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Élisabeth Guazzelli1

1Aix Marseille Univ, CNRS, IUSTI, Marseille, France
2Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA

(Received xx; revised xx; accepted xx)

Pressure and volume-imposed rheology is used to study suspensions of non-colloidal, rigid
fibres in the concentrated regime for aspect ratios ranging from 3 to 15. The suspensions
exhibit yield-stresses. Subtracting these apparent yield-stresses reveals a viscous scaling
for both the shear and normal stresses. The variation in aspect ratio does not affect the
friction coefficient (ratio of shear and normal stresses), but increasing the aspect ratio
lowers the maximum volume fraction at which the suspension flows. Constitutive laws are
proposed for the viscosities and the friction coefficient close to the jamming transition.

1. Introduction

The rheological properties of viscous Newtonian fluids containing rigid fibres remains
relatively unexplored as compared to suspensions of spherical particles, and a consensus
on even the qualitative description of the rheology is still lacking for concentrations
beyond the dilute limit. As one example, the steady values of the shear stresses should,
for suspensions of fibres that are large relative to colloidal scales and free of external body
forces, follow a Newtonian law (Dinh & Armstrong 1984). However, many experimental
studies find yield stresses and a nonlinear scaling of the shear stresses with the rate
of shear, where these non-Newtonian effects become more prominent with increasing
concentration (Ganani & Powell 1985; Powell 1991). Different explanations have been
proposed to explain the departure from a Newtonian response. This includes arguments
that the fibres were not rigid under the imposed conditions (Powell 1991; Sepehr et al.
2004) or that the fibres are not force-free. An example of the latter is the assertion that
adhesive forces (Mongruel & Cloitre 1999; Chaouche & Koch 2001; Bounoua et al. 2016b)
can exist between the fibres, even though their size is large compared to typical colloidal
scales.

Previous rheological studies have focused on suspensions at relatively small volume
fractions. Identifying measurements of rheology for volume fractions, φ, above 0.1 is
difficult for fibres of large aspect ratios, A = L/d, where L and d are the fibre length and
diameter, respectively. The lack of data is attributable, at least in part, to the difficulty
of preparing and measuring the rheology of suspensions at high concentrations for large
aspect ratios. Even for aspect ratios as high as 17 or 18, measurements are available for
volume fractions of only up to φ = 0.15 or 0.17 (Bounoua et al. 2016a; Bibbó 1987);
measurements as high as φ = 0.23 were made by Bibbó (1987) for smaller aspect ratios
of A = 9. As a result, the rheological properties of suspensions of rigid fibres remains
to be characterised in the limit of large concentrations where mechanical contacts are
expected to matter (Sundararajakumar & Koch 1997; Petrich & Koch 1998; Snook et al.
2014). Likewise, the volume fraction at which the shear stresses diverge, and the flow
of the suspension ceases (i.e. becomes jammed), has not been determined previously
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Fibre label Symbol A L (mm) d (mm) Sp

(I) � 14.5± 0.8 5.8± 0.1 0.40± 0.01 5 · 10−3

(II) 4 6.3± 0.4 2.5± 0.1 0.40± 0.01 2.4 · 10−4

(III) ♦ 7.2± 0.4 5.8± 0.2 0.81± 0.02 3.9 · 10−4

(IV) © 3.4± 0.3 2.8± 0.1 0.81± 0.03 2.7 · 10−5

Table 1: Properties of each batch of fibres. Data shown includes the mean value and
standard deviation of the aspect ratio A, fibre length L, and fibre diameter d. Values
of the dimensionless number Sp, characterising the relative strengths of the viscous and
elastic forces, are also reported.

for non-colloidal fibres, though such measurements have been made for shear-thickening
suspensions of colloidal fibres (Egres & Wagner 2005; Brown et al. 2011).

Here, a custom-built rheometer has been used to explore the shear stresses and normal
forces in suspensions of non-colloidal, rigid fibres for concentrations exceeding φ = 0.23.
The rheometer (Boyer et al. 2011; Dagois-Bohy et al. 2015) measures the stresses in both
a pressure and volume-imposed configuration. The measurements indicate the presence of
yield stresses in the tested suspensions, but also a viscous scaling wherein the stress grows
linearly with the rate of shear. The unique rheometer design facilitates the study of these
highly concentrated suspensions, and the volume fractions at which the stresses diverge
are measured. The scaling of the stresses near this jamming transition are found to differ
substantially from that of a suspension of spheres. These measurements are reported
in § 3, after presenting the experimental materials and techniques in § 2; conclusions are
drawn in § 4.

