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ABSTRACT 16 

A better understanding of the mechanisms driving superpredation, the killing of smaller 17 

mesopredators by larger apex predators, is important because of the crucial role superpredation 18 

can play in structuring communities and because it often involves species of conservation 19 

concern. Here we document how the extent of superpredation changed over time, and assessed 20 

the impact of such temporal variation on local mesopredator populations using 40 years of 21 

dietary data collected from a recovering population of northern goshawks (Accipiter gentilis), 22 

an archetypical avian superpredator. We then assessed which mechanisms were driving 23 

variation in superpredation, e.g., was it opportunistic, a response to food becoming limited (due 24 

to declines in preferred prey) or to reduce competition. Raptors comprised 8% of goshawk diet 25 

on average in years when goshawk abundance was high, which is higher than reported 26 

elsewhere. Additionally, there was a per capita increase in superpredation as goshawks 27 

recovered, with the proportion of goshawk diet comprising raptors increasing from 2% to 8% 28 

as the number of goshawk home-ranges increased from ≤14 to ≥25. This increase in 29 

superpredation coincided with a population decline in the most commonly killed mesopredator, 30 

the Eurasian kestrel (Falco tinnunculus), which may represent the reversal of the 31 

“mesopredator release” process (i.e., mesopredator suppression) which occurred after 32 

goshawks and other large raptors declined or were extirpated. Food limitation was the most 33 

likely driver of superpredation in this system given: 1) the substantial decline of two main prey 34 

groups in goshawk diet, the increase in diet diversity and decrease in goshawk reproductive 35 

success are all consistent with the goshawk population becoming food-limited; 2) it’s unlikely 36 

to be purely opportunistic as the increase in superpredation did not reflect changes in the 37 

availability of mesopredator species; and 3) the majority of mesopredators killed by goshawks 38 

do not compete with goshawks for food or nest sites.  39 

 40 
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INTRODUCTION 41 

Understanding the mechanisms driving variation in superpredation, the killing of smaller 42 

mesopredators by larger apex predators, is an important issue in ecology. This is partly because 43 

superpredation can directly impact mesopredator population dynamics which may then cascade 44 

to affect lower trophic levels (Paine 1980), but also because many of the superpredator and 45 

mesopredator species involved are of conservation concern (Palomares and Caro 1999, Caro 46 

and Stoner 2003, Ripple and Beschta 2004, Ritchie and Johnson 2009). However, despite this, 47 

and the crucial role superpredation can play in structuring communities, it is still not clear what 48 

mechanism (or combination of mechanisms) drives one predator to kill another.  49 

 50 

Optimal foraging theory suggests that predators should attempt to kill prey when the energy 51 

gained outweighs the energetic cost and potential risk of injury involved (Berger-Tal et al. 52 

2009). However, mesopredators are unlikely to represent a profitable prey source, even when 53 

they fall within the preferred size range of the superpredator, because their densities are often 54 

relatively low compared to that of other prey species. Furthermore, the risk of injury associated 55 

with attacking mesopredators is presumably higher than for other prey types, because 56 

mesopredators have evolved to kill other species (Lourenço et al. 2011a). Consequently, 57 

several alternative (but not mutually exclusive) hypotheses have been put forward to explain 58 

superpredation. The competitor-removal hypothesis suggests that superpredators kill 59 

mesopredators to free up shared resources (Serrano 2000). This leads to the prediction that 60 

superpredation will largely involve mesopredator species which compete with the 61 

superpredator for food or other resources, such as nest sites (e.g. intraguild predation). In 62 

contrast, the predator-removal hypothesis suggests that superpredation is a pre-emptive tactic 63 

to decrease the probability of the superpredator or their offspring being killed (Lourenço et al. 64 
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2011b). Under this scenario, the mesopredator species expected to be killed the most frequently 65 

are those which pose a threat to the superpredator or their offspring.  66 

 67 

Alternatively, rather than being a response to the presence of other predators, the food-68 

limitation hypothesis, also known as the food-stress hypothesis, suggests that mesopredators 69 

are killed to make up the shortfall in the superpredators diet when preferred prey species decline 70 

(Polis et al. 1989, Serrano 2000, Rutz and Bijlsma 2006, Lourenço et al. 2011a, b). Food 71 

limitation may also occur if there is an increase in the number of individuals (conspecifics or 72 

other species) exploiting preferred prey species, particularly if increasing predator densities 73 

elicit anti-predator behaviours in their prey (such as spatial or temporal avoidance of risky 74 

areas) which make prey more difficult to find and/or catch. Many populations of large predator 75 

species are currently increasing in abundance and recovering their former ranges across both 76 

North America and Europe (Maehr et al. 2001, Deinet et al. 2013, Chapron et al. 2014). 77 

Consequently, if superpredation is a response to density dependent food limitation, then the 78 

extent of superpredation occurring might be expected to increase during the recolonisation 79 

process, even if mesopredators are not a preferred prey species. However, whether such a per 80 

capita increase in superpredation has actually occurred or whether it coincides with or follows 81 

the colonisation process is as yet unknown. 82 

 83 

Here we evaluate support for the food-limitation hypothesis, and other proposed determinants 84 

of superpredation in a recovering population of northern goshawks (Accipiter gentilis), using 85 

data collected between 1973 and 2014, over a 964km2 area of Kielder Forest, United Kingdom 86 

(55°13′N, 2°33′W). The northern goshawk (hereafter goshawk) is an archetypical avian 87 

superpredator known to prey upon a large diversity of both avian and mammalian prey, 88 

including other raptors (Rutz et al. 2006, Sergio and Hiraldo 2008, Lourenço et al. 2011a). 89 
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Goshawks are the apex predator in this study system as Kielder Forest lacks other predator 90 

species known to prey on goshawks, such as Eurasian eagle owls (Bubo bubo) (Chakarov and 91 

Krüger 2010).  92 

 93 

Goshawks were extirpated from the UK in the late 19th century. However, scattered populations 94 

were subsequently re-established in the 1960s and 70s after birds escaped or were released by 95 

falconers (Marquiss and Newton 1982, Petty and Anderson 1995, Petty 1996). In Kielder 96 

Forest the goshawk population recovered rapidly after the first recorded breeding attempt in 97 

1973, and 25-33 goshawk home-ranges are now occupied (see Appendix S1; Petty & Anderson 98 

1995). Such a large increase in goshawk abundance, was presumably concomitant with an 99 

increase in intraspecific competition for food and nest sites. However, goshawks may also have 100 

become food-limited because of a long-term decline in the abundance of red grouse (Lagopus 101 

lagopus) and a substantial decline of feral pigeon (Columba livia) in recent years in England 102 

(Robinson et al. 2015), as both species are important prey for goshawks in our study area (Petty 103 

et al. 2003a). The term feral pigeon includes both racing and homing pigeons.   104 

