and that (2.5) holds for {ũ n }. Now, coming back to the sequence {u n }, we deduce from the tight convergence of {(1 -∂ 2

x )u 0,n } towards u 0 -u 0,xx together with the conservation of M (•) that M (u n (t)) → M (u(t)) for all t ∈ R and the same arguments as above lead to (2.5).

Finally (2.6) can be proven exactly in the same way, since {u 0,n } is bounded in Y + by Banach-Steinhaus theorem.

Remark 2.1. 3. of Proposition 2.2 ensures that (1.5) is a dynamical system in Y + endowed with its natural weak star topology, i.e.

ϕ n ⇀ * ϕ in Y iff ϕ n ⇀ ϕ in H 1 (R) and (1 -∂ 2 x )ϕ n ⇀ * (1 -∂ 2 x )ϕ in M(R) .
3. Decay of Y -almost localized solution moving to the right

Proposition 3.1. Let u ∈ C(R; H 1 ) with y = (1 -∂ 2 x )u ∈ C w (R; M+) be a Y - almost localized solution of (1.5) with inf R ẋ ≥ c 0 > 0. Then there exists C > 0 such that for all t ∈ R, all R > 0 and all Φ ∈ C(R) with 0 ≤ Φ ≤ 1 and supp Φ ⊂ [-R, R] c . (3.1) R (u 2 (t) + u 2 x (t))Φ(• -x(t)) dx + c 0 Φ(• -x(t)), y(t) ≤ C exp(-R/6) .
To prove this proposition, the main tool is an almost monotonicity result for E(u) + c 0 M (u) at the right of an almost localized solution. Actually, the almost monotonicity is more general and says somehow that if z(t) moves to the right with a positive speed strictly less that ẋ(t) then the part of E(u) + c 0 M (u) at the right of z(t) is almost decreasing as soon as |z(t) -x(t)| stays large enough.

As in [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF], we introduce the C ∞ -function Ψ defined on R by

(3.2) Ψ(x) = 2 π arctan exp(x/6)
It is easy to check that Ψ(-•) = 1 -Ψ on R, Ψ ′ is a positive even function and that there exists C > 0 such that ∀x ≤ 0,

(3.3) |Ψ(x)| + |Ψ ′ (x)| ≤ C exp(x/6) .
Moreover, by direct calculations, it is easy to check that 6 , ∀t ≤ t 0 and (3.9) 6 , ∀t ≥ t 0 , for some constant K 0 > 0 that only depends on E(u), c 0 , R 0 and β.

(3.4) |Ψ ′′′ | ≤ 1 2 Ψ ′ Lemma 3.2. Let 0 < α < 1 and let u ∈ C(R; H 1 ), with y = (1 -∂ 2 x )u ∈ C w (R; M + ), be a solution of (1.5) such that there exist x : R → R of class C 1 with inf R ẋ ≥ c 0 > 0 and R 0 > 0 with (3.5) u(t) L ∞ (|x-x(t)|>R0) ≤ (1 -α)c 0 2 6 , ∀t ∈ R. For 0 < β ≤ α, 0 ≤ γ ≤ 3 2 (1 -α)c 0 , R > 0, t 0 ∈ R and any C 1 -function (3.6) z : R → R with (1 -α) ẋ(t) ≤ ż(t) ≤ (1 -β) ẋ(t), ∀t ∈ R, setting (3.7) 
I ∓R t0 (t) = u 2 (t) + u 2 x (t) + γy(t), Ψ • -z ∓R t0 (t) where z ∓R t0 (t) = x(t 0 ) ∓ R + z(t) -z(t 0 ) we have (3.8) I +R t0 (t 0 ) -I +R t0 (t) ≤ K 0 e -R/
I -R t0 (t) -I -R t0 (t 0 ) ≤ K 0 e -R/
Proof. We first approximate u(t 0 ) by the sequence of smooth functions u 0,n = ρ n * u(t 0 ), with {ρ n } defined in (2.3), that belongs to H ∞ (R) ∩ Y + and converges 4to u(t 0 ) in Y . According to Propositions 2.1 and 2.2, the sequence of solutions {u n } to (1.5) with u n (t 0 ) = u 0,n belongs to C(R; H ∞ (R)) and for any fixed T > 0 it holds

u n → u in C([t 0 -T, t 0 + T ]; H 1 ) (3.10) y n ⇀ * y in C ti (]t 0 -T, t 0 + T [; M) (3.11)
where y n = u n -∂ 2

x u n . In particular, for any fixed T > 0, there exists n 0 = n 0 (T ) ≥ 0 such that for any n ≥ n 0 ,

u n -u L ∞ (]t0-T,t0+T [×R) < (1 -α)c 0 2 6 ,
which together with (3.5) forces

(3.12) sup t∈]t0-T,t0+T [ u n L ∞ (|x-x(t)|>R0) < (1 -α)c 0 2 5 .
We first prove that (3.8) holds on [t 0 -T, t 0 ] with u replaced by u n for n ≥ n 0 . The following computations hold for u n with n ≥ n 0 but , to simplify the notation, we drop the index n. For any function g ∈ C 1 (R) it is not too hard to check that (see Appendix 7.1)

d dt R (u 2 + u 2 x )g = R uu 2 x g ′ + 2 R uhg ′ (3.13) where h := (1 -∂ 2 x ) -1 (u 2 + u 2 x /2). Moreover, it easily follows from (1.4) that d dt R yg dx = - R ∂ x (yu)g - R yu x g = R yug ′ - R (u -u xx )u x g = R yug ′ + 1 2 R (u 2 -u 2 x )g ′ (3.14) Applying (3.13)-(3.14) with g(t, x) = Ψ(x -z R t0 (t)) we get d dt I +R t0 (t) = -ż(t) R Ψ ′ u 2 + u 2 x + γy + γ 2 R (u 2 -u 2 x )Ψ ′ + R (uu 2 x + γyu)Ψ ′ + 2 R uhΨ ′ ≤ -ż(t) R Ψ ′ u 2 + u 2 x + γy + γ 2 R (u 2 -u 2 x )Ψ ′ + J 1 + J 2 . (3.15)
The crucial observation is that the second term in the right-hand side of (3.15) that provides from the momentum part of I can be absorbed thanks to the term coming from the energy part of I. More precisely, for 0

≤ γ ≤ 3 2 (1 -α)c 0 , it holds -ż(t) R Ψ ′ u 2 + u 2 x + γy + γ 2 R (u 2 -u 2 x )Ψ ′ ≤ - (1 -α)c 0 4 R Ψ ′ u 2 + u 2 x + γy
Now, the terms J 1 and J 2 are treated as usually. To estimate J 1 we divide R into two regions relating to the size of |u| as follows

J 1 (t) = |x-x(t)|<R0 (uu 2 x + γyu)Ψ ′ + |x-x(t)|>R0 (uu 2 x + γyu)Ψ ′ = J 11 + J 12 . (3.16)
Observe that (3.6) ensures that ẋ(t) -ż(t) ≥ βc 0 for all t ∈ R and thus, for |x -

x(t)| < R 0 , (3.17) x-z R t0 (t) = x-x(t)-R+(x(t)-z(t))-(x(t 0 )-z(t 0 )) ≤ R 0 -R-βc 0 (t 0 -t)
and thus the decay properties of Ψ ′ ensure that

J 11 (t) u(t) L ∞ ( u x (t) 2 L 2 + c 0 y(t) L 1 ) e R0/6 e -R/6 e -β 6 c0(t0-t) u 0 H 1 ( u 0 2 H 1 + c 0 y 0 L 1 )e R0/6 e -R/6 e -β 6 c0(t0-t) . (3.18)
On the other hand, (3.12) ensures that for all t ∈ [t 0 -T, t 0 ] it holds

J 12 ≤ 4 u L ∞ (|x-x(t)|>R0) |x-x(t)|>R0 (u 2 x + γy)Ψ ′ ≤ (1 -α)c 0 8 |x-x(t)|>R0 (u 2 x + γy)Ψ ′ . (3.19)
It thus remains to estimate J 2 (t). For this, we decompose again R into two regions relating to the size of |u|. First proceeding as in (3.18) we easily check that

|x-x(t)|<R0 uΨ ′ (1 -∂ 2 x ) -1 (2u 2 + u 2 x ) ≤ 4 u L ∞ sup |x-x(t)|<R0 |Ψ ′ (x -z R t0 (t))| R e -|x| * (u 2 + u 2 x ) dx ≤ C u 0 3 H 1 e R0/6 e -R/6 e -β 6 c0(t-t0) (3.20) since (3.21) ∀f ∈ L 1 (R), (1 -∂ 2 x ) -1 f = 1 2 e -|x| * f . Now in the region |x -x(t)| > R 0 , noticing that Ψ ′ and u 2 + u 2 x /2 are non-negative, we get |x-x(t)|>R0 uΨ ′ (1 -∂ 2 x ) -1 (2u 2 + u 2 x ) ≤ u(t) L ∞ (|x-x(t)|>R0) |x-x(t)|>R0 Ψ ′ ((1 -∂ 2 x ) -1 (2u 2 + u 2 x ) ≤ u(t) L ∞ (|x-x(t)|>R0) R (2u 2 + u 2 x )(1 -∂ 2 x ) -1 Ψ ′ (3.22)
On the other hand, from (3.4) and (3.21) we infer that

(1 -∂ 2 x )Ψ ′ ≥ 1 2 Ψ ′ ⇒ (1 -∂ 2 x ) -1 Ψ ′ ≤ 2Ψ ′ .
Therefore, on account of (3.12), 

|x-x(t)|>R0 uΨ ′ (1 -∂ 2 x ) -1 (2u 2 + u 2 x ) ≤ 2 u(t) L ∞ (|x-x(t)|>R0) R (2u 2 + u 2 x )Ψ ′ ≤ (1 -α)c 0 8 R (u 2 + u 2 x )Ψ ′ (3.
(u) such that for R ≥ R 0 and t ∈ [-T + t 0 , t 0 ] it holds (3.24) d dt I +R t0 (t) ≤ Ce -R/6 e -β 6 (t0-t) .
Integrating between t and t 0 we obtain (3.8) for any t ∈ [t 0 -T, t 0 ] and u replaced by u n with n ≥ n 0 . Note that the constant appearing in front of the exponential now also depends on β. The convergence results (3.10)-(3.11) then ensure that (3.8) holds also for u and t ∈ [t 0 -T, t 0 ] and the result for t ≤ t 0 follows since T > 0 is arbitrary. Finally, (3.9) can be proven in exactly the same way by noticing that for |x -

x(t)| < R 0 it holds (3.25) x -z -R t0 (t) = x -x(t) + R + (x(t) -z(t)) -(x(t 0 ) -z(t 0 )) ≥ -R 0 + R + βc 0 (t -t 0 ) .
Proof of Proposition 3.1 First, since u is Y -almost localized, it is clear that u satisfies the hypotheses of Lemma 3.2 for α = 1/3. We fix α = 1/3 and take β = 1/3, γ = c 0 and z(•) = 2 3 x(•) which clearly satisfy (3.6). Let us show that

I +R t0 (t) -→ t→-∞
0 which together with (3.8) will clearly lead to (3.26)

I +R t0 (t 0 ) ≤ Ce -R/6 . For R ε > 0 to be specified later we decompose I +R t0 into I +R t0 (t) = u 2 (t) + u 2 x (t) + c 0 y(t), Ψ(• -z R t0 (t)) 1 -φ( • -x(t) R ε ) + u 2 (t) + u 2 x (t) + c 0 y(t), Ψ(• -z R t0 (t))φ( • -x(t) R ε ) = I 1 (t) + I 2 (t) . where φ ∈ C ∞ (R) is supported in [-1, 1] with 0 ≤ φ ≤ 1 on [-1, 1] and φ ≡ 1 on [-1/2, 1/2].
From the Y -almost localization hypothesis, for any ε > 0 there exists R ε > 0 such that I 1 (t) ≤ ε/2. On the other hand, we observe that

I 2 (t) ≤ ( u 0 2 H 1 + c 0 y 0 M )Ψ R ε -R - 1 3 (x(t 0 ) -x(t)) . But ẋ > c 0 > 0 obviously imply that, for |x -x(t)| ≤ R ε , x -z +R t0 (t) = x -x(t) -R - 1 3 (x(t 0 ) -x(t)) ≤ R ε -R - 1 3 c 0 (t 0 -t) -→ t→-∞ -∞ which proves our claim since lim x→-∞ Ψ(x) = 0.
It follows from (3.26) that for all t ∈ R, all x 0 > 0 and all Φ ∈ C(R) with 0

≤ Φ ≤ 1 and supp Φ ⊂ [x 0 , +∞[. R (u 2 (t) + u 2 x (t))Φ(• -x(t)) dx + c 0 Φ(• -x(t)), y(t) ≤ C exp(-R/6) .
The invariance of (C-H) under the transformation (t, x) → (-t, -x) yields the result for supp Φ ⊂] -∞, -x 0 ] which completes the proof of the proposition.

