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From scientific workflow patterns to S-star linked open data

Alban Gaignard

Nantes Academic Hospital, France
alban.gaignard@univ-nantes.fr

Abstract

Scientific Workflow management systems have been largely ado-
pted by data-intensive science communities. Many efforts have
been dedicated to the representation and exploitation of prove-
nance to improve reproducibility in data-intensive sciences. How-
ever, few works address the mining of provenance graphs to an-
notate the produced data with domain-specific context for better
interpretation and sharing of results. In this paper, we propose
PoeM, a lightweight framework for mining provenance in scientific
workflows. PoeM allows to produce linked in silico experiment re-
ports based on workflow runs. PoeM leverages semantic web tech-
nologies and reference vocabularies (PROV-O, P-Plan) to generate
provenance mining rules and finally assemble linked scientific ex-
periment reports (Micropublications, Experimental Factor Ontol-
ogy). Preliminary experiments demonstrate that PoeM enables the
querying and sharing of Galaxyﬂ»processed genomic data as 5-star
linked datasets.

Keywords Scientific Workflows, Provenance, Rules, Linked Data

1. Introduction

Life scientists generate tremendous amounts of biological data, es-
pecially in the field of genomics. The availability of next gener-
ation sequencing equipments led to an unprecedented growth of
sequenced human genomes. The number of data has been doubled
every 7 months (Stephens et al. |2015)), which even exceeds man-
ufacturers own predictions. Not only the volume of acquired raw
genomic sequences is rapidly growing, but also the volume of high
value-added processed data. The question is: are the underlying
infrastructures ready to preserve both the raw and the processed
data ? Sharing and reusing high value-added biomedical data
becomes crucial to limit the duplication of computing and stor-
age efforts.

Many guidelines to publish Findable, Accessible, Interoperable
and Reusable datasets have been propose(ﬂ. Tim Berners Lee pro-
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poses the 5-star modeﬂ to enhance data sharing through Linked
Open Data principles. These principles have been used to assem-
ble reference Linked Open Dataset and Ontologies in Life Sci-
ences (Noy et al. |2009; [Callahan et al. |2013; [Jupp et al. ||2014).
Although life scientists benefit from these curated and trusted
open databases in their daily practice, it is often not feasible for
small research groups to publish their processed data through
the 5-star recommendations. This is mainly due to the human cost
and the technicality of data curation activities.

In Life Sciences, scientific workflows systems such as Galaxy,
Taverna, Vistrails, or Wings/Pegasus have gained a large adoption
because they define explicitly the main parameters and processing
steps, and enhance, therefore, trust in the produced results. A lot of
approaches address provenance capture and management towards
better reproducibility of in silico experiments. Several provenance
models have been proposed (OPM, PROV, ProvOne, PAV). How-
ever, few works (Alper et al. ||2014) address provenance exploita-
tion towards better sharing of massively produced data.

In this paper, we address the issue of sharing data produced by
scientific workflow engines by reusing Linked Open Vocabular-
ies. Our in progress work relies on manually annotated workflow
patterns, and rules generator. The rules mine generic provenance
metadata and produce domain-specific linked experiment reports.
We propose with PoeM, a method for populating Linked Data
repositories (Bizer et al. |[2009) with experiment reports, at a
reduced data curation cost.

The paper is organized as follows. Section [2] presents a moti-
vating scenario in the field of bioinformatics. Section [3] describes
our approach for mining generic provenance metadata. Section [
reports preliminary results in a real-life experiment. Section[5|sum-
marizes related works. Finally, conclusion and future works are
outlined in Section|[6]

2. Motivating example

Our work is motivated by data management issues raised in the
field of bioinformatics and genomics. RNAseq is a high throughput
sequencing technology aimed at measuring gene expression levels
from multiple experimental conditions. The goal is to identify ge-
netic markers involved in biological or pathological processes.
Figure [I] illustrates a typical RNAseq data analysis work-
flow (Irapnell et al. ||2012). The first step consists in mapping
the RNA sequence reads of two biological samples (Sample#1 and
Sample#2) to an annotated reference genome (Reference-Genome).
The resulting mapped reads are counted with CuffLinks to quantify
the expression of each gene (or transcript) in the corresponding
biological sample. Finally, based on the initial experimental condi-
tions, CuffDiff is responsible for the analysis and selection of the

5http://S stardata.info/en/
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Figure 1. A typical RNA-seq bioinformatics workflow aimed at
filtering the top-k differentially expressed genes.

top-k most differentially expressed genes. TopHat and Cufflinks are
CPU intensive tasks and their re-computation should be avoided
whenever possible. For instance, a typical RNA-seq sample align-
ment to a reference human genome may involve 2 paired-end input
sequences of 17 GB each, and produce, after 170 hours of single-
core computing, a 12 GB aligned sequence. These computations
are heavy and time consuming. Even if parallelization helps, the
computational cost is still challenging, e.g., in a study with hun-
dreds of biological samples. Without descriptive enough metadata,
the reuse and sharing of produced data is particularly difficult.