 105 

The first aim of this study was to quantify the extent of superpredation and then to test the 106 

prediction that there has been a per capita increase in superpredation during the colonisation 107 

process by examining goshawk dietary data. Our second aim was to determine whether 108 

superpredation was impacting local populations of the most commonly preyed upon 109 

mesopredator species, for which local population trends are well characterised. We then 110 

assessed whether the goshawk population had become food-limited as the population 111 

recovered. It is difficult to directly assess food limitation for generalist predators, such as 112 

goshawks, without comprehensive prey abundance surveys (Rutz and Bijlsma 2006). 113 

Consequently, we examined two different lines of evidence to proximately assess food 114 



6 
 

limitation. First, we examined temporal variation in goshawk diet to determine whether there 115 

had been any decline in the contribution of certain prey species/groups known to be important 116 

for goshawks. We then examined changes in the reproductive success of the goshawk 117 

population, because reproductive success is closely associated with food availability in 118 

goshawks and other raptor species (Newton 1979, 1998, Rutz and Bijlsma 2006, Millon et al. 119 

2008). Lastly, we evaluated evidence supporting the alternative hypotheses of superpredation 120 

by examining which mesopredator species were being killed by goshawks (e.g. were they 121 

known to compete with goshawks for food or nesting sites).  122 

 123 

METHODS 124 

Kielder Forest is situated in Northumberland, in the north of England, adjacent to the border 125 

with Scotland. For a map of the study area see (Petty et al. 2003b). Each year active goshawk 126 

home-ranges were located by searching suitable nesting habitat within the forest (between the 127 

end of February and end of the breeding season). The locations of active nests were recorded 128 

and these sites were then visited at least four times to establish whether a breeding attempt took 129 

place, to record the number of chicks that fledged and collect dietary data.  130 

 131 

Quantifying superpredation 132 

To quantify superpredation and to determine whether there had been a per capita increase in 133 

superpredation as the goshawk population expanded, we used goshawk dietary data. 134 

Specifically, we quantified the proportion of goshawk diet comprised of other raptor species 135 

each year. Here we use the term raptor to refer to all diurnal and nocturnal birds of prey. 136 

Goshawk diet was characterised by searching for the remains of prey (feathers, bones and fur) 137 

in the area surrounding active nest sites during nest visits between March-August, 1975-2014 138 

(except between1999-2001), in the same way as described in Petty et al.(2003). When possible, 139 
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at the end of the breeding season the top layer of nesting material was removed from active 140 

nests and searched for additional prey remains. Prey remains were removed or buried to avoid 141 

double counting in subsequent searches. We were able to identify 7763 prey items to species 142 

level by comparison with reference collections. It was not always possible to differentiate 143 

carrion crow (Corvus corone) from rook (C. frugilegus) remains. Therefore crow/rook refers 144 

to the abundance of both species in the diet, although rooks were scarce in the study area. We 145 

identified and quantified the minimum number of individuals of medium to large prey species 146 

by counting skeletal remains, whereas small avian prey (less than 100g) were identified and 147 

quantified by plucked feathers. Collecting and quantifying dietary data in this way is likely to 148 

underestimate the contribution of small prey items (Ziesemer 1983). However, this should not 149 

influence the results of our analyses as such items are relatively unimportant to goshawk diet 150 

in terms of biomass.  151 

 152 

Once the proportion of goshawk diet comprising raptors had been calculated for each nest 153 

site/year, we examined how it varied in relation to the number of occupied goshawk home-154 

ranges (measured as a continuous variable) using generalised linear mixed effect models 155 

(GLMM) with a binomial error structure fitted using the lme4 package (Bates et al. 2015). 156 

Goshawk diet has previously been shown to change with altitude, presumably reflecting 157 

changes in abundance and diversity of prey species at different altitudes (Marquiss and Newton 158 

1982, Toyne 1998). Consequently, we also examined whether the contribution of raptors to 159 

diet varied with the altitude of the goshawks nest site. Goshawk home-ranges were grouped 160 

into three altitudinal bands as follows: low, if the nest site was 225m or below, medium if 161 

between 226-354m, and high if 355m or above. We used these cut-offs because goshawk home-162 

ranges above 355m were generally surrounded by open moorland habitat, whereas home-163 

ranges below 225m were surrounded by forest, pasture and water (streams, rivers and a large 164 
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reservoir). The identity of home-ranges and year were both fitted as random effects to account 165 

for variation in diet between years and between home-ranges. Model selection was based on 166 

Akaike’s information criterion corrected for small sample size (AICc) and AICc weights (W; 167 

Burnham and Anderson 2002). The best performing model will have a ∆AIC of zero, because 168 

∆AICc is the AICc for the model of interest minus the smallest AICc for the set of models 169 

being considered. Models are generally considered inferior if they have a ∆AICc > 2 units. 170 

AICc weights (w) are an estimate of the relative likelihood of a particular model for the set of 171 

models being considered. Model assumptions were validated by visually inspecting residual 172 

plots; but they did not reveal any obvious nonlinear relationships, unless otherwise mentioned. 173 

Correlograms (with a lag distance up to 10km) were used to check for spatial-autocorrelation 174 

in the residuals of the best performing model. However, we found no evidence of spatial-175 

autocorrelation in this, nor any other analyses of goshawk diet.  176 

 177 

Impact on local mesopredator populations  178 

To assess the impact of changes in goshawk predation on local populations of the three most 179 

frequently preyed upon raptor species Eurasian kestrels (Falco tinnunculus), tawny owls (Strix 180 

aluco) and Eurasian sparrowhawks (Accipiter nisus; Petty et al. 2003), we first examined 181 

whether the proportion of goshawk diet comprising these three raptor species changed with 182 

goshawk abundance (measured as a continuous variable) using the same GLMM approach 183 

described above. We then used dietary data to estimate the minimum number of each 184 

mesopredator species killed each year by goshawks when ≤14, 15-24 and 25+ goshawk home-185 

ranges were occupied (for methods see Appendix 2). We used these three goshawk abundance 186 

categories to keep broadly similar sample sizes despite large variation in the number of prey 187 

remains recovered each year (range  10- 678). Temporal variation in predation rates on kestrel, 188 

tawny owl and sparrowhawk were then compared to changes in the local population dynamics 189 
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of these species. Annual counts of territorial kestrel pairs in and around the forest have been 190 

recorded since 1975 as part of a larger study on merlins (Falco columbarius; Newton, Meek & 191 

Little 1986; Little, Davison & Jardine 1995). Breeding tawny owls have been monitored 192 

continuously in a subsection of the forest since 1979 (Petty 1992, Petty et al. 1994, Hoy et al. 193 

2015). The number of occupied sparrowhawk territories in a subsection of the study area has 194 

been recorded since 1974 (Petty 1979; Petty et al. 1995). 195 

 196 

Assessing food limitation 197 

Declines in important prey  198 

To indirectly infer if the goshawk population had become food-limited we assessed whether 199 

there had been any decline in the contribution of important prey species/groups in the diet. We 200 

first examined how the dominance of main prey species in the diet changed as the goshawk 201 

population expanded. This was done by ranking species from most to least important, firstly in 202 

terms of their frequency contribution to diet and then in terms of their biomass when the number 203 

of occupied goshawk home-ranges was ≤14, 15-24 and 25+. A full list of species killed by 204 

goshawk and their mean body mass values used in biomass calculations can be found in 205 