Liouville result for Y -almost localized solution moving to the right

In this section we will need the following lemma (see for instance [START_REF] Iftimie | Large time behavior in perfect incompressible flows[END_REF]) Lemma 4.1. Let µ be a finite nonnegative measure on R . Then µ is the sum of a nonnegative non atomic measure ν and a countable sum of positive Dirac measures (the discrete part of µ). Moreover, for all ε > 0 there exists δ > 0 such that, if I is an interval of length less than δ , then ν(I) ≤ ε.

4.1.

Boundedness from above of the support of the momentum density.

Proposition 4.2. Let u ∈ C(R; Y + ) be a Y -almost localized solution of (1.5) with ẋ ≥ c 0 > 0. There exists r 0 > 0 such that for all t ∈ R, it holds

(4.1) supp y(t, • + x(t)) ⊂] -∞, r 0 ], and 
(4.2) u(t, x(t) + r 0 ) = -u x (t, x(t) + r 0 ) ≥ e -2r0 4 √ r 0 E(u) .
Proof. Clearly, it suffices to prove the result for

t = 0. Let u ∈ C(R; H 1 ),with y = u -u xx ∈ C w (R; M + ), be a Y -almost localized solution to (1.5) and let φ ∈ C ∞ (R) with φ ≡ 0 on R -, φ ′ ≥ 0 and φ ≡ 1 on [1, +∞].
We claim that there exists r 0 > 0 such that

(4.3) y(0), φ(• -(x(0) + r 0 )) = 0
which proves the result since y(0) ∈ M + .

We prove (4.3) by contradiction. We approximate u 0 = u(0) by the sequence of smooth functions u 0,n = ρ n * u 0 that belongs to H ∞ (R) ∩ Y + so that (2.4)-(2.5) hold for any T > 0. We denote by u n the solution to (1.5) emanating from u 0,n and by

y n = u n -u n,xx its momentum density. Let us recall that Proposition 2.1 ensures that u n ∈ C(R; H ∞ (R)) and y n ∈ C w ((R; L 1 (R))
. We fix T > 0 and we take n 0 ∈ N large enough so that for all n ≥ n 0 , (4.4)

u n -u L ∞ (]-T,T [;H 1 ) < 1 10 min(c 0 , u(0) H 1 )
and

(4.5) y 0,n -y 0 M < ε 0 2 .
where ε 0 > 0 will be specified later. Thanks to the Y -almost localization of u , there exists r 0 > 0 such that

(4.6) u(t) H 1 (R/]x(t)-r0,x(t)+r0[) ≤ 1 10 min(c 0 , u(0) H 1 ), ∀t ∈ R .
Note that by Sobolev's embedding theorem, it also holds

(4.7) u(t, x(t) + x) ≤ 1 10 min(c 0 , u(0) H 1 ), ∀(|x|, t) ∈ [r 0 , +∞[×R .
Combining these two estimates with (4.4) we infer that for n ≥ n 0 , (4.8)

u n (t) H 1 (R/]x(t)-r0,x(t)+r0[) ≤ 1 5 min(c 0 , u(0) H 1 ), ∀t ∈ [-T, T ] and (4.9) u n (t, x(t) + x) ≤ 1 5 min(c 0 , u(0) H 1 ), ∀(|x|, t) ∈ [r 0 , +∞[×[-T, T ] .
Now, we introduce the flow q n associated with u n defined by (4.10)

q n,t (t, x) = u n (t, q n (t, x)) , (t, x) ∈ R 2 q n (0, x) = x , x ∈ R .
Following [START_REF] Constantin | Existence of permanent and breaking waves for a shallow water equations: a geometric approach[END_REF], we know that for any t ∈ R,

(4.11) y n (0, x) = y n (t, q n (t, x))q n,x (t, x) 2
Indeed, on one hand, (1.4) clearly ensures that ∂ ∂t y n (t, q n (t, x))e 2 t 0 un,x(s,qn(s,x)) ds = 0 and, on the other hand, (4.10) ensures that q n,x (0, x) = 1, ∀x ∈ R, and (4.12)

∂ ∂t q n,x (t, x) = u x (t, q(t, x))q x (t, x) ⇒ q n,x (t, x) = exp t 0 u x (s, q(s, x)) ds .
We claim that for all n ≥ n 0 and t ∈ [-T, 0] , (4.13)

q n (t, x(0) + r 0 ) -x(t) ≥ r 0 + c 0 2 |t| .
Indeed, fixing n ≥ n 0 , in view of (4.9) and the continuity of u n there exists t 0 ∈ [-T, 0[ such that for all t ∈ [t 0 , 0],

u n (t, q n (t, x(0) + r 0 )) ≤ c 0 4 and thus according to (4.10), for all t ∈ [t 0 , 0],

d dt q n (t, x(0) + r 0 ) ≤ c 0 4 which leads to q n (t, x(0) + r 0 ) -x(t) ≥ r 0 + c 0 2 |t|, t ∈ [t 0 , 0] .
This proves (4.13) by a continuity argument. We thus deduce from Proposition 3.1 that for all t ∈ [-T, 0] and all x ≥ 0,

(4.14) u(t, q n (t, x(0) + r 0 + x) ≤ C exp - 1 6 (r 0 + c 0 |t|/2)
Therefore, in view of (2.4) and (2.2), there exists n 1 ≥ n 0 such that for all t ∈ [-T, 0] and all x ≥ 0, (

u n (t, q n (t, x(0

) + r 0 + x) + |u n,x (t, q n (t, x(0) + r 0 + x)| ≤ 4C exp - 1 6 (r 0 + c 0 |t|/2)
The formula (see (4.12)) (4.16) q n,x (t, x) = exp -0 t u n,x (s, q n (s, x)) ds thus ensures that ∀t ∈ [-T, 0], ∀x ≥ 0 and ∀n ≥ n 0 , exp -4C

0 -T e -1 6 (r0+c0|s|/2) ds ≤ q n,x (t, x(0)+r 0 +x) ≤ exp 4C 0 -T e -1 6 (r0+c0|s|/2) ds Setting C 0 := e 48Ce -r 0 /6 c 0 this leads to (4.17) 1 C 0 ≤ q n,x (t, x(0) + r 0 + x) ≤ C 0 , ∀t ∈ [-T, 0] . Now, if (4.
3) would not be true then, in view of (4.5) there exists r ′ 0 > r 0 and

ε 0 > 0 such that ∀n ≥ n 1 , x(0)+r ′ 0 x(0)+r0 y n (0, x) dx ≥ ε 0 > 0 .
It then follows from (4.11) that for all t ∈ [-T, 0],

x(0)+r ′ 0 x(0)+r0 y n (t, q n (t, x))q n,x (t, x) 2 dx ≥ ε 0 and (4.17) leads to

x(0)+r ′ 0 x(0)+r0 y n (t, q n (t, x))q n,x (t, x) dx ≥ C -1 0 ε 0
Therefore, the change of variables z = q n (t, x) yields

qn(t,x(0)+r ′ 0 ) qn(t,x(0)+r0) y n (t, z) dz ≥ C -1 0 ε 0 and (4.13) ensures that (4.18) +∞ x(t)+r0+c0|t|/2 y n (t, z) dz ≥ C -1 0 ε 0 , ∀t ∈ [-T, 0] .
Letting n → +∞ using (2.5) and then letting T → ∞, this ensures that

y(t), φ(• -x(t) -r 0 -c 0 |t|/2) ≥ C -1 0 ε 0 , ∀t ≤ 0 .
This clearly contradicts the Y -almost localization of u and thus completes the proof of (4.1).

Let us now prove (4.2). We first notice that thanks to (4.6) and the conservation of the H 1 -norm it holds

u(t, • -x(t)) H 1 (]-r0,r0[) ≥ 1 2 E(u) . But since for all t ∈ R, |u x (t)| ≤ u(t) on R, this forces (4.19) max [-r0,r0] u 2 (t, • -x(t)) ≥ 1 2r 0 u(t, • -x(t)) 2 L 2 (]-r0,r0[) ≥ 1 8r 0 E(u) . Moreover, since u x ≥ -u on R 2 , for any (t, x 0 ) ∈ R 2 it holds u(t, x) ≤ u(t, x 0 )e -x+x0 , ∀x ≤ x 0 .
Applying this estimate with x 0 = x(t) + r 0 we obtain that

u(t, x(t) + r 0 ) ≥ max [-r0,r0] u(t, • -x(t))e -2r0
which, combined with (4.19) yields (4.2).

4.2.

Study of the first jump of u x . We define

x + (t) = inf{x ∈ R, supp y(t) ⊂] -∞, x(t) + x]}
In the sequel we set

α 0 := e -2r0 4 √ r 0 E(u)
to simplify the expressions. According to Proposition 4.2, t → x + (t) is well defined with values in ] -∞, r 0 ] and

(4.20) u(t, x(t) + x + (t)) = -u x (t, x(t) + x + (t)) ≥ α 0 .
The following lemma ensures that t → x(t) + x + (t) is an integral line of u.

Lemma 4.3. For all t ∈ R, it holds

(4.21) x(t) + x + (t) = q(t, x(0) + x + (0)) .
where q(•, •) is defined by

(4.22) q t (t, x) = u(t, q(t, x)) , (t, x) ∈ R 2 q(0, x) = x , x ∈ R .
Proof. First, it is worth noticing that the result would follow directly from the definition of x + (•) and q(•) if u would belong to C(R; H 3 (R)). Since (1.5) is reversible with time, it suffices to prove that (4.21) holds for all t ∈ [0, 1]. We proceed by contradiction by assuming that there exits t 0 ∈]0, 1] such that q(t 0 , x(0) + x + (0) = x(t 0 ) + x + (t 0 ) + λ 0 with λ 0 = 0. We separate the cases λ 0 > 0 and λ 0 < 0.

In the case λ 0 < 0, by the continuity and monotonicity of x → q(t, x), t ∈ R, there exists δ 0 > 0 such that q(t 0 , x(0)

+ x + (0) + δ 0 ) < x(t 0 ) + x + (t 0 ) -|λ0| 2 .
We approximate u at time t = 0 by the sequence

ϕ n = ρ n * u(0) where ρ n is defined in (2.3). By construction ϕ n ∈ H ∞ (R) ∩ Y + and (1 -∂ 2 x )ϕ n ≡ 0 on [x(0) + x + (0) + δ 0 , +∞[ as soon as n > 2/δ 0 . Let u n be the solution of (1.5) such that u n (t 0 ) = ϕ n . Defining q n : R → R by d dt q n (t) = u n (t, q n (t)) , ∀t ∈ R q n (0) = x(t 0 ) + x + (t 0 ) + δ 0 it follows from (4.11) that (1 -∂ 2 x )u n (0, •) ≡ 0 on [q n (t 0 ), +∞[ for n > 2/δ 0 . On account of (2.4), q n (•) → q(•, x(t 0 ) + x + (t 0 ) + δ 0 ) in C([0, 1]) and thus (1 - ∂ 2 x )u n (t 0 ) ≡ 0 on [x(t 0 ) + x + (t 0 ) -|λ0| 4 , +∞[ for n large enough. (2.5) then ensures that supp y(t 0 ) ⊂] -∞, x(t 0 ) + x + (t 0 ) -|λ0|
8 [ which contradicts the definiton of x + (t 0 ).