2. Experiments

2.1. Fibres and fluids

Four batches of rod-like particles were used in the experiments. They were obtained by
using a specially-designed device to cut long cylindrical filaments of plastic (PLASTINYL
6.6) that were supplied by PLASTICFIBRE S.P.A. (http://www.plasticfibre.com). Im-
ages of typical fibres from each batch are shown in figure 1 (b). The length and diameter
of over 100 fibres were measured with a digital imaging system. The distributions of
lengths and diameters were found to be approximately Gaussian for all aspect ratios.
The mean value and standard deviation of the fibre aspect ratio A = L/d, length L,
and diameter d are shown in table 1. Note that batches (II) and (III) have very different
lengths and diameters, but roughly the same aspect ratio of A ≈ 6− 7.

The rigid fibres were suspended in a Newtonian fluid that had a matching density of
ρf = 1056 kg/m3. The suspending fluid was a mixture of water (10.72 wt%), Triton X-
100 (75.78 wt%), and Zinc Chloride (13.50 wt%). The fluid viscosity of ηf = 3 Pa·s and
the density were measured at the same temperature (25◦C) at which the experiments
were performed. The suspensions were prepared by adding the fibres to the fluid, where
both quantities were weighed, and gently stirring. Little to no settling or creaming was
observed.

The rheological measurements were performed at a maximum shear rate of γ̇ ≈ 3 s−1,
ensuring that a maximum Reynolds number (ρf γ̇L

2/µf ) of 0.04 was achieved. The fibres
can be considered non-colloidal, owing to their large size, and rigid under the conditions
of the experiment. Regarding the latter, the buckling criterion has been characterised by
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Figure 1: (a) Sketch of the experimental apparatus. (b) Images of the plastic fibres.
(c) Image of the top plate (the inset is a blowup of the image showing the nylon mesh).

a dimensionless number, Sp = 128 ηf γ̇ A
4/EY ln(2A), where the Young’s modulus, EY ,

is approximately 3000 MPa for PLASTINYL 6.6. The number Sp, often called the Sperm
number, is a ratio of the viscous and elastic forces acting on the fibre (see e.g. Becker &
Shelley 2001). The values of Sp, shown in table 1 for our experiments, were much smaller
than the critical Sperm number of 328 for the coil-stretch transition in a cellular flow
(Young & Shelley 2007).

2.2. Experimental techniques

The experiments were conducted using a custom rheometer that was originally con-
structed by Boyer et al. (2011) and then modified by Dagois-Bohy et al. (2015). This
rheometer, sketched in figure 1 (a), provides measurements of both shear and normal
stresses. The shearing cell consists of (i) an annular cylinder (of radii R1 = 43.95 mm
and R2 = 90.28 mm) which is attached to a bottom plate that can be rotated and (ii)
a top cover plate that can be moved vertically. This top plate is porous, enabling fluid
to flow through it, but not particles. The plate was manufactured with holes of sizes
2− 5 mm and then was covered by a 0.2 mm nylon mesh (see figure 1 (c)). The parallel
bottom and top plates have also been roughened by positioning regularly-spaced strips
of height and width 0.5 mm onto their surfaces. A transparent solvent trap covers the
cell, hindering evaporation of the suspending fluid.

In a typical experiment, the annular cell was filled with suspension and the porous
plate was lowered into the fluid to a position h. This height, measured independently by
a position sensor (Novotechnik T-50), ranges between 10.8 to 18 mm, corresponding
to 13 to 25 fibre diameters depending on the fibre batch. The height measurement
enables calculation of the fibre volume fraction, φ. The bottom annulus was rotated at a
rate Ω by an asynchronous motor (Parvalux SD18) regulated by a frequency controller
(OMRON MX2 0.4 kW), while the torque exerted on the top plate was measured by a
torque transducer (TEI – CFF401). The shear stress τ was deduced from these torque
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measurements after calibration with a pure fluid to subtract undesired contributions
resulting from the friction at the central axis and the shear in the thin gap between the
top plate and the cell walls; the calibration method is decribed by Dagois-Bohy et al.
(2015). A precision scale (Mettler-Toledo XS6002S) was placed on a vertical translation
stage driven by a LabVIEW code in order to measure the apparent weight of the top
plate. This measurements, after correcting for buoyancy, provided the determination of
the normal force that the particles exert on the porous plate in the gradient direction.
Dividing by the area of the plate gives the gradient component of the normal stress,
which is referred to simply as the particle pressure, P . A normal viscosity in the gradient
direction can be defined as P/ηf γ̇, as was done by Morris & Boulay (1999).