Appendix 3. Certain taxonomic groups are known to be important to goshawk diet. For 206 

example, Columbiformes are an important prey for goshawks across most of Europe, 207 

comprising up to 69% of all prey items (reviewed in Rutz et al. 2006). Whereas, Tetraonidae 208 

comprised almost 80% of goshawk diet in some years at northerly latitudes, and in southern 209 

Europe Lagomorphs were an important prey source (reviewed in Kenward 2006). We therefore 210 

categorised prey into taxonomic groups as follows: raptors, pigeons (Columbiformes), corvids 211 

(Corvidae), game birds (Tetraonidae and Phasianidae) mammals (mainly Lagomorpha, and 212 

Sciuridae), and ‘other’. This ‘other’ group largely consists of passerines but also includes other 213 

prey species, which are only occasionally taken. We then estimated both the frequency and 214 
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biomass contribution of these groups to goshawk diet and examined how the frequency 215 

contribution varied in relation to goshawk abundance (measured as a continuous variable) 216 

using the same GLMM approach. We were unable to assess whether variation in the proportion 217 

of goshawk diet comprised of these different prey species/groups were related to changes in 218 

the abundance of these prey species/groups as local population trends were not available. 219 

Lastly, because diet diversity had generally been observed to increase in other raptor 220 

populations as they became food-limited (Rutz and Bijlsma 2006, Lourenço et al. 2011a), we 221 

also examined how prey diversity changed with goshawk abundance using estimates of the 222 

Shannon-Wiener diversity index when ≤14; 15-24; 25+ goshawk home-ranges were occupied.   223 

 224 

Goshawk reproductive success 225 

We also indirectly assessed whether the goshawk population had become food-limited by 226 

examining how goshawk reproductive success varied in relation to the number of occupied 227 

home-ranges (measured as a continuous variable). In this analysis, we used two different 228 

measures of reproductive success: the average number of chicks fledged per successful 229 

breeding attempt and the proportion of breeding attempts which failed. We did not analysed 230 

variation in goshawk reproductive success prior to 1977 because goshawks did not reproduce 231 

successfully until a few years after the first home-ranges became established. Because the 232 

relationship between goshawk abundance and the number of chicks fledged per successful 233 

breeding attempt appeared to be non-linear we used generalised additive models (GAM) to 234 

characterise this relationship, fitted using the mgcv package (Wood 2015). In contrast, the 235 

relationship between the proportion of failed goshawk breeding attempts and goshawk 236 

abundance could be adequately characterised by generalised linear models (GLM) with a 237 

binomial error structure. All analyses were carried out in R version 3.0.3 (R Core Development 238 

Team 2015). Descriptive statistics are presented as the mean ± 1SD. 239 
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 240 

RESULTS 241 

Superpredation increased during the colonisation process  242 

Overall, raptors comprised 6% of all identifiable prey killed by goshawks (N= 7763) and 243 

represented 4% of goshawk prey in terms of biomass (Appendix 4). There was a per capita 244 

increase in superpredation as goshawks recovered, with the proportion of goshawk diet 245 

comprised of raptors increasing from 2% to 8% as the number of goshawk home-ranges 246 

increased from ≤14 to ≥25. However, the proportion of raptors in goshawk diet was best 247 

modelled by an interaction between goshawk abundance and the altitude of the goshawk home-248 

range (Table 1). The contribution of raptors to goshawk diet increased with goshawk 249 

abundance in home-ranges at the two lower elevations bands (≤ 225m and 226-354m). However, 250 

there was no significant change in the proportion of raptors in the diet at higher altitudes (e.g., 251 

above 350m), where the contribution of raptors to goshawk diet was highest (Fig. 1a).  252 

 253 

Impact on local mesopredator populations  254 

Kestrels and tawny owls were both ranked within the 10 most important prey species, both in 255 

terms of their frequency and biomass contribution to diet (Table 2). Kestrels were the most 256 

commonly predated raptor species, representing almost half (49%) of all raptors killed by 257 

goshawks (N = 465; Appendix 5). However, this proportion declined from 55% to 39% as the 258 

number of occupied goshawk home-ranges increased from <15 to >24 (Appendix 5). Kestrels 259 

contributed most to goshawk diet in high altitude home-ranges (Fig. 2a). The number of 260 

kestrels estimated to be killed each year by the goshawk population initially increased with 261 

goshawk abundance, from 14 [11-18 95% CI] when fewer than 15 goshawk home-ranges were 262 

occupied to 223 [197-248 95% CI] when 15-24 home-ranges were occupied. However, it then 263 

declined to 176 [154-198 95% CI] when more than 24 goshawk home-ranges were occupied 264 
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(Table 3). At the same time, there has been a substantial decline in the number of kestrel pairs 265 

recorded breeding in the study site. For example, there were 29 breeding pairs in 1981 266 

compared to only five pairs in 2014. 267 

 268 

Tawny owls then sparrowhawks were the next most commonly preyed upon raptor species, 269 

representing 23% and 10% respectively of all raptors killed by goshawks (Appendix 5). The 270 

contribution of both tawny owls and sparrowhawks in goshawk diet increased as the number 271 

of goshawk home-ranges increased; however, there was no evidence to suggest that it varied 272 

with altitude (Table 1; Fig.2b-c). The rank order importance of tawny owls to goshawk diet 273 

also increased from 9 to 7 as the number of occupied goshawk home-ranges increased from 274 

15-24 to ≥25 (Table 2). Our estimates suggested there was huge increase in the number of 275 

tawny owls killed by goshawks each year, from an average of 5 [3-8 95% CI] to 159 owls [141-276 

176 95% CI] as the number of occupied goshawk home-ranges increased from <15 to >24 277 

(Table 3). The number of sparrowhawks killed by goshawks was also estimated to increase, 278 

from 1 [1-2 95% CI] to 53 [44-61 95% CI] as the number of occupied goshawk home-ranges 279 

increased from <15 to >24 (Table 3). Despite the estimated increase in predation on both tawny 280 

owls and sparrowhawks, there was no evidence to suggest that local populations had declined. 281 

That is, there was little interannual variation in the number of occupied tawny owl territories, 282 

which averaged 56 ± 4.07 between 1985-2014 (Hoy et al. 2015), and sparrowhawks were 283 

known to occupy 7-14 home-ranges between 1974-1979 (Petty 1979) and 7-16 home-ranges 284 

between 2002-2014 (unpublished data). 285 

 286 

Assessing food limitation  287 

Declines in important prey species/groups 288 
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Almost half (48%) of all identifiable prey items were pigeons (Appendix 4). Wood pigeon 289 