In the case λ 0 > 0, there exists δ 0 > 0 such that q(t 0 , x(0)

+ x + (0) -δ 0 ) > x(t 0 ) + x + (t 0 ) + |λ0| 2 .
Then we obtain again a contradiction by following the same arguments, exchanging the role of t = 0 and t = t 0 . This completes the proof of the lemma.

In the sequel we define q * : R → R by (4.23)

q * (t) = q(t, x(0)

+ x + (0)) = x(t) + x + (t), ∀t ∈ R .
Proposition 4.4. Let a : R → R be the function defined by

(4.24) a(t) = u x (t, q * (t)-) -u x (t, q * (t)+), ∀t ∈ R .
Then a(•) is a bounded non decreasing differentiable function on R with values in

[ α0 8 , 2 E(u)] such that (4.25) a ′ (t) = 1 2 (u 2 -u 2 x )(t, q * (t)-), ∀t ∈ R. Proof. First, the fact that a(t) ≤ 2 E(u) follows directly from |u x | ≤ u ≤ u H 1 .
To prove that a(t) ≥ α0 8 , we proceed by contradiction. So let us assume that there exists t 0 ∈ R such that a(t 0 ) < α 0 /8. Since y(t 0 ) ∈ M + with supp y(t 0 ) ⊂ ] -∞, q * (t 0 )], according to Lemma 4.1 we must have lim zրq * (t0)

y(t 0 ) M(]z,+∞[) < α 0 8 .
Without loss of generality we can assume that t 0 = 0 and thus there exists

β 0 > 0 such that (4.26) y(0) M(]q * (0))-β0,+∞[) < α 0 8 .
By convoluting u 0 by ρ n (see (2.3)), for some n ≥ 0, we can approach u 0 by a smooth function ũ0 ∈ Y + ∩ H ∞ (R). Taking n large enough, we may assume that there exists x+ > x + (0) close to x + (0), such that

(4.27) ỹ0 = (1 -∂ 2 x )ũ 0 ≡ 0 on [x(0) + x+ , +∞[ and (4.28) ỹ0 L 1 (]x(0)+x+-β0,+∞[) ≤ α 0 8 + α 0 2 6
, where ỹ0 = ũ0 -ũ0,xx . Moreover, defining q2 : R → R by q2 (t) = q(t, x(0) + x+ ) where q(•, •) is defined by (4.22) with u replaced by ũ, (2.4) 

| ≤ u ≤ E(u) -then ensure that (4.31) -ũ x (t, q2 (t)) = ũ(t, q2 (t)) ≥ (1 -2 -5 )α 0 ∀t ∈ [-t 1 , t 1 ] . We claim that for all t ∈ [-t 1 , 0] it holds (4.32) ũx (t, x) ≤ - 3α 0 4 on [q 1 (t), q2 (t)] ,
where q1 (t) is defined by q1 (t) = q(t, x(0) + x+ -β 0 ). To see this, for γ > 0, we set

A γ = {t ∈ R -/ ∀τ ∈ [t, 0], u x (τ, x) < -γ on [q 1 (τ ), q2 (τ )] } .
Recalling (4.2), (4.28), (4.31) and that ũ ≥ 0 , we get for 0

≤ β ≤ β 0 , ũx (0, x(0) + x+ -β) ≤ ũx (0, x(0) + x+ ) + ỹ0 L 1 (]x(0)+x+-β0,+∞[) ≤ -α 0 + α 0 2 5 + α 0 8 + α 0 2 5 < - 3α 0 4 ,
which ensures that A 3α 0 4 is non empty. By a continuity argument, it thus suffices to prove that A α 0 2 ⊂ A 3α 0 4 . First we notice that for any t ∈ A α 0 2 and any x ∈ [q 1 (t), q2 (t)], the definition of

A α 0 2 ensures that qx (t, x) = exp - 0 t ũx (τ, q(τ, x)) dτ ≥ 1 ,
where q(•, •) is the flow associated to ũ by (4.22). Therefore, ũ ≥ 0, ỹ ≥ 0, a change of variables, (4.11) and (4.28) ensure that for any x ∈ [q 1 (t), q2 (t)],

q2(t) x ũxx (t, s) ds ≥ - q2(t) x ỹ(t, s) ds ≥ - q2(t) q1(t) ỹ(t, s) ds = - x(0)+x+ x(0)+x+-β0 ỹ(t, q(t, s))q x (t, s) ds ≥ - x(0)+x+ x(0)+x+-β0 ỹ(t, q(t, s))q x (t, s) 2 ds = - x(0)+x+ x(0)+x+-β0 ỹ0 (s) ds ≥ - α 0 8 - α 0 2 6
and (4.31) yields ũx (t, x) = ũx (t, q2 (t)) -

q2(t) x ũxx (t, s) ds ≤ -α 0 + α 0 8 + α 0 2 4 < - 3α 0 4 ,
which proves the desired result.

We deduce from (4.32) that ∀t ∈ [-t 1 , 0],

d dt (q 2 (t) -q1 (t)) = ũ(q 2 (t)) -ũ(q 1 (t)) = q2(t) q1(t)
ũx (t, s) ds

≤ - α 0 2 (q 2 (t) -q1 (t)) .
Therefore, (q 2 -q1 )(t) ≥ (q 2 -q1 )(0)e -α 0 2 t = βe -α 0 2 t . On the other hand, since according to (4.31) and (4.32), ũ(t, q2 (t)) ≥ 2α 0 /3 and ũx ≤ 0 on ]q 1 (t), q2 (t)[, we deduce that

ũ(t, q1 (t)) ≥ ũ(t, q2 (t)) ≥ 2α 0 /3, on [-t 1 , 0] .
Coming back to the solution u emanating from u 0 , it follows from (4.29) that

min u(t, q1 (t 1 )), u(t, q2 (t 1 )) ≥ α 0 2 with (q 2 -q1 )(t 1 ) ≥ βe -α 0 2 t , ∀t ∈ [-t 1 , 0] .
Taking 

(u 2 -u 2 x )(τ, q * (τ )-) dτ .
Indeed, since |u x | ≤ u and u ∈ C(R 2 ) this will force a to be non decreasing continuous function on R. Then noticing that

(u 2 -u 2 x )(t, q * (t)-) = a(t)(u -u x )(t, q * (t)-) = a(t) 2u(t, q * (t)-) -a(t) = a(t) 2u(t, q * (t)) -a(t)
with t → u(t, q * (t)) ∈ C(R), the fundamental theorem of calculus will ensure that a is differentiable on R.

Let φ : R → R + be a non decreasing C ∞ -function such that supp φ ⊂ [-1, +∞[ and φ ≡ 1 on R + . We set φ ε = φ( • ε ). Since u is continuous and y(t, •) = 0 on ]x(t) + x + (t), +∞[ it follows from (4.33) that for all t ∈ R, a(t) = lim εց0 y(t), φ ε (• -q * (t)) .
Without loss of generality, it suffices to prove (4.34) for t 1 = 0 and t 2 = t ∈]0, 1[. Let β > 0 be fixed, we claim that there exists ε 0 > 0 such that for all 0 < ε < ε 0 , (4.35)

y(t), φ ε (•-q * (t)) -y(0), φ ε (•-q * (0)) - 1 2 t 0 R (u 2 -u 2 x )(τ, q * (t)+εz)φ ′ (z) dz dτ ≤ β, ∀t ∈]0, 1[
Passing to the limit as ε tends to 0, this leads to the desired result. Indeed, since (u 2 -u 2 x )(τ, •) ∈ BV (R) and φ ′ ≡ 0 on R + , for any fixed (τ, z), it is clear that

(u 2 -u 2 x )(τ, q * (τ ) + εz)φ ′ (z) -→ ε→0 (u 2 -u 2 x )(τ, q * (τ )-)φ ′ (z)
and, since it is dominated by 2 u 0 2

H 1 φ ′ , the dominated convergence theorem leads to t 0 R (u 2 -u 2 x )(τ, q * (t) + εz)φ ′ (z)) dz dτ -→ ε→0 t 0 R (u 2 -u 2 x )(τ, q * (τ )-)φ ′ (z)) dz dτ = t 0 (u 2 -u 2 x )(τ, q * (τ )-) dτ .
To prove (4.35) we first notice that according to (4.33) for any α > 0 there exists γ(α) > 0 such that (4.36) y(0) M(]q * (0)-γ(α),q * (0)[) < α .

We take ε 0 = γ( β 2 e -2 u0 H 1 ). As above, we approximate again u(0) by a sequence

{u 0,n } ⊂ H ∞ (R) ∩ Y + such that u 0,n H 1 ≤ 2 u 0 H 1 and (4.37) y(0) -y 0,n M(R) ≤ β/4 .
where y 0,n = u 0,n -∂ 2 x u 0,n . We again denote respectively by u n and y n , the solution to (1.5) emanating from u 0,n and its momentum density u n -u n,xx . Let now q * n : R → R be the integral line of u n defined by q * n (t) = q n (t, q * (0)) where q n is defined in (4.10). On account of (1.4), it holds

d dt R y n φ ε (• -q * n (t)) = -u n (t, q * n (t)) R y n φ ′ ε - R ∂ x (y n u n )φ ε - R y n u n,x φ ε = R u n (t, •) -u n (t, q * (t)) y n (t, •)φ ′ ε + 1 2 R (u 2 n (t, •) -u 2 n,x (t, •))φ ′ ε = 1 ε R u n (t, •) -u n (t, q * (t)) y n (t, •)φ ′ • -q * n (t) ε + 1 2 R (u 2 n -u 2 n,x )(t, q * n (t) + εz)φ ′ (z) dz = I ε,n t + II ε,n t . (4.38) Since, according to (2.2), |u n,x | ≤ u 0,n H 1 ≤ 2 u 0 H 1 , |I ε,n t | ≤ 2 u 0 H 1 ε R |x -q * n (t)|y n (t, x)φ ′ ( x -q * n (t) ε ) dx ≤ 2 u 0 H 1 R y n (t, x)φ ′ ( x -q * n (t) ε ) dx
Now, in view of (4.16) we easily get

(4.39) e -2 u0 H 1 ≤ q n,x (t, z) ≤ e 2 u0 H 1 , ∀(t, z) ∈] -1, 1[×R L. MOLINET
and the change of variables x = q n (t, z) together with the identity (4.11) lead to

R y n (t, x)φ ′ ( x -q * n (t) ε ) dx = R y n (t, q n (t, z))q ′ n (t, z)φ ′ ( q n (t, z) -q * n (t) ε ) dx ≤ e 2 u0 H 1 R y n (t, q n (t, z))(q ′ n (t, z)) 2 φ ′ ( q n (t, z) -q * n (t) ε ) dz ≤ e 2 u0 H 1 R y n (0, z)φ ′ ( q n (t, z) -q * n (t) ε ) dz .
But, making use of the mean value theorem, (4.39) and the definition of φ, we obtain that, for any t

∈ [0, 1], z → φ ′ ( qn(t,z)-q * n (t) ε
) is supported in an interval of length at most εe 2 u0 H 1 . Therefore, according to (4.36) and (4.37), setting ε 0 = e -2 u0 H 1 γ( β 2 e -2 u0 H 1 ), it follows that for all 0 < ε < ε 0 and all n ∈ N,