The rheometer can be run in a pressure-imposed mode or in a volume-imposed mode,
and measurements were recorded as a function of the mean shear rate, γ̇ = Ω(R2 +
R1)/2h, once steady state was achieved. In pressure-imposed rheometry, the particle
pressure P is maintained at a set value that is measured by the precision scale; the
volume fraction φ and the shear stress τ are measured as a function of the shear rate γ̇
and pressure P . In volume-imposed rheometry, the height h, and consequently the volume
fraction φ, are maintained at a fixed value, while the shear stress, τ , and particle pressure,
P , are measured as a function of the shear rate, γ̇. Errors in the measurements of τ , P ,
and φ for the suspensions depend upon the calibration experiments, the preparation of
the suspension samples, and the precision of the height, torque, and scale measurements.
Estimates, based upon tests with independently created samples of suspension, suggest
errors of ±6 Pa, ±5 Pa, and ±0.005 for τ , P , and φ, respectively.

3. Rheological measurements

3.1. Rheological observations

Typical rheological data for the apparent relative shear and normal viscosities, τ/ηf γ̇
and P/ηf γ̇, are plotted against volume fraction, φ, in figures 2 (a) and (b). The data was
collected for fibres of batch (II) using pressure-imposed and volume-imposed measure-
ments. As expected, both quantities increase with increasing φ. However, multiple values
of the apparent viscosities are measured for any given φ. Plotting the shear stress, τ , and
the particle pressure, P , against the shear rate for different values of φ demonstrates that
τ and P are linear in γ̇, but have a non-zero value at γ̇ = 0, see figures 3 (a) and (b).
This seems to suggest that a yield-stress exists for both the shear stress and the particle
pressure, τ0 and P0, respectively. Their values can be determined using a linear fit of the
stress and pressure data as a function of γ̇, as indicated by the lines in figures 3 (a) and
(b). Both yield-stresses, τ0 and P0, increase with increasing φ as shown in figures 3 (c)
and (d) for all four batches of fibres. The growth in τ0 and P0 with respect to φ is more
pronounced for larger aspect ratios A.

The data of figures 3 (a) and (b) demonstrate that the stresses scale linearly with
the rate of shear, as expected. Furthermore, the slopes of τ and P with γ̇ increase with
φ, which is evidence of the increase of the shear and normal viscosities with φ. These
shear and normal viscosities can be collapsed into a single function of φ by removing the
yield stresses. Figures 2 (c) and (d) show the results of (τ − τ0)/ηf γ̇ and (P − P0)/ηf γ̇
as a function of φ. In all of the following analysis, the yield stresses are subtracted
systematically from the raw data.
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Figure 2: Apparent relative (a) shear (τ/ηf γ̇) and (b) normal (P/ηf γ̇) viscosities as
well as relative (c) shear [(τ − τ0)/ηf γ̇] and (d) normal [(P − P0)/ηf γ̇] viscosities (after
subtraction of the yield-stresses) versus volume fraction, φ, for the fibres of batch (II) in
pressure-imposed (N) and volume-imposed (M) configurations.

3.2. Constitutive laws

Figures 4 (a) and (b) show ηs = (τ − τ0)/ηf γ̇ and ηn = (P − P0)/ηf γ̇, the relative
shear viscosity and relative normal viscosity, for all of the fibre batches. Both quantities
increase with φ and seem to diverge at a maximum volume fraction that depends on the
aspect ratio A. The influence of the aspect ratio is also seen on the rheological functions
as ηs(φ) and ηn(φ) shift toward lower values of φ with increasing A. An interesting
observation is that the data for batches (II) and (III), corresponding to similar values of
A but different sizes, collapse onto the same curve. This indicates that finite size effects
are not significant. Also, the decrease of ηn is much stronger than that of ηs for φ . 0.35.

An alternative representation of the rheological data plots the friction coefficient µ =
ηs/ηn and the volume fraction φ as a function of the dimensionless shear rate, J =
ηf γ̇/(P −P0) (Boyer et al. 2011); note that J = 1/ηn and is a function of φ as shown in
figure 4b. The rheology is then described by the two functions µ(J) and φ(J) as shown
in figures 4 (c) and (d) for the same data as in figures 4 (a) and (b). A striking result is
that a complete collapse of all the data is observed for µ(J), indicating that the friction
coefficient is independent of the aspect ratio A. The volume fraction φ is a decreasing
function of the dimensionless number J . There is a clear shift of φ(J) toward the lower
values of φ when A is increased. The data for batches (II) and (III), having similar aspect
ratios, again collapse onto the same curve.