(Columba palumbus) then feral pigeon were the two commonest prey species, irrespective of 290 

the number of goshawk home-ranges occupied (Table 2). The proportion of pigeons in 291 

goshawk diet declined over the study period as goshawk abundance increased, irrespective of 292 

home-range altitude (Fig. 1b; Table 4). For example, the biomass contribution of pigeons to 293 

diet declined from 52% to 40% as the number of home-ranges increased from <15 to >24. This 294 

decline in pigeon in goshawk diet appeared to be driven by a decrease in feral rather than wood 295 

pigeons. The contribution of pigeons to goshawk diet was lowest in higher altitude home-296 

ranges, where moorland habitat predominated (Fig 1b; Table 4).  297 

 298 

Crow/rook, red grouse and rabbit consistently ranked within the top-5 most important prey 299 

species, both in terms of biomass and frequency contribution to diet, irrespective of the number 300 

of goshawk home-ranges occupied (Table 2). The proportion of corvids and mammals in the 301 

diet increased with goshawk abundance (Fig 2c-d). For example, corvids and mammals 302 

comprised 11% and 4% respectively of diet (in terms of frequency) when <15 home-ranges 303 

were occupied, but 19% and 8% of diet respectively when >24 home-ranges were occupied 304 

(Appendix 4). In contrast, the contribution of game birds (including red grouse) declined as 305 

goshawk abundance increased, in all three altitudinal categories (Table 4; Fig. 2e). Although 306 

the dietary contribution of corvids and mammals did not vary with altitude, the proportion of 307 

game birds (especially red grouse) was noticeably higher for high altitude home-ranges (e.g., 308 

above 350m; where moorland habitat is more common). Goshawk diet also became more 309 

diverse as goshawk abundance increased, with the Shannon-Wiener diversity index increasing 310 

by 24% from 2.1 to 2.6 when the number of occupied goshawk territories increased from being 311 

<15 to >24. 312 

 313 
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Declines in reproductive success 314 

Overall the reproductive success of goshawks declined as the number of occupied home-ranges 315 

increased. This decline appeared to be driven by both a decline in the average number of chicks 316 

fledging per successful breeding attempt and an increase in the number of nesting attempts 317 

failing (Fig. 3). The number of chicks fledging per successful breeding attempt decreased from 318 

an average of 2.90 ± 0.24 chicks to 2.29± 0.36 chicks as the number of occupied goshawk 319 

home-ranges increased from <15 to >24 (Fig. 3a). The proportion of successful breeding 320 

attempts declined from an average of 0.81 ± 0.18 to 0.58 ± 0.14 when the number of occupied 321 

home-ranges increased from < 15 to > 24 (Fig. 3b). 322 

 323 

DISCUSSION 324 

Superpredation has increased during the recolonization process 325 

The amount of superpredation in our study site, particularly in recent years, is noticeably higher 326 

than recorded elsewhere. For example, raptors comprised up to 8% of goshawk diet in Kielder 327 

Forest when goshawk abundance was high (Appendix 4) which is higher than the average of 328 

2% estimated in a review of goshawk diet in Europe (Rutz et al. 2006, Lourenço et al. 2011a). 329 

Whilst many other studies provide a snapshot indication of the frequency of superpredation in 330 

a given system, relatively few have documented temporal variation in the frequency of 331 

superpredators killing other predators (but see Serrano 2000, Rutz and Bijlsma 2006), 332 

particularly in a recovering superpredator population. That there was a per capita increase in 333 

superpredation as the goshawk population recovered (Fig. 1a) has potentially important 334 

implications for conservation and management, because similar increases in superpredation 335 

may be expected in other superpredator populations currently recolonising former ranges in 336 

both North America and Europe (Maehr et al. 2001, Deinet et al. 2013, Chapron et al. 2014). 337 

For example, if increases in superpredation negatively affect the dynamics of mesopredator 338 
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species which are also of conservation concern it could lead to management conundrums for 339 

conservation projects aimed at restoring apex predator populations. However, it is important to 340 

note that when apex predator populations were reduced or extirpated, many previously 341 

suppressed mesopredator populations increase dramatically (Soulé et al. 1988, Crooks and 342 

Soulé 1999, Ritchie and Johnson 2009). Consequently, any declines in mesopredator 343 

populations which accompany the restoration of large predators may represent the reversal of 344 

this “mesopredator release” process (i.e., mesopredator suppression), rather than a shift to a 345 

new state.  346 

 347 

Impact on local mesopredator populations 348 

It’s important to note that our calculations of how many kestrels, tawny owls and sparrowhawks 349 

were killed by goshawks each year is not only likely to include breeding birds (i.e. the ones on 350 

which local population counts were based) but also non-breeders (e.g., “floaters”), individuals 351 

migrating through the study site (in the case of kestrels) and immigrants from neighbouring 352 

populations. Nevertheless, the large increase in the number of kestrels being killed each year 353 

(from an estimated 14 to 176; Table 3) coincided with a decline in the local kestrel population, 354 

which is consistent with an increase in goshawk predation having a negative impact upon the 355 

local kestrel population. However, the decline in kestrels could also be partly related to other 356 

factors, such as habitat changes or a decline in the amplitude of field vole (Microtus agrestis) 357 

population cycles in the study area (Cornulier et al. 2013), as they are the main prey for kestrels 358 

in our study site. Nevertheless, our results suggest that goshawks were killing a progressively 359 

greater proportion of a declining kestrel population, which may have contributed to the study 360 

area becoming a sink habitat, as previously suggested by Petty et al. (2003a). 361 

 362 
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In contrast, local breeding population of tawny owls and sparrowhawks did not decline over 363 

the study period, despite the substantial increase in the number killed each year by goshawks 364 

(Table 3; Fig. 2). This suggests that goshawk predation on tawny owls and sparrowhawks is 365 

compensatory rather than additive. Indeed, the impact of goshawk predation on the local tawny 366 

owl population is likely to be mitigated by goshawks selectively killing individuals with low 367 

reproductive values (e.g. juveniles and old owls, which have a lower probability of surviving 368 

and reproducing than prime-aged adults Millon et al. 2010, 2011), thus reducing the overall 369 

impact of predation at the population level (Hoy et al. 2015). Another factor which may be 370 

compensating for the increase in goshawk predation on tawny owls is the increase in 371 

immigrants entering the local population in recent years (Millon et al. 2014). Hence, goshawk 372 

predation may also have led to Kielder becoming a sink habitat for tawny owls. Unfortunately, 373 

we do not have equivalent data for sparrowhawks to be able to evaluate whether changes in 374 

immigration and/or selective predation of individuals with low reproductive values was also 375 

mitigating the impact of increased goshawk predation.   376 

 377 

Goshawks have become food-limited 378 

The substantial decline of two main prey groups (pigeon and game birds) in goshawk diet, the 379 

increase in diet diversity and decrease in goshawk reproductive success are all consistent with 380 

the goshawk population becoming increasingly food-limited as the population increased. The 381 

decline of pigeon and game birds in goshawk diet over the study period (Figs. 2b and 2c), 382 

presumably reflected a decline in the availability of two important prey species, namely feral 383 

pigeon and red grouse. Although, we cannot directly compare observed changes in the 384 

prevalence of feral pigeon and red grouse in diet to changes in their abundance (because 385 

regional population trends are not available), there is indirect evidence to suggest that the 386 

availability of these two prey species has declined. At a national level there has been a long-387 
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term decline in red grouse populations in England, and feral pigeon populations are also 388 

thought to have declined by 26% since 1995 (Robinson et al. 2015). The decline in feral pigeons 389 

in goshawk diet may also be related to a decline in the number of stray racing pigeons entering 390 

the forest, because of a sustained decrease in the number of people participating in pigeon 391 

racing since the late 1980’s (RPRA 2012). Furthermore, there is also anecdotal evidence of a 392 

local decrease in the abundance of red grouse and their main habitat over the study period 393 