(4.40) t 0 |I ε,n τ |dτ ≤ 3β/4 .
To estimate the contribution of II ε,n t we first notice that thanks (2.4) it holds

u n,x → u x in C([-1, 1]; L 2 (R))
and for all t ∈ [-1, 1], Helly's theorem ensures that

u n,x (t, •) → u x (t, •) a.e. on R .
Hence, for any fixed t ∈ [-1, 1] there exists a set Ω t ⊂ R of Lebesgue measure zero such that u x (t) is continuous at every point x ∈ R/Ω t and

u n,x (t, x) → u x (t, x) , ∀x ∈ R/Ω t .
Since q * n (t) → q * (t), it follows that u n,x (t, q * n (t) + x) → u x (t, q * (t) + x) , ∀x ∈ R/τ q * (t) (Ω t ) . where for any set Λ ⊂ R and any a ∈ R, τ a (Λ) = {x -a, a ∈ Λ}. Since the integrand in II ε,n t is bounded by 2 u 0 H 1 φ ′ ∈ L 1 (R), it follows from Lebesgue dominated convergence theorem that for any t ∈ [-1, 1],

II ε,n t -→ n→∞ 1 2 R (u 2 -u 2 x )(t, q * (t) + εz)φ ′ (z) dz .
Therefore, invoking again Lebesgue dominated convergence theorem, but on ]0, t[, keeping in mind that {|u n |}| and {|u n,x |} are uniformly bounded on R 2 by 2 u 0 H 1 , we finally deduce that for any fixed t ∈]0, 1[, (4.41)

t 0 II ε,n τ dτ -→ n→∞ 1 2 t 0 R (u 2 -u 2 x )(τ, q * (t) + εz)φ ′ (z)) dz dτ
Now, we fix t ∈]0, 1[ and ε ∈]0, ε 0 [. According to the convergence result (2.5), for n large enough it holds Proof. The existence of the limits at ∓∞ for a(•) follows from the monotonicity of a(•). Now, in view of Proposition 4.4, for all t ∈ R, 

| y n (t) -y(t), φ ε (• -q * (t)) | + | y n (0 -y(0), φ ε (• -q * (0)) | ≤ β/
0 ≤ a ′ (t) = 1 2 (u 2 -u 2 x )(t, x(t) + x + (t)-) = a(t) 2 (u -u x )(t, x(t) + x + (t)-) = a(
|uu x | + sup (t,x)∈R 2 (1 -∂ 2 x ) -1 ∂ x (u 2 + 1 2 u 2 x ) u 0 2 H 1 + sup t∈R u 2 + u 2 x L 2 x u 0 2 H 1 . Therefore t → u(t, x(t) + x + (t)
) is also Lipschitz on R which achieves the proof thanks to (4.44).

4.3.

End of the proof of Theorem 1.1. In this subsection, we conclude by proving that the jump of u x (0, •) at x(0) + x + (0) is equal to -2u(0, x(0) + x + (0)). This saturates for all v ∈ Y + , the relation between the jump of v x and the value of v at a point ξ ∈ R and forces u(0, •) to be equal to u(0, x(0)+x + (0))ϕ(•-x(0)+x + (0)).

We use the invariance of the (CH) equation under the transformation (t, x) → (-t, -x). This invariance ensures that v(t, x) = u(-t, -x) is also a solution of the (C-H) equation that belongs to C(R; H 1 (R), with u -u xx ∈ C w (R; M + ) and shares the property of Y -almost localization with x(•) replaced by -x(-•) and the same fonction ε → R ε (See Definition 1.1). Therefore, by applying Propositions 4.2, 4.4 and Lemma 4.3 for v we infer that there exists a C 1 -function x -: R → ] -∞, r 0 ] and a derivable non decreasing function ã : R →

[α 0 /8, 2 u 0 H 1 ] with lim t→∓∞ ã(t) = ã∓ such that (4.45) ã(t) = v x (t, (-x(-t) + x + (t))+) -v x (t, (-x(-t) + x + (t))-), ∀t ∈ R . Moreover, lim t→∓∞ v(t, -x(-t) + x + (t)) = lim t→∓∞ ã(t)/2 = ã∓ /2 .
Coming back to u this ensures that

lim t→+∞ u(t, x(t) -x -(-t)) = lim t→-∞ ã(t)/2 = ã-/2 , (4.46) lim t→-∞ u(t, x(t) -x -(-t)) = lim t→+∞ ã(t)/2 = ã+ /2 , (4.47)
At this stage let us underline that since

x -(-t) = sup{x ∈ R, supp y(-t) ∈ [x(t) -x(-t), +∞[} and u ≡ 0 we must have x(-t) + x(t) ≥ 0 for all t ∈ R. We claim that this forces (4.48) ã-= ã+ = a -= a + .

Note first that since ã-≤ ã+ and a -≤ a + , it suffices to prove that ã-≥ a + and ã+ ≤ a -. This follows easily by a contradiction argument. Indeed, assume for instance that ã-< a + .Then, there exists t 0 ∈ R and ε > 0 such that u(t, x(t)x -(-t)) < u(t, x(t)+ x + (t))-ε for all t ≥ t 0 . Since x(t)-x -(-t) = q(t-t 0 , x(t 0 )x -(-t 0 )) and x(t) + x + (t) = q(t -t 0 , x(t 0 ) + x + (t 0 )), it follows from (4.22) that 

x + (t) + x -(-t)) ≥ ε(t -t 0 ) -→ t→+∞ + ∞ which contradicts that (x + (t), x -(t)) ∈] -∞, r 0 ] 2 .
u(t, x(0) + x + (0) + a + 2 t) = a + 2 , ∀t ∈ R and u x t, (x(0) + x + (0) + a + 2 t)--u x t, (x(0) + x + (0) + a + 2 t)+ = a + , ∀t ∈ R .
In particular, in view of (4.33), u(0, x(0) + x + (0)) = a + 2 and y(0) = a + δ x(0)+x+(0) + µ for some µ ∈ M + (R). But this forces µ = 0 since

(1 -∂ 2 x ) -1 (a + δ x(0)+x+(0) ) = a + 2 exp -| • -(x(0) + x + (0))|
and for any µ ∈ M + (R), with µ = 0, it holds

(1 -∂ 2 x ) -1 ν = 1 2 e -|x| * ν > 0 on R .
We thus conclude that y(0) = a + δ x(0)+x+(0) which leads to

u(t, x) = a + 2 exp -x -x(0) -x + (0) - a + 2 t

Asymptotic stability of the peakon

Let c > 0 and u 0 ∈ Y + such that (5.1)

u 0 -cϕ H 1 < ε 2 3c 2 4
, 0 < ε < c, then, according to [START_REF] Constantin | Stability of peakons[END_REF],

(5.2)

sup t∈R u(t) -cϕ(• -ξ(t)) H 1 < ε 2 c ,
where u ∈ C(R; H 1 ) is the solution emanating from u 0 and ξ(t) ∈ R is any point where the function u(t, •) attains its maximum. By the implicit function theorem, one can prove the following lemma (see for instance 5 [START_REF] Dika | Stability of multipeakons[END_REF]) whose proof is postponed to the appendix.

Lemma 5.1. There exists 0 < ε 0 < 1, κ 0 > 0, n 0 ∈ N and K > 1 such that if a solution u ∈ C(R; Y ) to (1.5) satisfies

(5.3) sup t∈R u(t) -cϕ(• -z(t)) H 1 < cε 0 ,
for some function z : R → R, then there exists a unique function x : R → R such that

(5.4) sup t∈R |x(t) -z(t)| < κ 0 and (5.5) R u(t)(ρ n0 * ϕ ′ )(• -x(t)) = 0, ∀t ∈ R ,
where {ρ n } is defined in (2.3) and where n 0 satisfies :

(5.6) ∀y ∈ [-1/2, 1/2], R ϕ(• -y)(ρ n0 * ϕ ′ ) = 0 ⇔ y = 0 . Moreover, x(•) ∈ C 1 (R) with (5.7) sup t∈R | ẋ(t) -c| ≤ c 8
and if

(5.8) sup t∈R u(t) --z(t)) H 1 < ε 2 c = c ε c 2 for 0 < ε < cε 0 then (5.9) sup t∈R u(t) -cϕ(• -x(t)) H 1 ≤ Kε .
At this stage, we fix 0 < θ < c and we take (5.10) ε = 1 2K min θ 2 8 , c ε 0 For u 0 ∈ Y + satisfying (5.1) with this ε, (5.2) ensures that (5.3) and thus (5.7) hold. Moreover, (5.9) is satisfies with

Kε ≤ min θ 2 9 , cε 0 2 .
It follows that ẋ ≥ 3 4 c on R and that u satisfies the hypotheses of Lemma 3.2 for any 0 < α < 1 such that (5.11) (1 -α) ≥ θ 4c and any 0 ≤ γ ≤ (1 -α)c. In particular, u satisfies the hypotheses of Lemma 3.2 for α = 1/3. Note that the hypothesis (1.8) with

η 0 = 1 K 8 min 1 2 10 , ε 0 6 8 5
In [START_REF] Dika | Stability of multipeakons[END_REF], this lemma is stated with ϕ ′ instead of ρn 0 * ϕ ′ in (5.5). However, there is a gap in the proof since the non smoothness of ϕ makes the C 1 regularity of x(•) difficult to prove with this orthogonality condition.

implies that (5.1) holds with ε given by (5.10).

In the sequel we will make use of the following functionals that measure the quantity E(u) + γM (u) at the right and at the left of u. For 0 ≤ γ ≤ 2c 3 , v ∈ Y and R > 0 we set (5.12)

J R γ,r (v) = v 2 + v 2 x + γ(v -v xx ), Ψ(• -R) . and (5.13) J R γ,l (v) = v 2 + v 2 x + γ(v -v xx ), (1 -Ψ(• + R)) Let t 0 ∈ R be fixed. Fixing α = β = 1/3 and taking z(•) = (1 -α)x(•), z(•) clearly satisfies (3.6). Moreover, we have J R γ,r (u(t 0 , • + x(t 0 )) = I +R t0 (t 0 ) where I +R t0 is defined in (3.7). Since obviously, J R γ,r u(t, • + x(t)) ≥ I +R t0 (t) , ∀t ≤ t 0 , we deduce from (3.8) that (5.14) J R γ,r u(t 0 , • + x(t 0 )) ≤ J R γ,r u(t, • + x(t)) + K 0 e -R/6
, ∀t ≤ t 0 , where K 0 is the constant appearing in (3.8). Now, let us define

ĨR t0 (t) = u 2 (t) + u 2 x (t) + cy(t), 1 -Ψ(• -x(t) + R + α(x(t 0 ) -x(t))) = E(u(t)) + cM (u(t)) -I -R t0 (t)
, where we take again z(•) = (1 -α)x(•). Since M (•) and E(•) are conservation laws, (3.9) leads to ĨR t0 (t) ≥ ĨR t0 (t 0 ) -Ce -R/6 , ∀t ≥ t 0 . We thus deduce as above that ∀t ≥ t 0 , (5.15)

J R γ,l u(t, • + x(t)) ≥ J R γ,l x(t 0 , • + x(t 0 )) -K 0 e -R/6 . The following proposition proved in the appendix ensures that, for ε small enough, the ω-limit set for the weak H 1 -topology of the orbit of u 0 is constituted by initial data of Y -almost localized solutions. The crucial tools in the proof are the almost monotonicity properties (5.14) and (5.15). Proposition 5.2. Let u 0 ∈ Y + satisfying (5.1) with ε defined as in (5.10) and let u ∈ C(R; H 1 (R)) be the solution of (1.5) emanating from u 0 . For any sequence t n ր +∞ there exists a subsequence {t n k } ⊂ {t n } and ũ0 ∈ Y + such that

(5.16) u(t n k , • + x(t n k )) ⇀ n k →+∞ ũ0 in H 1 (R) and (5.17) u(t n k , • + x(t n k )) -→ n k →+∞ ũ0 in H 1 loc (R)
where x(•) is a C 1 -function satisfying (5.5), (5.7) and (5.9). Moreover, the solution of (1.5) emanating from ũ0 is Y -almost localized.