Most of scientific workflow management systems address re-
producibility and interoperability issues through the capture of
provenance metadata. PROVH is the de facto standard for de-
scribing and exchanging provenance graphs. PROV is a domain-
agnostic provenance ontology relying on entities, activities and
agents (software or people). In bioinformatics applications, PROV
can be used to document data analysis, at a very fine grain (at each
tool invocation), as well as attribution and versioning. However,
when it comes to share and reuse produced raw data, PROV traces
fail in describing required domain-specific informations for life
scientists, such as the associated experimental condition, the bio-
logical or medical hypothesis or the nature of biological samples
and results.

Need for domain-specific linked experiment reports

TCGAE] and ICGCE] are international initiatives aimed at sharing
multi-modality clinical, imaging, and omics datasets in the context
of cancer research. Providing meaningful domain-specific metadata
is the cornerstone of successful data sharing and reuse in cancer
research. Existing data processing tools and pipeline should be
able to generate these meaningful metadata based on biomedical
context.

Several reference domain ontologies are already available to
represent these metadata. In our motivating example, EDAME](Ison
et al. |2013) could be used as a common terminology to describe
the nature of the processing tools involved in bioinformatics work-
flows, as well as the format and the nature of tools parameters.
Regarding the representation of biomedical experimental factors,
EFdﬂ the Experimental Factor Ontology (Malone et al. ||2010), is
of particular interest. Finally, the Micropublications (Clark et al.
2014) enables to formally represent scientific approaches and evi-
dences towards machine-tractable academic papers. However, doc-
umenting datasets produced by scientific workflow managements
systems with these domain-specific ontologies is generally a man-
ual task that requires a deep knowledge of semantic web technolo-
gies and ontologies.

4 https://www.w3.org/TR/prov-o/

3 https://browser.cghub.ucsc.edu

6 https://dcc.icgc.org

7 https://bioportal . bioontology.org/ontologies/EDAM.
8 https://bioportal.bioontology.org/ontologies/EFO

A coherent set of domain-specific metadata would bridge to-
gether biomedical claims and evidences, experimental factors, and
produced data. This would definitely accelerate the availability
of query-able data repositories in the direction of machine- and
human-tractable scientific reports.

3. Provenance mining rules

We propose PoeM, an approach aimed at rewriting annotated work-
flow patterns and experiment report templates into provenance min-
ing rules. These rules are used for the annotation of scientific data.
They are grounded to the PROV vocabulary to be as much as pos-
sible independent from any workflow management system imple-
mentation.
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Figure 2. Automated generation of provenance mining rules to
produce 5-star linked experiment reports.

Figure [2] describes the mains steps of PoeM. Our contribution
is represented with plain arrows, the results produced by PoeM are
highlighted in blue. We make the hypothesis that the underlying
workflow enactment system is capable of producing PROV meta-
data to document each data consumption and production activities.
Step @ consists in manually annotating workflow patterns with do-
main specific concepts. Step @ consists in manually annotating an
experiment template to capture domain-specific knowledge. These
annotations cover the nature of the experiment parameters, the ex-
pected results, as well as the associated scientific hypothesis or ev-
idences. The core of our contributions is in step . We propose a
query rewriting algorithm responsible for the generation of seman-
tic web rules, materialized by SPARQL CONSTRUCT queries. Step
O consists in extracting PROV metadata from workflow engine ex-
ecution traces. Finally step ® consists in applying the resulting rule
on PROV metadata to generate a 5-star linked experiment report.
This report can document the raw produced data with meaningful
domain concepts, including the associated scientific hypothesis or
evidences.

Workflow annotation patterns (@)

More than forty Workflow patternsﬂ have been proposed to cap-
ture dependencies between process activities, e.g., sequence, par-
allelism, choice, synchronization, etc.. These patterns were devel-
oped to address business process requirements (van der Aalst et al.
2003). They can also apply to address scientific workflow require-
ment as detailed in (Yildiz, U. et al|[2009). In Figure [T} we use
the Sequence pattern where an activity is enabled after the com-
pletion of another activity in the same workflow. We rely on Step
class and on isPrecededBy property of P-Plan (Garijo et al. [2012)
ontology to describe the sequence pattern. In addition, we rely on

9 http://www.workflowpatterns.com/
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EDAM to describe the functionality of processing steps, as well as
input/output variables, with bioinformatics concepts.