(M.D., personal observation). 394 

 395 

The increase in diet diversity we observed also indirectly supports the notion that there has 396 

been a decline in the availability of important prey, because when such food become scarce, 397 

predators are forced to switch to alternative species to make up the shortfall. Indeed, diet 398 

diversity was found to be negatively related to the abundance of important prey species for 399 

both goshawks (Rutz and Bijlsma 2006), sparrowhawks (Millon et al. 2009) and Eagle owls 400 

(Bubo bubo; Serrano 2000). Thus, together our results are consistent with goshawks switching 401 

to alternative prey species (raptors, corvids and mammals) as the availability of preferred prey 402 

species (e.g. feral pigeons and grouse) declined and they become food limited. 403 

 404 

The decline in goshawk reproductive success as  goshawk numbers increased (Fig. 3) provided 405 

additional and independent evidence that goshawks became food-limited given that goshawk 406 

reproductive success is known to be positively related to food availability (Rutz and Bijlsma 407 

2006). A decline in reproductive success could also arise if goshawks had smaller home-ranges 408 

in high density years. However, this seems unlikely given that the average distance between 409 

goshawk nest sites has varied little since the mid-80’s (mean distance between nest sites = 3.97 410 

km ± 0.43; coefficient of variation = 0.11). A decline in reproductive success with increasing 411 

density could also arise if individuals establishing home-ranges in later years were forced to 412 
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settle in “poor-quality sites” because all the “good-quality sites” were already occupied 413 

(Rodenhouse et al. 1997). Although the biggest decline in reproductive success was observed 414 

in territories established towards the end of the study period, reproductive success also declined 415 

in territories established in the early and mid-part of the study period (Appendix 6). One likely 416 

reason for the decline in reproductive success, hence food availability being population wide 417 

(rather than restricted to certain home-ranges), may be because goshawk hunting ranges 418 

overlap (Kenward 2006), such that individuals nesting in the later established “poor-quality 419 

sites” may still forage and deplete prey in areas used for hunting by birds nesting in “good-420 

quality site”.   421 

 422 

Mechanisms underlying superpredation  423 

The increase in the proportion of raptors in the diet as goshawk abundance increased (Fig. 1), 424 

viewed in combination with the results of other analyses is consistent with predictions for the 425 

food-limitation hypothesis of superpredation. That is, as the availability of preferred prey 426 

(pigeon and grouse) declined goshawks appear to have switched to alternative, less profitable 427 

prey species, such as raptors. Furthermore, predictions of alterative hypotheses were not 428 

supported by our data. For example, if superpredation was purely opportunistic then changes 429 

in the frequency of mesopredator species in the diet are expected to reflect changes in 430 

mesopredator abundance (Polis et al. 1989). However, the contribution of kestrels to goshawk 431 

diet was higher in the later part of the study, despite kestrels declining. Furthermore, only two 432 

buzzards were known to have been killed by goshawks, despite a substantial increase in the 433 

abundance of buzzards in the forest since 1995 (over 80+ home-ranges now occupied). Our 434 

results also do not provide support for the predator-removal hypothesis given that the raptor 435 

species killed by goshawks were of no or little threat either to adult or juvenile goshawks 436 

(Appendix 5). Support for the competitor removal-hypothesis is also lacking because the 437 
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majority (83%) of raptors killed by goshawks are unlikely to compete with goshawks for food 438 

as they are largely dependent on field voles (e.g., kestrels and tawny owls; Appendix 5), yet 439 

voles only make up 0.06% of goshawk diet in terms of biomass. Furthermore, buzzards were 440 

seldom preyed upon by goshawks, yet they are known to compete with goshawks for nest sites 441 

and kill some of the same species as goshawks (Bijlsma 1994, Krüger 2002a, b). We therefore 442 

conclude that food limitation is the most likely driver of superpredation in this system given: 443 

1) the decline in two main prey groups, the increase in diet diversity and the decrease in 444 

goshawk reproductive success suggest that the goshawk population has become food-limited; 445 

2) superpredation does not appear to be purely opportunistic, given that variation in goshawk 446 

predation on different raptor species did not mirror local mesopredator population trends; and 447 

3) the species of mesopredator killed offer little support for either the predator- or competitor-448 

removal hypotheses of superpredation.  449 

 450 

CONCLUSIONS 451 

Here we have provided evidence to show how superpredation varied over time in a recovering 452 

population of an apex predator, the northern goshawk. Our results suggest that increasing rates 453 

of superpredation were a response to declining food availability (pigeon and grouse) linked to 454 

increasing goshawk numbers. Thus, this study offers insights into the mechanisms driving 455 

variation in superpredation. We found evidence suggesting that an increase in goshawk 456 

predation may be contributing to a decline in the most frequently predated mesopredator, 457 

Eurasian kestrels, a species which is also of conservation concern nationally. Thus, our results 458 

indicate that superpredation is likely to be an important factor to consider when developing 459 

conservation and management strategies for mesopredator species in the future. However, 460 

rather than a shift to a new alternative state, we suggest that the decline in kestrel numbers (and 461 

their likely persistence in refuges/areas with lower superpredator abundance) possibly 462 
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represents a reversal of a mesopredator release process (i.e. mesopredator suppression) 463 

following the extirpation of goshawks, and decline in other larger raptor species in the UK. 464 

Thus the results presented here may also offer insights into how other raptor communities will 465 

change in areas where goshawks are starting to recover. Lastly, in addition to the direct effect 466 

that an increase in predation can have on mesopredator population dynamics by increasing 467 

mortality rates, it is also important to consider that recovering superpredator populations may 468 

also be influencing mesopredator dynamics by negatively affecting mesopredator reproduction 469 

success. For example, mesopredators are more likely to abandon breeding attempts when 470 

superpredator densities are high (Mueller et al. 2016, Hoy et al. 2016). 471 

 472 
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Table 1. Model selection and parameters for the analysis of variation in the proportion of goshawk diet comprised of all raptor species and also kestrels, tawny 

owls and sparrowhawks separately. We examined whether diet varied in relation to goshawk abundance (number of home-ranges occupied) and the altitude of 

the goshawk home-range (e.g., below 225m, between 226-354m and above 355m). The most parsimonious model will have a ∆AICc = 0 and is highlighted in 

bold. The number of parameters estimated in each model is designated in the np column. AICc weights (W) are an estimate of the relative likelihood of a 

model. 