So, let u 0 ∈ Y + satisfying (5.1) with ε defined as in (5.10) and let t n ր +∞ be a sequence of positive real numbers. According to the above proposition, (5.16)-(5.17) hold for some subsequence {t n k } ⊂ {t n } and ũ0 ∈ Y + such that the solution of (1.5) emanating from ũ0 is Y -almost localized. Theorem 1.1 then forces ũ0 = c 0 ϕ(• -x 0 ) for some x 0 ∈ R and c 0 such that |c -c 0 | ≤ Kε ≤ c/2 9 . Note that (5.16) together with (5.9) imply c 0 ϕ(• -x 0 ) -cϕ H 1 ≤ Kε and thus (5.10) and (5.17) ensure that |x 0 | ≪ 1/2. Since by (5.16), ũ0 satisfies the orthogonality condition (5.5), (5.6) then forces x 0 = 0. On the other hand, (5.17) and (5.9) ensure that c 0 = lim

n→+∞ max R u(t n k ) and thus u(t n k , • + x(t n k )) -λ(t n k )ϕ ⇀ k→+∞ 0 in H 1 (R)
where we set λ(t) := max R u(t), ∀t ∈ R. Since this is the only possible limit, it follows that

u(t, • + x(t)) -λ(t)ϕ ⇀ t→+∞ 0 in H 1 (R) .
and thus

(5.18) u(t, • + x(t)) -λ(t)ϕ -→ t→0 0 in H 1 loc (R) 5.1. Convergence in H 1 (]-A, +∞[) for any A > 0.
Let δ > 0 be fixed. Choosing R > 0 such that J R 0,r (u(0), • + x(0)) < δ and K 0 e -R/6 ≤ δ, where K 0 is the constant that appears in (5.14). We deduce from (5.14) that J R 0,r u(t, • + x(t)) < 2δ for all t ≥ 0. This fact together with the local strong convergence (5.17 Let us fix again δ > 0 and take R > 0 such that K 0 e -R/6 < δ. (5.15) with γ = 0 together with the conservation of E(u) ensure that, for any pair (t,

t ′ ) ∈ R 2 with t > t ′ it holds R (u 2 + u 2 x )(t, x)Ψ(x -x(t) + R) dx ≤ R (u 2 + u 2 x )(t ′ , x)Ψ(x -x(t ′ ) + R) dx + δ
On the other hand, by the strong convergence (5.19) and the exponential localization of ϕ, ϕ ′ and Ψ, there exists T > 0 such that for all t ≥ T ,

R (u 2 + u 2 x )(t, x)Ψ(x -x(t) + R) dx -λ 2 (t)E(ϕ) ≤ δ .
It thus follows that

λ 2 (t)E(ϕ) ≤ λ 2 (t ′ )E(ϕ) + 3δ, ∀t > t ′ > T .
Since δ > 0 is arbitrary, this forces λ to have a limit at +∞ and completes the proof of the claim.

5.3.

Convergence of ẋ. We set W (t, •) := c 0 ϕ(• -x(t)) and η(t) = u(t) -c 0 ϕ(•x(t)) = u(t) -W (t) for all t ≥ 0. Differentiating (5.5) with respect to time and using that ϕ -ϕ ′′ = 2δ 0 , we get

R η t ∂ x W = ẋ ∂ 2 x W , η H -1 ,H 1 = -2c 0 ẋ η(x(t)) + ẋ R ηW,
and thus

(5.21)

R η t ∂ x W ≤ 3c 0 | ẋ -c 0 | η H 1 + 2c 2 0 |η(x(t))| + c 0 | R ηW | .
Substituting u by η + W in (1.5) and using the equation satisfied by W , we obtain the following equation satisfied by v :

η t -( ẋ -c 0 )∂ x W = -∂ x ηW -(1 -∂ 2 x ) -1 ∂ x 2ηW + η x W x .
At this stage it is worth noticing that (5.19)-(5.20) ensures that

(5.22) |η(x(t))| + η x (t)W (t) L 2 + η(t)W (t) L 2 + η x (t)W x (t) L 2 -→ t→+∞ 0 .
Taking the L 2 -scalar product with ∂ x W , integrating by parts, using that

∂ x W 2 L 2 = c 2
0 and the decay of ϕ and its first derivative, (5.21), (5.22), (5.9) and the definition of ε, we get (1.10) will follow by combining these convergence results with the almost non increasing property (3.8). Indeed, let us fix δ > 0 and take R ≫ 1 such that (5.24)

| ẋ(t) -c 0 | c 2 0 -3c 0 c 2 
ϕ 2 H 1 (]-∞,-R/2[ < δ and Ψ -1 L ∞ (]R/2,+∞[) < δ
where Ψ is defined in (3.3). According to the above convergence result there exists t 0 > 0 such that x(t 0 ) > R and for all t ≥ t 0 ,

(η 2 + η 2 x )(t, • + x(t)) H 1 (]-R/2,+∞[) < δ , where we set η = u(t) -c 0 ϕ(• -x(t)).
In particular, (5.24) ensures that (5.25)

E(ϕ) - R u(t, • + x(t))ϕ + u x (t, • + x(t))ϕ x Ψ(• + y) δ, ∀y ≥ R, ∀t ≥ t 0 ,
We set z(t) = θ 2 t and notice that (5.11) ensures that (3.6) is satisfied with 1-α = θ 4c and β = 1/4. Moreover, as noticing in the beginning of this section (see (5.11)), u satisfies the hypotheses of Lemma (3.2) for such α. According to (3.9) with γ = 0, we thus get for all t ≥ t 0 ,

R (u 2 +u 2 x )(t, •)Ψ(•-x(t 0 )- θ 2 (t-t 0 )+R) ≤ R (u 2 +u 2 x )(t 0 , •)Ψ(x-x(t 0 )+R)+K 0 (α)e -R/6
which leads to

R (η 2 + η 2 x )(t, •)Ψ • -x(t 0 ) - θ 2 (t -t 0 ) + R = R (u 2 + u 2 x )(t, •)Ψ • -x(t 0 ) - θ 2 (t -t 0 ) + x 0 -2c 0 R (u(t)ϕ(• -x(t)) + u x (t)ϕ x (• -x(t))Ψ • -x(t 0 ) - θ 2 (t -t 0 ) + R + c 2 0 R (ϕ 2 + ϕ 2 x )(t, • -x(t))Ψ • -x(t 0 ) - θ 2 (t -t 0 ) + R ≤ R (u 2 + u 2 x )(t 0 , •)Ψ(• -x(t 0 ) + R) + K 0 (α)e -R/6 -2c 0 R (u(t 0 )ϕ(• -x(t 0 )) + u x (t 0 )ϕ x (• -x(t 0 ))Ψ(• -x(t 0 ) + R) + C δ + c 2 0 R (ϕ 2 + ϕ 2 x )(t 0 , • -x(t 0 ))Ψ(• -x(t 0 ) + R) + Ce -R/6 R (η 2 + η 2 x )(t, •)Ψ(• -x(t 0 ) + R) + C(e -R/6 + δ) δ + e -R/6
where in the next to the last step we used that ϕ decays exponentially fast and (5.25) since

x(t) -x(t 0 ) -θ 2 (t -t 0 ) + R ≥ R for all t ≥ t 0 . Taking R large enough and t 1 > t 0 such that θt 1 ≥ x(t 0 ) + θ 2 (t 1 -t 0 ) -R, it follows that for t ≥ t 1 , R (η 2 + η 2 x )(t, •)Ψ(• -αt) δ
which completes the proof of Theorem 1.2 with c * = c 0 .

Asymptotic stability of train of peakons

In [START_REF] Dika | Stability of multipeakons[END_REF] the orbital stability in H 1 (R) of well ordered trains of peakons is established. More precisely, the following theorem is proved6 : Theorem 6.1 ([21]). Let be given N velocities c 1 , .., c N such that 0 < c 1 < c 2 < .. < c N . There exist n 0 ∈ N satisfying (5.6), A > 0, L 0 > 0 and ε 0 > 0 such that if u ∈ C(R; H 1 ) is the global solution of (C-H) emanating from u 0 ∈ Y + , with

(6.1) u 0 - N j=1 ϕ cj (• -z 0 j ) H 1 ≤ ε 2 for some 0 < ε < ε 0 and z 0 j -z 0 j-1 ≥ L, with L > L 0 , then there exist N C 1 - functions t → x 1 (t), .., t → x N (t) uniquely determined such that (6.2) sup t∈R+ u(t, •) - N j=1 ϕ cj (• -x j (t)) H 1 ≤ A √ ε + L -1/8
orthogonality condition (6.3) and thus there is a gap in the proof of the C 1 -regularity of the functions x i , i = 1, .., N . The modifications to get the statement below are exactly the same as the ones to get Lemma 5.1 that is proven in the appendix. and

(6.3) R u(t, •) - N j=1 ϕ cj (• -x j (t)) (ρ n0 * ∂ x ϕ ci )(• -x i (t)) dx = 0 , i ∈ {1, .., N }.
Moreover, for i = 1, .., N

(6.4) | ẋi -c i | ≤ A √ ε + L -1/8 , ∀t ∈ R + .
Combining this result with the asymptotic stability of a peakon established in the preceding section, we are able to extend the asymptotic result to a train of well ordered peakons by following the strategy developped in [START_REF] Martel | Tsai Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] (see also [START_REF] Dika | Stability of N solitary waves for the generalized BBM equations[END_REF]). Theorem 6.2. Let be given N velocities c 1 , .., c N such that 0 < c 1 < c 2 < .. < c N and 0 < θ 0 < c 1 /4. There exist L 0 > 0 and ε 0 > 0 such that if u ∈ C(R; H 1 ) is the solution of (C-H) emanating from u 0 ∈ Y + , with

(6.5) u 0 - N j=1 ϕ cj (• -z 0 j ) H 1 ≤ ε 2 0 and z 0 j -z 0 j-1 ≥ L 0 , then there exist 0 < c * 1 < .. < c * N and C 1 -functions t → x 1 (t), .., t → x N (t), with ẋj (t) → c * j as t → +∞, such that, (6.6) u 
(• + x j (t)) ⇀ t→+∞ ϕ c * j in H 1 (R), ∀j ∈ {1, .., N } . Moreover, (6.7) u - N j=1 ϕ c * j (• -x j (t)) -→ t→+∞ 0 in H 1 (]θ 0 t, +∞[) .
Finally, we will make use of the fact that Camassa-Holm equation possesses special solutions called multipeakons given by

u(t, x) = N i=1 p i (t)e -|x-qi(t)|
where (p i (t), q i (t)), i = 1, .., N , satisfy a differential Hamiltonian system (cf. [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF]). In [START_REF] Beals | Multi-peakons and the classical moment problem[END_REF] (see also [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF]), the limits as t → ∓∞ of p i (t) and qi (t), i = 1, .., N , are determined. Combining the orbital stability of well ordered train of peakons, the continuity with respect to initial data in H 1 (R) and the asymptotics of multipeakons, the H 1 -stability of the variety

N := v = N i=1 p j e -|•-qj| , (p 1 , .., p N ) ∈ (R + ) N , q 1 < q 2 < .. < q N .
is proved in ([21], Corollary 1.1). Gathering this last result with the asymptotics of the multipeakons and Theorem 6.2, the following asymptotic stability result for not well ordered train of peakons can be deduced quite directly. Corollary 6.1. Let be given N positive real numbers p 0 1 , .., p 0 N , N real numbers q 0 1 < .. < q 0 N and let 0 < λ 1 < •• < λ N be the N distinct eigenvalues of the matrix (p 0 j e -|q 0 i -q 0 j |/2 ) 1≤i,j≤N . For any B > 0 there exists a positive function ε with ε(y) → 0 as y → 0 and α 0 > 0 such that if

u 0 ∈ H 1 (R) satisfies m 0 := u 0 -u 0,xx ∈ M + (R) with (6.8) m 0 M ≤ B and u 0 - N j=1 p 0 j exp(• -q 0 j ) H 1 ≤ α
for some 0 < α < α 0 , then there exists