Experiment annotation templates (®)

The annotation template aims at gathering the domain-specific an-
notations to be propagated on the produced raw data as a linked
experiment report. We rely on the Micropublications ontology to
represent the hypothesis, claims, material and methods involved
in in silico experiments chained together through supports predi-
cates. We also rely on the Web Annotation Data Mode to refer
to domain-specific concepts (Experimental Factor Ontology, NCBI
Taxonony). Figure [3| details a linked experiment report associated
to an RNAseq experiment.

mp:statement

!

mp:supports mp:supports

sample- gene-expression-
sequence

measurement

‘ NCBITaxon:9606 Hefo:EFO 0004601 Hmp:MateriaI ‘ "My b’ulogfgal hypothesis"
~. N/ Vi

isA isA isA .
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7777777777777777777777777777 | oathasTarget \ mp:supports
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oathasBody

mp:Material
T
efo:EFO_0004421 [« isA

mp:supports
mpsupports

Figure 3. An experiment annotation template representing mate-
rial & methods of an in silico RNA-seq experiment (Figure[T).

Provenance mining rule generation ()

Algorithm |1 describes how PoeM generates a provenance mining
rule. Lines 2 and 3 retrieve the annotated inputs and outputs from
the workflow pattern. Line 5 consists in producing a provenance
graph between the outputs of the last workflow step and the inputs
of the first step. Line 6 binds the hasTarget annotations of the
experiment annotation template to the provenance graph. Finally,
line 8 assembles the inference rule, noted % The set of
premises consists in the required data lineage conditions, resulting
from line 5, and the conclusion consists in the modified experiment
report annotations, attached to the provenance graph.

Algorithm 1: genRule generates a provenance mining rule
based on a sequence workflow pattern, and a domain-specific
annotation template.
Input : W : Workflow annotated pattern @,
S1 : First step of W,
So : Last step of W,

A : Annotation template @.
Output: R: Provenance mining rule.

1 begin

2 INg1 <+ getInputs(St)

3 OUTg2 <+ getOutputs(Ss)

4

5 provGraph < genDataLineage(OUTsa, INg1)

6 reportGraph <+ rebindReportTargets(provGraph, A)
7

s R provGraph.edgey N ... N provGraph.edgen

reportGraph

ﬁhttps://www.W3.org/TR/annotation—model/

4. Implementation and experiment

We implemented PoeM through SPARQL query generation al-
gorithms. Provenance mining rules have been instantiated with
SPARQL CONSTRUCT-WHERE queries. The premises are repre-
sented in the WHERE clause, and the conclusion is represented
in the CONSTRUCT clause. We rely on SPARQL 1.1 PROPERTY
PATH expressions to enable the matching of a sequence of process-
ing steps with intermediate steps and data. For instance, we use
the property path expression prov:wasDerivedFrom* to match
data lineage paths of multiple length. A short web demonstration
of PoeM is available at http://poem.univ-nantes.fr.

We experimented PoeM on a real-life RNAseq workflow as
introduced in section 2] Its goal is to highlight differentially ex-
pressed gene on two mice populations, a first group of young mice
(6 weeks) and a second group of older mice (45 weeks). The work-
flow has been implemented in the Galaxy workflow management
system, on top of a bioinformatics cluster.

Since Galaxy does not provide yet provenance as Linked Data,
we implemented a Java tool which transforms Galaxy workflow
traces (histories of actions) into PROV graphs. This tool is based
on the Blend4J library for communicating with the Galaxy Rest
API. The remaining steps of PoeM have also been implemented in
Java and rely on the Jena semantic web library.

We run the workflow on two biological samples and we show
that the computational cost of PoeM is negligible compared to raw
data processing. We parallelized the genome alignment step with 12
CPU cores. For a single biological sample with a single CPU core
computer, we observed a mean execution time of approximately 60
hours. We also measured 21Gb as the mean disk space required
for both the input and the generated data for a single workflow
execution on a single biological sample. Provenance capture and
mining with PoeM is negligible, in terms of time and space since
we measured less than 3 seconds to extract 81 PROV triples (@) and
around 2 seconds to generate the rule and apply it (&, @), finally
producing 35 domain-specific triples.

In this experiment, a usage scenario for the produced Linked
Experiment Report would consists in retrieving Galaxy datasets
with SPARQL queries based on the underlying scientific hypothe-
sis/claims, or domain specific classes (Experimental Factor Ontol-
0gy, NCBI taxonomy, or EDAM ontology). Another usage scenario
would consists in populating an RDF metadata repository dedicated
to i) biomedical data sharing and ii) preventing re-computation of
already aligned sampled and measured gene expressions.