  
Model 

  All raptors   Kestrel   Tawny owl   Sparrowhawk 

  np Estimate SE ΔAICc W   Estimate SE ΔAICc W   Estimate SE ΔAICc W   Estimate SE ΔAICc W 

1. Null 2   26.74 <0.01    11.87 <0.01    13.51 <0.01    9.36 0.01 

2. Goshawk abundance (GA) 4 0.06 0.02 14.46 <0.01  0.02 0.02 12.53 <0.01  0.11 0.03 0 0.84  0.12 0.04 0 0.61 
3. Altitude (226-354m) 5 -0.01 0.19 13.2 <0.01  -0.18 0.26 2.7 0.18  0.15 0.35 17.09 <0.01  -0.2 0.49 9.89 <0.01 

 Altitude (above 355m)  0.95 0.28   
 0.96 0.38   

 0.36 0.52   
 0.92 0.76   

4. Altitude (226-354m) 6 0.03 0.18 4.89 0.08  -0.15 0.25 3.94 0.1  0.22 0.34 3.66 0.13  -0.12 0.47 2.66 0.16 

 Altitude (above 355m)  0.84 0.27   
 0.95 0.38   

 0.14 0.5   
 0.58 0.72   

 + Goshawk abundance  0.05 0.02   
 0.02 0.02   

 0.11 0.03   
 0.11 0.04   

5. Altitude (226-354m) 8 -0.87 0.68 0 0.92  -0.98 0.93 0 0.71  -0.72 1.62 6.94 0.03  -4.18 1.94 2.07 0.22 

 Altitude (above 355m)  2.57 1.01   
 3.18 1.26   

 -2.98 3.73  
  -1.22 3.97  

 
 Goshawk abundance  0.03 0.03   

 0.01 0.04   
 0.08 0.06  

  0.01 0.06  
 

 Altitude (226-354m) x GA  0.04 0.03   
 0.04 0.04   

 0.04 0.06  
  0.16 0.08  

 
  Altitude (above 355m) x GA   -0.07 0.04       -0.09 0.05       0.11 0.13       0.07 0.15     
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Table 2. The 10 most important prey species in northern goshawk breeding season diet, ranked in order of decreasing importance in terms of both their 
frequency in the diet and biomass contribution to diet when the number of occupied goshawk home-ranges was estimated to be less than 14, between 15-24 
and 25 or more. 

  Frequency    Biomass 

 Species 
rank 

<14 occupied 
goshawk home-

ranges  
n 

15-24 occupied 
goshawk home-

ranges 
n 

>25 occupied 
goshawk home-

ranges 
n Species 

rank 

<14 occupied 
goshawk home-

ranges  

15-24 occupied 
goshawk home-

ranges 

>25 occupied 
goshawk home-

ranges 

1. Feral pigeon 531 Wood pigeon 848 Wood pigeon 625 1. Wood pigeon Wood pigeon Wood pigeon 
2. Wood pigeon 488 Feral pigeon 752 Feral pigeon 479 2. Red grouse  Crow/rook Crow/rook 
3. Red grouse 277 Crow/rook 597 Crow/rook 383 3. Feral pigeon  Feral pigeon Rabbit 
4. Crow/rook 149 Red grouse 221 Red grouse 133 4. Crow/rook Rabbit Feral pigeon 
5. Jay 35 Kestrel 128 Rabbit 108 5. Rabbit  Red grouse Red grouse 
6. Song thrush  30 Rabbit 126 Red squirrel 89 6. Pheasant  Pheasant Pheasant 
7. Mistle thrush 27 Mistle thrush 85 Mistle thrush 88 7. European hare  Kestrel Tawny owl 
8. Field vole  25 Red squirrel 84 Jay 78 8. Jay  Red squirrel  Red squirrel 
9. Kestrel 24 Song thrush 78 Kestrel 76 9. Mallard  Tawny owl  Kestrel 

10. Red squirrel 22 Jay 61 Tawny owl 69 10. Kestrel  Mistle thrush  Jay 
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Table 3. Estimated number of kestrels, tawny owls and sparrowhawks killed during the breeding season (March-August) each year by the Kielder Forest 
goshawk population when the number of occupied goshawk home-ranges was estimated to be less than 14, between 15-24 and 25 or more. 

 

 

Species Occupied goshawk 
home-ranges 

Estimated % biomass 
of goshawk diet 

Average number 
killed per pair 

Mean number killed 
each year the by entire 
goshawk population 

95% CI 
lower bound 

95% CI 
upper bound 

 < 14 0.47 2.20 14 11 18 
Kestrel 15-24 2.29 10.23 223 197 248 
 > 25 1.63 6.44 176 154 198 
 < 14 0.34 0.70 5 3 6 
Tawny owl 15-24 1.69 3.33 72 62 83 
 > 25 3.32 5.79 159 141 176 
 < 14 0.04 0.21 1 1 2 
Sparrowhawk 15-24 0.37 1.66 36 28 45 
 > 25 0.48 1.92 53 44 61 
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 Table 4. Model selection and parameters for the analysis of variation in the proportion of goshawk diet comprised of different prey groups (pigeons, corvids, 

game birds, mammals and other). We examined whether diet varied in relation to goshawk abundance (number of home-ranges occupied) and the altitude of 

the goshawk home-range (e.g., below 225m, between 226-354m and above 355m). The most parsimonious model will have a ∆AICc = 0 and is highlighted in 

bold. The number of parameters estimated in each model is designated in the np column. AICc weights (W) are an estimate of the relative likelihood of a 

model. 

Model 
  Pigeons Corvids Game birds Mammals Other 

np Estimate SE ΔAICc W Estimate SE ΔAICc W Estimate SE ΔAICc W Estimate SE ΔAICc W Estimate SE ΔAICc W 

Null 2   16.82 <0.01   7.94 0.02   23.01 <0.01   2.60 0.19   6.77 0.03 

Goshawk abundance (GA) 4 -0.02 0.01 10.49 <0.01 0.04 0.01 0 0.8 -0.03 0.01 9.66 0.01 0.03 0.01 0 0.68 0.03 0.01 0 0.77 

Altitude (226-354m) 5 0.04 0.10 4.04 0.08 -0.11 0.12 10.96 <0.01 0.32 0.22 22.75 <0.01 -0.05 0.17 6.55 0.03 -0.05 0.13 9.21 0.01 

Altitude (above 355m)  -0.42 0.15   -0.02 0.19   0.55 0.26   0.001 0.26   0.16 0.20   

Altitude (226-354m) 6 0.03 0.10 0 0.62 -0.09 0.12 3.55 0.14 0.29 0.21 0 0.64 -0.03 0.17 4.04 0.09 -0.04 0.13 3.20 0.16 