0 < c * 1 < •• < c * N and C 1 -functions (x 1 , .., x N ) with |c * i -λ i | ≤ ε(α) and lim t→+∞ ẋi (t) = c * i , ∀i ∈ {1, .., N }, such that (6.9) u - N i=1 ϕ c * i (• -x i (t)) -→ t→+∞ 0 in H 1 (] λ 1 t 4 , +∞[) .
Proof of Theorem 6.2. We first concentrate ourself on the fastest bump located around x N (•). To adapt Lemma 3.2 to this bump, we define

I N,x0 t0 (•) as I x0 t0 (•) in Lemma 3.2 but with z x0 t0 (•) replaced by z N,x0 t0 = x N (t 0 ) + x 0 + z(t) -z(t 0 ) , where z : R → R is a C 1 -function that satisfies (6.10) (1 -α) ẋN (t) ≤ ż(t) ≤ (1 -β) ẋN (t)
for some 0 < β ≤ α < 1. We start by noticing that to prove (3.8) we can replace (3.5) by the less restrictive condition :

u(t) L ∞ (x-x(t)>R0) ≤ (1 -α)c 0 2 6 .
Indeed, it is direct to check that the condition x -x(t) ≤ R 0 is sufficient to get (3.17). Therefore, to get the same estimate as (3.8) for I N,R t0 (•) it suffices to assume that there exists R 0 > 0 and 0 < α < 1 such that (6.11)

u(t) L ∞ (x-xN (t)>R0) ≤ (1 -α)c N 2 6 , ∀t ∈ R.
Now, because of the presence of the bumps at the left of the Nth bump, we are able to establish the same estimate as (3.9) only for t 0 ≥ t R where t R depends on R. To prove such version of (3.9) with α = 5 8 cN -cN-1 cN we replace (3.5) by (6.12)

u(t) L ∞ (] 5x N -1 (t)+x N (t) 6 ,xN (t)-R0[) < (1 -α)c N 2 6 , ∀t ≥ t R , with x N (t) -x N -1 (t) ≥ 2R. For any R ≥ R 0 we define (6.13) t R = 0 ∨ {t ≥ 0, x N (t) -x N -1 (t) = 2R} .
For R ≥ R 0 , assuming that z(•) satisfies (6.10) and that

(6.14) |c N -ẋN (t)| + |c N -1 -ẋN-1 (t)| ≤ 1 12 (c N -c N -1 ) , ∀t ≥ 0, we get for x ≤ 5xN-1(t)+xN (t) 6 and t 0 ≥ t R , x -z N,-R t0 = x -x N (t) + R + (x(t) -z(t)) -(x(t 0 ) -z(t 0 )) ≤ - 5 6 (x N (t) -x N -1 (t)) + R + αc N (t -t 0 ) ≤ - 5 3 R - 3 4 (c N -c N -1 )(t -t 0 ) + R + 5 8 (c N -c N -1 )(t -t 0 ) ≤ - 2 3 R - 1 8 (c N -c N -1 )(t -t 0 ) ,
where we took α = 5 . This leads to

Ψ(x -z N,-R t0 ) e -R 9 e -1 48 (cN -cN-1)(t-t0) .
which is sufficient to get (3.18) with βc 0 replaced by cN -cN-1

48

. In the sequel, we set (6.15) ε 0 = σ 0 2 18 8 and L 0 = σ 0 2 18 16 where σ 0 = A min i=2,..,N (c i -c i-1 ) ∧ θ .

Taking α = 5 8 cN -cN-1 cN
, we infer from (6.2) that for R 0 such that (6.16) N C N e -R0 < σ 0 2 18 (6.11) is satisfied . Moreover, for R ≥ R 0 , (6.4) ensures (6.14) is satisfied and that (6.12) is satisfied with t R defined as in (6.13). Therefore, taking z(

•) = (1 -α)x N (•) and β = α = 5(cN -cN-1)

8cN

, we infer that for any R > R 0 (6.17)

I N,+R t0 (t 0 ) -I N,+R t0 (t) ≤ K 0 e -R/6 , ∀0 ≤ t ≤ t 0 and (6.18) 24 , ∀t ≥ t 0 ≥ t R where t R is defined as in (6.13) and where K 0 = K 0 (σ 0 ). As in Section 5, this ensures that

I N,-R t0 (t) -I N,-R t0 (t 0 ) ≤ K 0 e -R
J R γ,r u(t 0 , • + x N (t 0 )) ≤ J R γ,r u(t, • + x N (t)) + K 0 e -R/6
, ∀0 ≤ t ≤ t 0 , and

J R γ,l u(t 0 , • + x N (t 0 )) ≥ J R γ,l u(t, • + x N (t)) -K 0 e -R 24 , ∀t ≥ t 0 ≥ t R .
Since, we only need these last two estimates in the proof of Proposition 5.2 as well as in Subsections 5.1-5.3, we infer that there exists c * N close to c N such that ẋN → c * N as t → +∞ and

u(t, • + x N (t)) ⇀ t→+∞ c * N ϕ in H 1 (R) .
Moreover, (6. [START_REF] Eckhardt | Teschl On the isospectral problem of the dispersionless Camassa-Holm equation[END_REF])

u(t, • + x N (t)) -c * N ϕ -→ t→+∞ 0 in H 1 (] -A, +∞[) for any A > 0 . Now, setting y N = xN +xN-1 2
and noticing that for all t ≥ 0, z(•) = y N (•) also satisfies (3.6) with α = 5(cN -cN-1) 8cN and β = (cN -cN-1)

8cN

, we get that for R ≥ R 0 , (6.20)

R (u 2 + u 2 x )(t, •)Ψ(• -y N (t)) = I N,yN (tR)-xN (tR) tR (t)
is also almost non increasing for t ≥ t R where t R is defined in (6.13). Indeed, we have

x N (t R ) -y N (t R ) ≥ R ≥ R 0 .
This enables, as in Subsection 5.3, to prove that actually

R u(t) -c * N ϕ(• -x N (t)) 2 + u x -c * N ϕ x (• -x N (t)) 2 Ψ(• -y N (t)) -→ t→∞ 0 .
Let us now set y i = (x i + x i-1 )/2 for i = 2, .., N -1 and y 1 (t) = θt. We claim that if for some 1

≤ i ≤ N -1 it holds (6.21) R u(t)- N j=i+1 c * j ϕ(•-x N (t)) 2 + u x - N j=i+1 c * j ϕ x (•-x N (t)) 2 Ψ(•-y i+1 (t)) -→ t→∞ 0 then ẋi (t) → c * i as t → ∞ for some c * i close to c i and (6.22) R u(t) - N j=i c * j ϕ(• -x N (t)) 2 + u x - N j=i c * j ϕ x (• -x N (t)) 2 Ψ(• -y i (t)) -→ t→∞ 0
which clearly yields the desired result by a finite iterative argument. We start by noticing that for i ∈ {2, .., N -1}, (6.12) also holds for u with α = 5(ci-ci-1) 8ci and with x N , x N -1 , c N , c N -1 and t R replaced by respectively x i , x i-1 , c i and c i-1 and (6.23)

t i R = max {0} ∪ {t ≥ 0, x i (t) -x i-1 (t) = 2R} .
Moreover, for i = 1, (6.15) and (6.2) ensure that (6.24)

u(t) L ∞ (]-∞,x1(t)-R0[ < 1 -α 2 6 c 1 with 1 -α = θ 4c1 . Therefore, defining I i,x0
t0 in the same way as I x0 t0 but with x(•) replaced by x i (•) and taking z(

•) = (1 -α)x i (•) with α = β = 5(ci-ci-1) 8ci if i ≥ 2 and z(t) = θ 2 t, α = 1 -θ 4c1 , β = 1/4 if i = 1
, we get that for any R ≥ R 0 it holds (6.25) 24 , ∀i ∈ {1, .., N -1}, ∀t ≥ t 0 ≥ t i R , where K 0 = K 0 (σ 0 ). As in Section 5, it follows that for γ ≥ 0 small enough, (6.26)

I i,-R t0 (t) -I i,-R t0 (t 0 ) ≤ K 0 e -R
J R γ,l u(t, • + x i (t)) ≥ J R γ,l u(t 0 , • + x i (t 0 )) -K 0 e -R 24 , ∀t ≥ t 0 ≥ t i R .
Now, the proof of the almost monotonicity of J R γ,r u(t, • + x i (t)) is more subtle. Indeed, starting at x i (t 0 ) + R at time t 0 for some R > 0 and traveling back in time with a fixed speed strictly less than c i , one will cross x i+1 (•) at some time t which will tend to +∞ if t 0 tends to +∞. This is clearly not allowed if we want to prove an almost monotonicity result. To overcome this difficulty we will decompose the travel back into two parts. First, one travels back with some speed strictly less than c i till one crosses the curve of the middle point y i+1 (•) = (x i (•) + x i+1 (•))/2. Then, one continues to travel back but along y i+1 (•) until the time t i+1 R that satisfies x i+1 (t i+1 R ) -x i (t i+1 R ) ≥ 2R. This is the idea of the proof of the following lemma which ensures that J R γ,r u(t, • + x i (t)) is almost non increasing for t ≥ t i+1 R .

Lemma 6.3. Let i ∈ {1, .., N -1} and 0 ≤ γ ≤ c i . For any R > 0 it holds

(6.27) J R γ,r u(t 0 , • + x i (t 0 )) ≤ J R γ,r u(t, • + x i (t)) + K 0 e -R 24 , ∀t 0 ≥ t ≥ t i+1 R .
where t i R is defined as in (6.23). Proof. Let R > 0 and t 0 > t i R . We set

t ′ 0 = t i+1 R ∨ {t ∈ [t i+1 R , t 0 ], x i (t 0 ) + R + 3 4 (x i (t) -x i (t 0 )) = y i+1 (t)} On [t ′ 0 , t 0 ] it holds x i (t 0 ) + R + 3 4 (x i (t) -x i (t 0 )) ≤ y i+1 (t)
and thus seting z i,R t0 (t) = x i (t 0 ) + R + 3 4 (x i (t) -x i (t 0 )), we get for any t ≥ t i+1 R and any x ≥ 5xi+1(t)+3xi(t)

8 that x -z i,R t0 (t) ≥ x -y i+1 (t) ≥ R 4 + 1 2 4 (c i+1 -c i )(t -t i+1 R ) which leads to Ψ(x -z i,R t0 (t)) ≤ e -R 24 e -1 2 7 (ci+1-ci)(t-t i R )
. On the other, (6.15) and (6.2) ensure that for R ≥ R 0 (with R 0 defined in (6.16)), (6.28)

u(t) L ∞ (]xi(t)+R, 5x i+1 (t)+3x i (t) 8 [ < θ 2 8 < 1 2 c i 2 6
, ∀t ≥ t i+1 R , Therefore, defining

I i,R t0 (t) = u 2 (t) + u 2 x (t) + γy(t), Ψ(• -z i,R t0 (t)
) , with 0 ≤ γ ≤ c i , we get as in (3.8) that for all t ∈ [t ′ 0 , t 0 ], I i,R t0 (t 0 ) -I i,R t0 (t) ≤ K 0 e -R 24 . It follows as in (5.14) that