This frictional approach is particularly well suited to study the jamming transition, as
it circumvents the divergence of the viscosities. From the semi-logarithmic plot of φ(J),
shown in the inset of figure 4 (d), the critical (or maximum flowable) volume fraction
φm can be determined from the limiting value of φ as J goes to zero. Similarly, the
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Figure 3: (a) Shear stress (τ) and (b) particle pressure (P ) versus shear rate, γ̇, for the
fibre suspension of batch (II) at different φ values of 0.26 (lightest grey shade), 0.30,
0.35, 0.38, and 0.41 (black). The lines represent the linear fit for each different φ value.
Yield-stress (c) for the shear stress (τ0) and (d) particle pressure (P0) versus φ for fibres
of batch (I), (II), (III), and (IV) shown using the symbols �, 4, ♦, and ©, respectively
(see table 1). The insets of graphs (c) and (d) are log-log plots versus φ/φm where φm is
the maximum flowable volume fraction given in figure 5 (a).

semilogarithmic plot of µ(J) in the inset of figure 4 (c) shows that the friction coefficient
tends to a finite value µs at the jamming point.

The critical values φm and µs are plotted against the fibre aspect ratio A in figures 5 (a)
and (b), respectively. Again, the similar results for batches (II) and (III) indicate that
confinement is not influencing the measurements, and the values obtained by Boyer et al.
(2011) for suspensions of poly(methyl methacrylate) spheres are also plotted on these
graphs (for A = 1, although strictly speaking a sphere is not a cylinder of aspect ratio
one). Clearly, φm decreases with increasing A. This follows the general trends of a decrease
in volume fraction with the aspect ratio for processes such as dry packing, as shown in
figure 5 (a). A comparison is also made in figure 5 (a) between the values of φm and
estimates from simulations (Williams & Philipse 2003) of the maximum concentration
at which the orientation distribution remains random. The critical friction µs does not
vary significantly with A in the explored range and its value (≈ 0.47) is larger than that
obtained for spheres (≈ 0.32) by Boyer et al. (2011).

Figure 6 displays the same data as figure 4, but with φ scaled by φm. This simple
rescaling leads to a good collapse of the data for all of the fibre batches, indicating
that the aspect ratio principally impacts the maximum volume fraction, φm. Another
remarkable result is that the relative shear and normal viscosities, ηs and ηn, diverge
near the jamming transition with a scaling close to (φm − φ)−1, as clearly evidenced by
the insets of figures 6 (a) and (b). This starkly contrasts with the divergence of (φm−φ)−2

observed for suspensions of spheres (Boyer et al. 2011).
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Figure 4: Rheological data: (a) ηs = (τ − τ0)/ηf γ̇ and (b) ηn = (P − P0)/ηf γ̇ versus φ
as well as (c) µ = ηs/ηn and (d) φ versus J = ηf γ̇/(P − P0), for fibre batches (I), (II),
(III), and (IV) as represented by the symbols �, 4, ♦, and©, respectively (see table 1).
The insets of graphs (c) and (d) are log-log and semi-logarithmic plots.
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Figure 5: Critical values (a) φm (©) and (b) µs (©) at the jamming point versus fibre
aspect ratio, A, together with the data (F) obtained by Boyer et al. (2011) for suspensions
of spheres (A = 1). Estimated errors in the values of φm are smaller than the symbols.
Comparisons with experimental data from Rahli et al. (1999) (�) on the dry packing
of rigid fibres and the simulations of Williams & Philipse (2003) (N) for the maximum
random packing of spherocylinders are given on graph (a).
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Figure 6: Rescaled rheological data: (a) ηs = (τ − τ0)/ηf γ̇, (b) ηn = (P − P0)/ηf γ̇ and
(c) µ = ηs/ηn versus φ/φm as well as (d) φ/φm versus J = ηf γ̇/(P − P0), for all the
data of the different batches (I), (II), (III), and (IV) shown using the symbols �, 4, ♦,
and©, respectively (see table 1). The insets of graphs (a), (b), and (d) are log-log plots.
The red solid curves correspond to the rheological laws given by equations (3.1), (3.2),
and (3.3).