Altitude (above 355m)  -0.40 0.15   -0.04 0.19   0.85 0.26   -0.06 0.26   0.12 0.20   

+ Goshawk abundance  -0.02 0.01   0.04 0.01   -0.04 0.01   0.03 0.01   0.03 0.01   

Altitude (226-354m) 8 -0.29 0.34 1.54 0.29 -0.12 0.42 5.96 0.04 0.30 0.60 1.15 0.36 0.01 0.64 7.76 0.01 0.32 0.49 6.10 0.04 

Altitude (above 355m)  -1.29 0.60   0.77 0.71   -0.78 1.15   -0.83 1.39   1.03 0.89   

Goshawk abundance  -0.03 0.01   0.04 0.02   -0.04 0.02   0.03 0.03   0.05 0.02   

Altitude (226-354m) x GA  0.01 0.01   0.002 0.02   -0.001 0.03   -0.002 0.03   -0.01 0.02   

Altitude (above 355m) x GA   0.04 0.02     -0.03 0.03     0.06 0.04     0.03 0.05     -0.04 0.03     
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Figure Legends 

 

Figure 1. Changes in the proportion of northern goshawk breeding season diet comprised of: 

a) raptors; b) pigeons; c) corvids; d) mammals; e) game birds and f) other species as the number 

of occupied goshawk home-ranges increased in Kielder Forest, UK. Error bars are the 95% 

confidence intervals.  

 

Figure 2. Changes in the proportion of northern goshawk breeding season diet comprised of: 

a) kestrels; b) tawny owls; c) sparrowhawks as the number of occupied goshawk home-ranges 

increased in Kielder Forest, UK. Error bars are the 95% confidence intervals.  

 

Figure 3. Inter-annual variation in goshawk reproductive success measured as: a) the number 

of chicks fledged per successful breeding attempt (line represents predicted values generated 

from a GAM) and b) the proportion of breeding attempts which were successful (line represents 

predicted values generated from a GLM) as the number of occupied goshawk home-ranges 

increased in Kielder Forest, UK. 
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Appendix 1: The number of occupied northern goshawk home-ranges in Kielder Forest, UK 
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Appendix 2: The average number of kestrels, tawny owls and sparrowhawks killed by the 

goshawk population each year 

 

To estimate the average number of each species killed by the goshawk population each year, 
we first calculated the average number of each species killed per pair of goshawks, each year 
when 1-14, 15-24 and 25+ goshawk home-ranges were occupied, using the following equation 
taken from Petty et al. (2003).  
  

IK = (CF + CM + CY) * (PT) / M 

 

IK is the estimated number of individuals killed by a pair of goshawks between March and 
August (184 days). CF = estimated total food consumption of a female goshawk during the 
breeding season (189g of food per day * 184 days). CM = total food consumption of a male 
goshawk during the breeding season (133g of food per day * 184 days). The daily food 
consumption values used for male and female goshawk are the same as those used by Petty et 
al. (2003), originally calculated by Kenward et al. (1981). CY = total food consumption of 
young goshawks (i.e. offspring) during the breeding season (161g of food per day (CF+CM/2) 
* 108 days * mean fledged brood size of breeding pairs). The mean fledged brood size of 
goshawks was 2.19 in years when fewer than 15 home-ranges were occupied, 1.93 when 15-
24 home-ranges were occupied and 1.31 when 25 or more home-ranges were occupied. The 
CY estimate assumes that young goshawks: 1) hatch around mid-May; 2) do not leave their 
natal territory until August; and 3) that juveniles have the same overall food intake as adults. 
Although young nestlings require less food than adults, older nestlings require more, such that 
when averaged over the entire period nestling food intake can be assumed to be equivalent to 
that of adults. M = average mass of the prey species. We used an average mass of 208g for 
kestrel (Ratcliffe 1993); 470g for tawny owl and 205g for sparrowhawk (Robinson 2005). PT 
= proportion biomass of the prey species in the diet. We used the dietary data to estimate of the 
proportion biomass of each of the three mesopredator species in goshawk diet for each of the 
three goshawk abundance categories (i.e. using pooled annual diet data collected when the 
number of occupied goshawk home-ranges was 1-14, 15-24 and 25+). This average proportion 
was then used in the above equation to calculate the number of individuals of each species 
killed during the breeding season by a goshawk pair. To get an estimate of the total number of 
each species killed each year by the entire goshawk population and how that has changed as 
the goshawk population increased in abundance, we multiplied our estimate of the number of 
individuals killed by a pair of goshawks (IK) by the average number of home-ranges occupied 
by goshawks for each of the goshawk abundance categories. The average number of home-
ranges occupied in each goshawk abundance category was estimated to be 6.5, 21.75 and 27.38 
when 1-14, 15-24 and 25+ goshawk home-ranges were occupied respectively. 
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Appendix 3: List of the species killed by northern goshawks in Kielder Forest, and the taxonomic 

prey group they were assigned to, along with the body mass used for each species to estimate their 

percentage biomass contribution to goshawk diet. We were not always able to differentiate between 

male and female prey remains, consequently we used the midpoint between the average mass for 

males and females in our biomass estimates. Body mass estimates for birds were obtained from the 

British Trust for Ornithology’s website (www.bto.org/birdfacts) and mass estimates for mammals 

were obtained from the British Mammal Societies website (http://www.mammal.org.uk).  

Prey group Common name Mass (g) 
Corvid Carrion crow/rook (Corvus corone/C. frugilegus 510 
Corvid Eurasian jay (Garrulus glandarius) 170 
Corvid Jackdaw (Corvus monedula) 220 
Corvid Magpie (Pica pica) 220 
Corvid Raven (Corvus corax) 1200 
Game Black grouse  (Tetrao tetrix)  1065 
Game Pheasant (Phasianus colchicus) 1190 
Game Red grouse (Lagopus lagopus scotica) 600 
Game Red-legged partridge (Alectoris rufa) 490 

Mammal Common shrew (Sorex araneus)  9.5 
Mammal European hare (Lepus europaeus) 3500 
Mammal European rabbit  (Oryctolagus cuniculus)  1600 
Mammal Field vole (Microtus agrestis) 30 
Mammal Grey squirrel (Sciurus carolinensis) 552.5 
Mammal Mole (Talpa europaea) 100 
Mammal Pygmy shrew (Sorex minutus) 4 
Mammal Rat (Rattus norvegicus) 360 
Mammal Red squirrel  (Sciurus vulgaris) 200 
Mammal Stoat (Mustela erminea) 266.25 
Mammal Weasel (Mustela nivalis) 90.25 