J R γ,r (u(t, • + x i (t 0 )) ≤ J R γ,r (u(t, • + x i (t)) + K 0 e -R 24 , ∀t ∈ [t ′ 0 , t 0 ] If t ′ 0 = t i+1 R
we are done. Otherwise we must have z i,R t ′ 0 = y i+1 (t ′ 0 ). But then the same arguments as in (6.20) lead, for 0 ≤ γ ≤ c i , to

u 2 (t)+u 2 x (t)+γy(t), Ψ(•-y i+1 (t ′ 0 )) ≤ u 2 (t)+u 2 x (t)+γy(t), Ψ(•-y i+1 (t)) +K 0 e -R/9 , ∀t ∈ [t i+1 R , t ′ 0 ] . Since for t ≥ t i+1 R , u 2 (t) + u 2 x (t) + γy(t), Ψ(• -y i+1 (t)) ≤ J R γ,r (u(t, • + x i (t))
we obtain the desired result for all t ∈ [t i+1 R , t 0 ]. Since the proof of Proposition 5.2 only uses the almost monotonicity of J R γ,r (u(t, •+ x(t))) and J R γ,l (u(t, •+x(t))) for some γ > 0 and for t ≥ t R where t R is a non negative time depending on R, we obtain as in (5.18) that (6.29)

u(t, • + x i (t)) -λ i (t)ϕ -→ t→+∞ 0 in H 1 loc (R) .
where

λ i (t) = max x∈[-ci,ci] u(t, x + x i (t)) .
Let us now set

W >i (t) = N j=i+1 c * j ϕ(• -x j (t)) and v = u -W >i (t) ,
In view of (6.4), for any ε > 0, there exists t ε > 0 such that for all R ≥ 0 and

t ≥ t ε , J R 0,l u(t, • + x i (t)) -J R 0,l v(t, • + x i (t)) ≤ ε . Moreover, decomposing J R 0,r u(t, • + x i (t)) as J R 0,r u(t, • + x i (t)) = R (u 2 + u 2 x )Ψ(• -x i (t) -R) 1 -Ψ • -y i+1 (t) + R (u 2 + u 2 x )Ψ(• -x i+1 (t) -R)Ψ • -y i+1 (t) = A 1 (t) + A 2 (t) , (6.4) ensures that A 1 (t) - R (v 2 + v 2 x )Ψ(• -x i (t) -R) 1 -Ψ • -y i+1 (t) -→ t→∞ 0
and (6.21) together with (6.4) ensures that

A 2 (t) - R (v 2 + v 2 x )Ψ(• -x i (t) -R)Ψ • -y i+1 (t) -→ t→∞ N i+1 E(ϕ c * i ) .
This proves that J R 0,r (v(t, • + x i (t))) and J R 0,l (v(t, • + x i (t))) enjoy the same almost monotonicity property as respectively J R 0,r (v(t, • + x i (t))) and J R 0,l (v(t, • + x i (t))) for t ≥ t R large enough.

Let now δ > 0 be fixed. According to (6.21) , there exists t δ > 0 such that

R (v 2 + v 2 x )(t δ , x)Ψ(x -y i+1 (t δ )) dx < δ/3 .
Moreover, by (6.4), we may also require

R (ϕ 2 + ϕ 2 x )(x -x i (t))Ψ(x -y i+1 (t δ )) dx < δ/3 .
Therefore using the almost monotonicity of J R 0,r (v(t, • + x i (t))), with R = y i+1 (t δ )x i (t δ ), together with the local strong convergence result (6.29) and (6.4), we get that for all fixed A > 0, (6.30) 

u(t, • + x i (t)) -λ i (t)ϕ -W >i (t, • + x i (t)) -→ t→+∞ 0 in H 1 (] -A, +∞[) .
To prove the convergence of the scaling parameter λ i we use the above strong convergence in H 1 (] -A, +∞[) and (6.4) to get that for any δ > 0 there exists R δ > 0 and t δ > 0 such that

R (v 2 + v 2 x )(t, x)Ψ(x -x i (t) + R δ ) dx -λ 2 i (t)E(ϕ) ≤ δ , ∀t ≥ t δ .
The almost monotonicity of J R δ 0,l (v(t, • + x i (t))) then ensures that λ i (t) → c * i as t → +∞, for some c * i close to c i . Hence, we get (6.31)

u(t, • + x i (t)) -c * i ϕ -W >i (t, • + x i (t)) -→ t→+∞ 0 in H 1 (] -A, +∞[) .
To get the convergence of ẋi towards c * i we write the equation for

η = u - N j=i c * j ϕ(• -x j (t)) = u -W ≥i = v -c * i ϕ(• -x i (t))
and proceed as in Subsection 5.3. Finally to prove (6.22) we first notice that, proceeding as in Subsection 5.4, we obtain that for any fixed δ > 0, there exists R > 0 and t 0 ≥ 0 such that

N j≥i E(ϕ c j * ) - R W ≥i + (∂ x W ≥i ) 2 Ψ(• -x i (t) + y) < δ, ∀y ≥ R, ∀t ≥ t 0 , (η 2 + η 2 x )(t, • + x i (t)) H 1 (]-2R,+∞[) < δ , ∀t ≥ t 0 , and N j≥i E(ϕ c j * )- R u(t, •+x i (t))W ≥i +u x (, •+x i (t))∂ x W ≥i Ψ(•+y) < δ, ∀y ≥ R, ∀t ≥ t 0 . Therefore, using the almost monotonicity of t → I i,-R t0 (t) with γ = 0, z(t) = 1 2 (x i-1 (t) + y i (t)), (1 -α) = ci+7ci-1 8ci if i ≥ 2 and z(t) = θ 2 t, α = 1 -θ 4c1 and β = 1/4 if i = 1,
and proceeding as in Subsection (5.4), we get that for t ≥ t 0 ,

R (η 2 + η 2 x )(t, •)Ψ(• -z i,-R t0 (t)) = R (u 2 + u 2 x )(t, •)Ψ(• -z i,-R t0 (t)) -2c * i R u(t)W ≥i (t) + u x (t)∂ x W ≥i (t) Ψ(• -z i,-R t0 (t)) + (c * i ) 2 R (W 2 ≥i + (∂ x W ≥i ) 2 )(t)Ψ(• -z i,-R t0 (t)) ≤ R (v 2 + v 2 x )(t 0 , •)Ψ(• -x i (t 0 ) + R) + K 0 (σ 0 )e -R/6 -2c * i R u(t 0 )W ≥i (t 0 ) + u x (t 0 )∂ x W ≥i (t 0 ) Ψ(• -x i (t 0 ) + R) + (c * i ) 2 R (W 2 ≥i + (∂ x W ≥i ) 2 )(t 0 )Ψ(• -x i (t 0 ) + R) + 2δ ≤ R (η 2 + η 2 x )(t, •)Ψ(• -x i (t 0 ) + R) + K 0 (σ 0 )e -R/6 + 2δ δ + e -R/6 , where z i,-R t0 (t) = x i (t 0 ) -R + z(t) -z(t 0 ) ≤ x i (t) -R, ∀t ≥ t 0 .
This yields the result since, R being fixed, it holds z i,-R t0 (t) ≤ y i (t) for t large enough. 

d dt R u 2 + u 2 x = 2 R uu t g + 2 R u x u xt g , (1.5) yields 2 R uu t g = -2 R u 2 u x g -2 R u p x * (u 2 + u 2 x /2)g = 2 3 R u 3 g ′ -2 R u p x * (u 2 + u 2 x /2)g (7.2)
and, recalling that 

p xx = p -δ 0 , 2 R u x u xt g = -2 R u 3 x g -2 R u x uu 2x g -2 R u x p xx * (u 2 + u 2 x /2)g = -2 R u 3 x g + R u 3 x g + R uu 2 x g ′ -2 R u x p * (u 2 + u 2 x /2)g + 2 R u x (u 2 + u 2 x /2)g = R uu 2 x g ′ + 2 R u p * (u 2 + u 2 x /2)g ′ + 2 R u p x * (u 2 + u 2 x /2)g - 2 3 R u 3 g ′ . ( 7 
Y z : R × H 1 (R) -→ R (y, v) → R v(x)(ρ n0 * ϕ) ′ (x -z -y) dx .
Since ρ n0 and ϕ are both even, one has Y z (0, ϕ(• -z)) = 0. Moreover, Y is clearly of class C 1 and it holds

(7.4) ∂Y z ∂y (0, ϕ(• -z)) = R ϕ ′ (ρ n0 * ϕ ′ ) = ϕ ′ 2 L 2 -ε(n 0 ) = 1 -ε(n 0 ) ,
with ε(n) → 0 as n → +∞. Therefore by taking n 0 large enough, we may require that ∂Y z ∂y (0, ϕ(• -z)) ≥ 1/2 .

From the implicit function theorem we deduce that there exists ε0 > 0, κ 0 > 0 and a

C 1 -function y z from B H 1 (ϕ(• -z), ε0 ) in ]κ 0 , κ 0 [ which is uniquely determined such that Y z (y z (u), u) = Y (0, ϕ) = 0, ∀u ∈ B H 1 (ϕ(• -z), ε0 ) . In particular there exists C 0 > 0 such that if u ∈ B H 1 (ϕ(• -z), β) with 0 < β ≤ ε0 then (7.5) |y z (u)| ≤ C 0 β .
Note that, by a translation symmetry argument, ε0 , κ 0 and C 0 are independent of z ∈ R. Therefore, by uniqueness, we can define a C 1 -mapping x from

U z∈R B H 1 (ϕ(• -z), ε0 ) into ]κ 0 , κ 0 [ by setting x(u) = z + y z (u) for u ∈ B H 1 (ϕ(• -z), ε0 ) . Now we notice that Y z is also a C 1 -function from R × L 2 (R) into R with ∂Y z ∂y (y, ϕ(• -z)) = R u(x)(ρ ′′ n0 * ϕ)(x -z -y) dx .
Therefore, in the same way as above we obtain that there exists ε0 > 0 and a C

1 -function x from ∪ z∈R B L 2 (ϕ(• -z), ε0 ) into a neighborhood of 0 in R such that R u(ρ n0 * ϕ) ′ (• -y) = 0 ⇔ y = x(u), ∀u ∈ ∪ z∈R B L 2 (ϕ(• -z), ε0 ) .
We set ε 0 = ε0 ∧ ε0 . By uniqueness it holds x ≡ x on B H 1 (ϕ(• -z), ε 0 ) and thus x is also a C 1 -function on ∪ z∈R B H 1 (ϕ(• -z), ε 0 ) equipped with the metric inducted by the L 2 (R)-metric. Now, according to (5.3), it holds { 1 c u(t, ), t ∈ R} ⊂ ∪ z∈R B H 1 (ϕ(• -z), ε 0 ) so that we can define the function x(•) on R by setting x(t) = x(u(t)). By construction x(•) satisfies (5.4)-(5.5). Moreover, (5.8) together with (7.5) ensure that for any c > 0 and any 0 < ε < cε 0 , it holds

(7.6) 1 c u(t)-ϕ(•-x(t)) H 1 ≤ ( ε c ) 2 + sup |z|≤C0( ε c ) 2 ϕ-ϕ(•-z)) H 1 ( ε c ) 2 + C 0 ε c
which proves (5.9). In view of (1.5), any solution u ∈ C(R; H 1 (R)) of (C-H) satisfies u t ∈ C(R; L 2 (R)) and thus belongs to C 1 (R; L 2 (R)). This ensures that the mapping t → x(t) = x(u(t)) is of class C 1 on R. Setting R(t, •) = cϕ(• -x(t)) and w = u -R and differentiating (5.5) with respect to time we get Substituting u by w + R in (1.5) and using that R satisfies

∂ t R + ( ẋ -c)∂ x R + R∂ x R + (1 -∂ 2 x ) -1 ∂ x (R 2 + R 2
x /2) = 0 , we infer that w satisfies

w t -( ẋ-c)∂ x R = - 1 2 ∂ x (w+R) 2 -R 2 -(1-∂ 2 x ) -1 ∂ x (w+R) 2 -R 2 + 1 2 ((w x +R x ) 2 -R 2 x ) .
Taking the L 2 -scalar product of this last equality with (ρ n0 * ϕ) ′ (• -x(t)) and using (7.7) together with (5.9) we get Therefore y → R ϕ(ρ n0 * ϕ) ′ (• -y) is increasing on [-1/2, 1/2] and the proof is complete.