5. Related works

PoeM is a continuation of the approach proposed in (Gaignard
et al. |2014). We follow the same idea of summarizing provenance
meta-data into domain-specific annotations and apply it to bioinfor-
matics. More importantly, we address its main limitation by semi-
automatically generating provenance mining rules that was origi-
nally, manually written.

LabelFlow (Alper et al. | |2014) tackles similar challenges
through the semi-automated labelling of data artifacts. Our ap-
proach is completely in line with LabelFlow but tend to alleviate
the programming effort for data annotation. Even if not yet sup-
porting data collections and limited for the moment to sequence
patterns, PoeM does not require additional programming task. The
cost of writing the annotation template and the workflow pattern is
only paid once, and these domain-specific annotations can later be
shared as Linked Data.

Other initiatives such as ReproZip (Chirigati et al. |[2013) or
ReﬁneryPlatforrrE] address reproducibility of biomedical research

i http://www.refinery-platform.org B
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through internal provenance representation and exploitation. These
approaches give valuable insight on the nature and parameters
of experiments, however, we argue in PoeM that Open Linked
Data approaches are a step towards machine- and human-tractable
experiment reports.

6. Conclusion and perspectives

We propose PoeM, a provenance mining approach aimed at popu-
lating 5-star Linked Open Data repositories with scientific experi-
ment reports. PoeM is non-invasive and can adapt to different work-
flow engines that export PROV metadata. PoeM is a declarative
lightweight approach based on semantic web standards, and does
not require additional programming effort.

PoeM is in progress work and presents many opportunities. For
the moment the identification of processing steps and variables is
based on label matching. We plan to use semantic tagging to im-
prove genericity. We also plan to extend the supported workflow
patterns with multi-sequences, split-and-join patterns, or based on
common motifs (Garijo et al. |2014)). To assess the accuracy of the
produced linked experiment reports, we plan to conduct a user eval-
uation based on competency questions. To assess the versatility of
PoeM, we also plan to produce Research Objects (Belhajjame et al.
2015) as a machine-tractable way of reporting research. Finally, as
a continuation of this work, we will evaluate how PoeM can adapt
to other domains such as bioimaging, high energy physics work-
flows, and how it can scale to face large scale, real-life, data-science
research studies in the context of the SyMeTRIC collaborative per-
sonalized medicine project.
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A. Detailed algorithms

Algorithm 2: genProvBGP to generate a BGP matching a
provenance path between two processing steps.

Input : W the set of RDF triples describing the workflow pattern.
Output: prov BG P the set of triple patterns matching a PROV path,
M a HashMap binding workflow pattern variables to SPARQL query

variables.
1 begin
2 S1 < getFirstStepTriples(W)
3 Sa «— getLastStepTriples(W)
4 provBGP 4= "?stepl rdf:type prov:Activity ."
5 provBGP += "?stepl prov:wasAssociatedWith ?softl ."
6
/* Iterate over pattern INPUT variables */
7 i+ 0
8 foreach (inVar € Sy)do
9 M <+ (inVar,"?in"+i+"S1.")
10 provBGP += "?stepl prov:used 7in"+i+"S1."
11 i1+ 1
12 provBGP 4= "7outS1 prov:wasGeneratedBy ?stepl ."
13 provBGP 4= "?in2 (rdfs:label | “rdfs:label |
prov:wasDerivedFrom)* 7outS1 ."
14 provBGP 4= "?step2 prov:used ?in2 ."
15 provBGP += "?step2 prov:wasAssociatedWith ?soft2 ."
16
/* Iterate over pattern OUTPUT variables */
17 7«0
18 foreach (outVar € S3)do
19 M <+ (outVar,"7out"+;+"S2.")
20 provBGP += "?out"+;+"S2 prov:wasGeneratedBy
?step2 ."
21 j+—ji+1

Algorithm 3: genReportBGP to generate a BGP describing
the linked experiment report.

Input : M a HashMap binding workflow pattern variables to SPARQL
variables,
R the set of triples describing the linked experiment report template.

Output: report BG P the set of triple patterns describing the annotation
template.

1 begin

2 foreach (t € R) do

3 if (t.getPredicate() matches "oa:hasTarget") then

4 o + t.getObject()

5 t.replaceObject(M .get(0))

6 report BGP +=1

Algorithm 4: genProvMiningRule to write the resulting
SPARQL CONSTRUCT query.

Input : P the set of PROV triples resulting from a workflow run,
R the set of RDF triples describing the annotation template,
W the set of RDF triples describing the workflow pattern.
Output: @@ the SPARQL CONSTRUCT provenance mining rule.

1 begin
2 Q += mergePrefizes(W,R,P)
3 Q@ += "CONSTRUCT { " + genReportBGP(W,M) + " }"

4 @ +="WHERE { " + genProvBGP(W,M) + " }"
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