Other Blackbird (Turdus merula) 100 
Other Black-headed gull (Chroicocephalus ridibundus) 290 
Other Blue tit (Cyanistes caeruleus) 10.5 
Other Budgerigar (Melopsittacus undulatus) 35 
Other Chaffinch (Fringilla coelebs) 24 
Other Coal tit (Periparus ater) 9 
Other Common frog (Rana temporaria) 22.7 
Other Common gull (Larus canus) 400 
Other Common lizard (Zootoca vivipara) 4 
Other Common toad (Bufo bufo) 55 
Other Crossbill (Loxia curvirostra) 43 
Other Cuckoo (Cuculus canorus) 120 
Other Curlew (Numenius arquata) 985 
Other Domestic chicken  (Gallus gallus domesticus) 1900 
Other Eurasian bullfinch (Pyrrhula pyrrhula) 21 
Other Fieldfare (Turdus pilaris) 100 
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Prey group Common name Mass (g) 
Other Goldcrest (Regulus regulus) 6 
Other Great spotted woodpecker (Dendrocopos major) 85 
Other Great tit (Parus major) 18.5 
Other Green woodpecker (Picus viridis) 190 
Other Kittiwake (Rissa tridactyla) 410 
Other Lapwing (Vanellus vanellus) 230 
Other Lesser black-backed gull (Larus fuscus) 830 
Other Lesser redpoll (Acanthis cabaret) 11 
Other Mallard (Anas platyrhynchos) 1090 
Other Meadow pipit/tree pipit (Anthus pratensis/A. trivialis) 19 
Other Mistle thrush  (Turdus viscivorus)  130 
Other Moorhen (Gallinula chloropus) 320 
Other Newt (Triturus vulgaris) 30 
Other Oyster catcher (Haematopus ostralegus) 540 
Other Pied wagtail (Motacilla alba) 21 
Other Redshank (Tringa totanus) 120 
Other Robin (Erithacus rubecula) 18 
Other Siskin (Spinus spinus) 15 
Other Skylark (Alauda arvensis) 38.5 
Other Snipe (Gallinago gallinago) 110 
Other Song thrush (Turdus philomelos) 83 
Other Starling (Sturnus vulgaris) 78 
Other Swallow (Hirundo rustica) 18.5 
Other Teal (Anas crecca) 330 
Other Tree creeper (Certhia familiaris) 10 
Other Whinchat (Saxicola rubetra) 17 
Other Willow warbler (Phylloscopus trochilus) 10 
Other Woodcock (Scolopax rusticola) 280 

Pigeon Collared dove (Streptopelia decaocto) 200 
Pigeon Feral pigeon (Columba livia) 300 
Pigeon Wood pigeon (Columba palumbus) 450 
Raptor Barn owl (Tyto alba) 300 
Raptor Common buzzard (Buteo buteo) 890 
Raptor Common kestrel  (Falco tinnunculus) 208 
Raptor Long-eared owl (Asio otus) 290 
Raptor Merlin (Falco columbarius) 205 
Raptor Northern goshawk (Accipiter gentilis)† 1000 
Raptor Short-eared owl (Asio flammeus) 330 
Raptor Sparrowhawk (Accipiter nisus) 205 
Raptor Tawny owl (Strix aluco)  470 

† Goshawk chicks were only included in the diet if there was evidence to suggest that it was a case of 
cannibalism rather than fledglings dying in the nest.
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Appendix 4: Variation in the proportion of northern goshawk diet made up different prey groups as goshawk abundance increased. Total refers to all dietary 

data collected during the breeding season between 1973 and 2014, the other columns show estimates from dietary data collected in years when 1-14, 15-24 and 

25 or more goshawk home-ranges were occupied.  

Prey group n   % Biomass  % Frequency 
  Total  1-14  15-24  25+   Total  1-14  15-24  25+   Total  1-14  15-24  25+ 
Pigeon (Columbidae) 3724 1019 1601 1104  43.37 51.80 41.75 39.82  47.97 57.18 46.61 43.36 
Corvid (Corvidae) 1379 190 694 495  19.15 11.52 22.18 20.25  17.76 10.66 20.20 19.44 
Game (Phasianidae, Tetraonidae) 748 296 287 165  15.55 25.46 13.97 10.91  9.64 16.61 8.36 6.48 
Mammal 541 74 255 212  14.08 6.13 15.16 18.05  6.97 4.15 7.42 8.33 
Raptor (Accipitridae, Falconidae, Strigidae) 465 44 225 196  4.35 2.05 4.16 6.17  5.99 2.47 6.55 7.70 
Other 906 159 373 374   3.50 3.04 2.77 4.80   11.67 8.92 10.86 14.69 

Total 7763 1782 3435 2546   100 100 100 100   100 100 100 100 
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Appendix 5: Occurrence of raptor species in the breeding season diet of a northern goshawk population in Kielder Forest, UK when the number of goshawk 
home-ranges occupied each year was estimated to  be 1-14, 15-24 and 25 or more. 

Species n   % Biomass   % Frequency   % of raptors 
  Total  1-14 15-24 25+   Total  1-14 15-24 25+   Total  1-14 15-24 25+   Total  1-14 15-24 >25 

Common kestrel * 228 24 128 76  1.46 0.68 1.83 1.48  2.94 1.35 3.73 2.99  49.03 54.55 56.89 38.78 
Tawny owl * 106 7 30 69  1.53 0.45 0.97 3.04  1.37 0.39 0.87 2.71  22.80 15.91 13.33 35.20 
Sparrowhawk 48 2 22 24  0.30 0.06 0.31 0.46  0.62 0.11 0.64 0.94  10.32 4.55 9.78 12.24 
Short-eared owl * 23 7 14 2  0.23 0.32 0.32 0.06  0.30 0.39 0.41 0.08  4.95 15.91 6.22 1.02 
Barn owl * 14 0 3 11  0.13 0 0.06 0.31  0.18 0 0.09 0.43  3.01 0 1.33 5.61 
Long-eared owl * 17 0 12 5  0.15 0 0.24 0.14  0.22 0 0.35 0.20  3.66 0 5.33 2.55 
Merlin  14 0 12 2  0.09 0 0.17 0.04  0.18 0 0.35 0.08  3.01 0 5.33 1.02 
Northern goshawk  13 4 3 6  0.40 0.55 0.21 0.56  0.17 0.22 0.09 0.24  2.80 9.09 1.33 3.06 
Common buzzard  2 0 1 1   0.05 0 0.06 0.08   0.03 0 0.03 0.04   0.43 0 0.44 0.51 

* Denotes raptor species which are dependent on field voles. 

 



39 
 

Appendix 6: The proportion of goshawk breeding attempts which were successful (i.e. fledged 

at least one chick) shown in relation to goshawk abundance (number of occupied goshawk 

territories) and according to when the goshawk home-range first became established. Numbers 

in parentheses are the total number of breeding attempts for each category.   

Home-ranges 
established  

Number of occupied goshawk home 
ranges  

≤ 14 15-24 ≥ 25 
Early (1973-1986) 0.73 (60) 0.76 (114) 0.51 (112) 
Middle (1987-2001) - 0.77 (96) 0.61 (125) 
Late (2002-2014) - 0.75 (20) 0.25 (44) 
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