7.3. Proof of Proposition 5.2. Let u 0 ∈ Y + satisfying (5.1) with 0 < ε < c 2 8 . First we recall that, on account of (5.9) and Lemma 3.2, the solution u to (C-H), emanating from u 0 , satisfies (5.14)-(5.15) with 0 ≤ γ ≤ c. Let {t n } ր +∞. Since, by (5.7), {x(t n + •) -x(t n )} is uniformly equi-continuous, Arzela-Ascoli theorem ensures that there exists a subsequence {t n k } ⊂ {t n } and x ∈ C(R) such that for all T > 0, (7.8) x In view of (7.10) we infer that (ũ, x(•)) satisfies (5.5) and (5.9) with the same ε than (u, x(•)). Therefore, (5.10) forces (ũ, x(•)) to satisfy (5.3) and the uniqueness result in Lemma 5.1 ensures that x(•) is a C 1 -function and satisfies (5.7).

The proof of the Y -almost localization of the asymptotic object ũ will now proceed by contradiction. Let us first explain it briefly. In the sequel, for 0 < γ ≤ 2c 3 fixed, we call by G the conserved quantity

G(u) = E(u) + γ u -u xx , 1 .
If ũ is not Y -almost localized then ũ loses a certain amount of G close to x(t) between 0 and some T 0 > 0. By the convergence results (7.11)-(7.12) we infer that for n large enough, u loses some fixed amount of G close to x(t) between t n and t n + T 0 . By the conservation of G on the whole line and the almost monotonicity of J γ,l and J γ,r this ensures that for some R > 0 and ε 0 > 0, J R γ,l u(t n k + T 0 , • + x(t n k + T 0 )) ≥ J R γ,l u(t n k , • + x(t n k )) + ε 0 .

But by the almost monotonicity of J γ,l , taking {t n k } ⊂ {t n } such that n k ≥ n 0 and t n k+1 -t n k ≥ T 0 we get J R γ,l u(t n k , • + x(t n k )) ≥ J R γ,l u(t 0 , • + x(t 0 )) + kε 0 /2 which contradicts the conservation of G.

Let us now make this proof rigorously. For v ∈ Y and R > 0, we separate G(v) into two parts :

G R o (v) = v 2 + v 2 x + γ(v -v xx ), 1 -Ψ(• + R) + Ψ(• -R) = J R γ,r (v) + J R γ,l (v) ,
which almost "localizes" outside the ball of radius R and

G R i (v) = v 2 + v 2 x + γ(v -v xx ), Ψ(• + R) -Ψ(• -R) = G(v) -G R o (v) ,
which almost "localizes" inside this ball. We first notice that it suffices to prove that for all ε > 0, there exists R ε > 0 such that (7.13) G Rε o ũ(t, • + x(t)) < ε , ∀t ∈ R .

Indeed if (7.13) is true for some (ε, R ε ) then (ũ, x) satisfies (1.7) with (ε/2, 2R ε ).

As indicated above, we prove (7.13) by contradiction. Assuming that (7.13) is not true, there exists ε 0 > 0 such that for any R > 0 there exists t R ∈ R satisfying Noticing that Ψ(• + R) -Ψ(• -R) ∈ C 0 (R), the convergence results (7.11)-(7.12) ensure that for k ≥ k 0 with k 0 large enough, which also leads to a contradiction.

G R0 i (

  23) Gathering (3.16), (3.18), (3.19), (3.20) and (3.23) we conclude that there exists C only depending on R 0 and E

5 . 2 .

 52 ) clearly ensure that (5.19) u(t, • + x(t)) -λ(t)ϕ -→ t→+∞ 0 in H 1 (] -A, +∞[) for any A > 0 . Convergence of the scaling parameter. We claim that (5.20) λ(t) -→ t→+∞ c 0 .

8 -→ t→∞ 0 . 5 . 4 .

 8054 This yields the desired result since |c -c 0 | ≤ Kε = c 2 8 clearly forces c ≤ 2c 0 . Strong H 1 -convergence on ]θt, +∞[. We deduce from (5.20) that u(t, •) -c 0 ϕ(• -x(t)) ⇀ t→+∞ 0 in H 1 (R) and (5.23) u(t, • + x(t)) -c 0 ϕ -→ t→+∞ 0 in H 1 (] -A, +∞[) for any A > 0 .

8 cN -cN- 1

 81 cN 
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 771 Proof of (3.13). Using that(7.1) 

R

  w t (ρ n0 * ϕ) ′ (• -x(t)) = ẋ(t) R w (ρ n0 * ϕ) ′′ (• -x(t)) = -ẋ(t) R ∂ x w (ρ n0 * ϕ) ′ (• -x(t)) = ( ẋ(t) -c)O( w H 1 ) + c O( w H 1 ) . (7.7)

( ẋ -c ) R∂

 ) x R∂ x (ρ n0 * ϕ)(• -x(t)) + c O( w H 1 ) ≤ O( w H 1 ) Kc ε 0and (7.4) leads, by taking n 0 large enough and possibly decreasing the value of ε 0 > 0 so that Kε 0 ≪ 1, to(5.7).It remains to prove that (5.6) holds for n 0 ≥ 0 large enough. For this we notice that R ϕ ′ ϕ ′ (• -y) = (1 -y)e -y which ensures that for n 0 ≥ 0 large enoughd dy R ϕ(ρ n0 * ϕ) ′ (• -y) = R ϕ ′ (ρ n * ϕ) ′ (• -y)

( 7 .Let 10 and

 710 14) G R o ũ(t R , • + x(t R )) ≥ ε 0 K 0 e -R0/6 < ε0 10 .The conservation of G then forcesG R0 i (ũ(t R0 , • + x(t R0 )) ≤ G R0 i (ũ(0)) -

  . It remains to prove that for all pair of real numbers (t 1 , t 2 ) with t 1 < t 2 ,

	(4.34)	a(t 2 ) -a(t 1 ) =	1 2	t2 t1

t 1 > 0 large enough, this contradicts the Y -almost localization of u which proves that a(t) ≥ α0 8 and thus u x (t, •) has got a jump at x(t) + x + (t). It is worth noticing that,according Lemma 4.1, this ensures that for all t ∈ R, one can decompose y(t) as (4.33)

y(t) = ν(t) + a(t)δ x(t)+x+(t) + ∞ i=1 a i (t)δ xi(t)

where ν(t) is a non negative non atomic measure with ν(t) ≡ 0 on ]x(t)+x + (t), +∞[, {a i } n≥1 ⊂ (R + ) N with ∞ i=1 a i (t) < ∞ and x i (t) < x(t) + x + (t) for all i ∈ N *

  [START_REF] Bourbaki | Eléments de Mathématique, Intégration[END_REF] . There exists (a -, a + ) ∈ [ α0 8 , 2 u 0 H 1 ] 2 , with a -≤ a + such that lim

	which together with (4.38) and (4.40)-(4.41) prove the claim (4.35).
	Lemma 4.5. (4.42)		
	lim t→-∞	u(t, x(t) + x + (t)) =	lim t→-∞

t→+∞ u(t, x(t) + x + (t)) = lim t→+∞ a(t)/2 = a + /2 , a(t)/2 = a -/2 , (4.43)

  Therefore, since a takes values in [α 0 /8,2 u 0 H 1 ], it remains to prove that a ′ (t) → 0 as t → ±∞. Since R a ′ (τ ) dτ < ∞ ,the desired result will follow if a ′ is Lipschitz on R. But this is not too hard to check. Indeed, first from (4.25) we have for all t ∈ R, |a(t) -a(0)| ≤ t u 0 2 H 1 and thus t → a(t) is clearly Lipschitz on R. Second, since x(t) + x + (t) = q

	(4.44)			t) 2	(2u(t, x(t) + x + (t)) -a(t)) .
	But, sup (t,x)∈R 2 |uu x | ≤ 2 u 0	2 H 1 and
	sup (t,x)∈R 2	|u t | ≤	sup

* (t), it holds d dt u(t, x(t) + x + (t)) = u(t, q * (t))u x (t, q * (t)) + u t (t, q * (t)) .

(t,x)∈R 2

  (t n k + •) -x(t n k ) -→ Now, since u(t n ) is bounded in Y + .There exists ũ0 ∈ Y + and a subsequence of {t n k } (that we still denote by t n k to simplify the notation) such thatu(t n k , • + x(t n k )) ⇀ ũ0 in H 1 (R) u(t n k , • + x(t n k )) → ũ0 in H 1 loc (R) (7.9) y(t n k , • + x(t n k )) ⇀ * ỹ0 = ũ0 -ũ0,xx in M(R) .Let ũ ∈ C(R; Y + ) be the solution to (1.5) emanating from ũ0 . On account of (7.8) and part 3. of Proposition 2.2 for any t ∈ R,u(t n k + t, • + x(t n k + t)) ⇀ ũ(t, • + x(t)) in H 1 (R), (7.10) u(t n k + t, • + x(t n k + t)) → ũ(t, • + x(t)) in H 1 loc (R) (7.11)Moreover, for any function φ ∈ C 0 (R), it holds (7.12) y(t n

t→+∞ x in C([-T, T ]) . k + t, • + x(t n k + t)), φ → ỹ(t, • + x(t)), φ ,

where ỹ = ũ -ũxx . Indeed, on one hand, it follows from part 3. of Proposition 2.2 that y(t

n k + t, • + x(t n k ) + x(t)), φ → ỹ(t, • + x(t)), φ

and on the other hand, the uniform continuity of φ together with (7.8) ensure that

y(t n k + t, • + x(t n k ) + x(t)) -y(t n k + t, • + x(t n k + t)), φ = y(t n k + t), φ(• -x(t n k ) -x(t)) -φ(• -x(t n k + t)) → 0

  u(t n k + t R0 , • + x(t n k + t R0 ))) ≤ G R0 i (u(t n k , • + x(t n k ))) -We first assume that t R0 > 0. By (5.14)-(5.15) and the conservation of G this ensures that(7.16)J R0 γ,l (u(t n k + t R0 , • + x(t n k + t R0 ))) ≥ J R0 γ,l (u(t n k , • + x(t n k ))) + Now we take a subsequence {t n ′ k } of {t n k } such that t n ′ k+1 -t n ′ k ≥ t R0 and n ′ k ≥ n k0. From (7.16) and again (5.15), we get that for any k ≥ 0, that contradicts the conservation of G and thus proves the Y -almost localization of ũ. Finally, if t R0 < 0, then for k ≥ k 0 such that t n k > |t R0 | we get in the same wayJ R0 γ,r u(t n k , • + x(t n k )) ≤ J R0 γ,r u(t n k -|t R0 |, • + x(t n k -|t R0 |)) -As above, this implies the existence of a subsequence {t n ′ k } of {t n k } such that

	J R0 γ,r (u(t n ′ k • +x(t n ′ k ))) ≤ J R0 γ,r (u(t n ′ 0 , • + x(t n ′ 0 ))) -		
			4 5	ε 0 .
				7 10	ε 0 .
	J R0 γ,l (u(t n ′ k , • + x(t n ′ k ))) ≥ J R0 γ,l (u(t n ′ 0 , • + x(t n ′ 0 ))) +	3 5	k ε 0 -→
				7 10	ε 0 .

k→+∞

+ ∞

In particular, y ∈ L ∞ (R; L 1 (R)).

By this we mean that u 0,n ⇀ u 0 in H 1 (R) and (1-∂ 2 x )u 0,n ⇀ * u 0 -u 0,xx in M

By this me mean that u0,n → u(t 0 ) in H 1 (R) and (1 -∂ 2 x )u 0,n → (1 -∂ 2 x )u(t 0 ) in M.

Here again, in the statement given in[START_REF] Dika | Stability of multipeakons[END_REF], ∂xϕc i appears instead of ρn 0 * ∂xϕc i in the
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