A constitutive law for µ can be generated by fitting the data to a linear combination
of powers of (φm − φ)/φ,

µ(φ) = µs + α

(
φm − φ
φ

)
+ β

(
φm − φ
φ

)2

, (3.1)

as was done by Dagois-Bohy et al. (2015). The red curve in figure 6 (c) shows the result,
with µs = 0.47, α = 2.44, and β = 10.20. As noted previously, the value for µs is larger
than that obtained for suspensions of spheres (µs = 0.3). The values for α and β also
differ from those obtained for suspensions of spheres (α = 4.6 and β = 6). The best fit
for ηs was found to be

ηs(φ) = 14.51

(
φm − φ
φm

)−0.90

, (3.2)

as seen in figure 6 (a). Note that the best-fit exponent is −0.9, rather than −1. The
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rheological law for ηn is then just given by

ηn(φ) = ηs(φ)/µ(φ), (3.3)

which is represented by the red curve in figure 6 (b). The variation of φ with J can be
deduced from this last law since J = 1/ηn(φ); this result is shown in figure 6 (d).

4. Discussion and Conclusions

Using a custom rheometer (Boyer et al. 2011; Dagois-Bohy et al. 2015), we have
performed pressure and volume-imposed measurements of the rheology of non-colloidal
rigid fibres suspended in a Newtonian fluid. Measurements for the shear stress and particle
pressure have been obtained in the dense regime and for aspect ratios between 3 and 15,
and the volume fractions at which the rheology diverges has been characterised as a
function of the aspect ratio.

The suspensions exhibit yield-stresses which increase with increasing volume fraction,
φ, and are more pronounced for larger aspect ratios. Yield-stresses have been reported
previously for rigid fibres suspended in Newtonian fluids, and the yield stresses have
been attributed to adhesive contacts (see e.g. Mongruel & Cloitre 1999; Chaouche & Koch
2001) despite the relatively large size of the fibres. A recent model (Bounoua et al. 2016b),
which considered attractive interactions between fibres in the dilute regime, predicted
simple Bingham laws for both the shear stress and the first normal stress difference, with
the apparent shear and normal yield stresses proportional to φ2 and φ3, respectively.
The present data also follows Bingham laws, but the yield stress, τ0, and pressure, P0,
increase with higher power laws in φ than predicted. This can be seen in the insets of
figures 3 (c) and (d), where it is also demonstrated that the data for all aspect ratios
collapses onto single curves by rescaling φ by φm.

It is unclear whether, for the large fibres used here, colloidal forces are responsible for
the yield-stresses. Finite-size effects close to the jamming point can also be advocated,
particularly since lubrication forces are inefficient at preventing mechanical contacts
between elongated particles (Sundararajakumar & Koch 1997). Close to jamming, since
the system has a finite size, percolating jamming network of particles can exist. While
it is transient phenomenon, it may impact the averaged rheological measurements which
consequently may exhibit apparent yield stresses. Clearly, more work is necessary to
elucidate the origin of the yield stresses.

Subtracting the apparent yield-stresses reveals a viscous scaling for both the shear
stresses and particle pressures, wherein both grow linearly with the rate of shear. The
aspect ratio of the fibres does not affect the friction coefficient, µ, but does impact
the maximum flowable volume fraction, φm. Rescaling the volume fraction, φ, by this
maximum volume fraction, φm, leads to an excellent collapse of all the data on master
curves for the shear and normal viscosities. Hence, we argue that the aspect ratio
principally affects the maximum volume fraction at which the suspensions can be sheared.
Similar collapse of the rheological data across multiple aspect ratios has been observed
previously for shear-thickening suspensions of colloidal fibres (Brown et al. 2011).

Using the data presented here, constitutive laws in the form of expansions in (φm−φ)
have been generated for the rheology of dense suspensions of rigid fibres. An important
product of the present study is the examination of the rheology close to the jamming
transition. At jamming the friction coefficient is found to be constant and to be larger
than that found for suspensions of spheres. Both shear and normal viscosities present a
similar algebraic divergence in ≈ (φm − φ)−1 in stark contrast to that in (φm − φ)−2

observed for suspensions of spheres near the jamming point. The maximum volume
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fraction φm is seen to decrease with increasing aspect ratio, similar to the dry packing
of rigid fibres found in experiments (Rahli et al. 1999), see figure 5 (a). However, no
inferences about the general structure of the suspension at jamming is possible for A < 15,
as comparisons with estimates of maximum random packing (Williams & Philipse 2003)
do not clearly indicate that the orientation distribution has organised. The comparsion
does indicate that the structure is organised for A = 15, though direct observations, or
simulations, of the structures need to be developed in future work to conclusively resolve
this question. The experimental data are available as supplementary material for future
comparison.
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