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Abstract. Boolean networks are commonly used in systems biology
to model dynamics of biochemical networks by abstracting away many
(and often unknown) parameters related to speed and species activity
thresholds. It is then expected that Boolean networks produce an over-
approximation of behaviours (reachable configurations), and that subse-
quent refinements would only prune some impossible transitions.

However, we show that even generalized asynchronous updating of
Boolean networks, which subsumes the usual updating modes includ-
ing synchronous and fully asynchronous, does not capture all transitions
doable in a multi-valued or timed refinement.

We define a structural model transformation which takes a Boolean net-
work as input and outputs a new Boolean network whose asynchronous
updating simulates both synchronous and asynchronous updating of the
original network, and exhibits even more behaviours than the general-
ized asynchronous updating. We argue that these new behaviours should
not be ignored when analyzing Boolean networks, unless some knowledge
about the characteristics of the system explicitly allows one to restrict
its behaviour.

1 Introduction

Boolean networks model dynamics of systems where several components (or
nodes) interact. They specify for each node an update function to determine its
next value according to the configuration (global state) of the network. Boolean
networks are widely used to model dynamics of biological networks, such as gene
networks and cellular signalling pathways.

The scheduling of nodes updates is known to have a strong influence on the
reachable configurations of the networks. The relationships between different
updating modes received a lot of attentions both in transition-centered models
of networks such as Petri nets [14,6,8,27,28] (in particular when read arcs are
used to model finely the update mechanisms), and function-centered models such
as cellular automata [22,5] and Boolean networks [15,25,12,3,18,19], on which
this article is focused. Notice that transformations exist from BNs to Petri nets
[23,9,10] showing the strong relationship between the two formalisms.



For Boolean networks, the considered updating modes are usually the follow-
ing: the synchronous updating, where all nodes are updated simultaneously, gen-
erating a deterministic dynamics; the (fully) asynchronous updating, where only
one node can be updated at a time, this node being chosen non-deterministically.
Asynchronous updating generates non-deterministic dynamics due to the differ-
ent ordering of updates, which can be interpreted as considering in the same
model different speed of updates. Then, the generalized asynchronous updating
allows all the combinations of simultaneous updates subsets of nodes, ranging
from single nodes (matching asynchronous transitions) to the full set of nodes
(matching synchronous transitions). Other updating modes like sequential or
block sequential have also been considered in the literature on cellular automata
and Boolean networks [5,3], and usually lead to transitions allowed by the gen-
eralized asynchronous updating.

When a Boolean network aims at modelling a dynamical system having time
features, as it is typically the case for biological systems, the choice of the update
mode is crucial as it determines the set of configurations reachable from a given
initial configuration. In applications, it is usual to assess the accordance of a
Boolean network with the concrete system by checking if the observed configu-
ration are indeed reachable in the Boolean network. Whenever it is not the case,
it typically means that the designed Boolean functions do not model the system
correctly, and thus should be modified before further model analysis.

Having very partial information on the actual velocity of different nodes and
transitions in the concrete system, a common approach is to choose the most
general updating mode, i.e., the one bringing the fewer constraints as possible
regarding the unknown scheduling of node updates. In such a setting, and be-
cause we abstract away many parameters of the system dynamics, we expect that
the Boolean network models an over-approximations of possible transitions, i.e.,
that any reachable configuration in the concrete system should be reachable in
the Boolean network.

In this paper, we show that the generalized asynchronous updating, subsum-
ing synchronous and asynchronous updating, can miss transitions, hence reach-
able configurations, which correspond to particular, but plausible, behaviours.
Thus, the resulting analysis can be misleading on the absence of some behaviours,
notably regarding the reachability of attractors (configurations reachable on the
long-run), and may lead to reject valid models.

We introduce a new updating mode for Boolean networks, so-called interval
semantics which aims at enabling the reachability of configurations by consider-
ing further update scheduling policy. Essentially, the interval semantics considers
the possibility of a delay between the trigger of the update of a node, and its
actual completion: this models species for which value changes can be slow.

The interval semantics can be expressed as the asynchronous updating over a
Boolean network which encodes the decoupling of update triggering and update
application. Therefore, our approach allows the definition of an asynchronous
Boolean network which simulates the general asynchronous dynamics of the orig-
inal Boolean network, while including additional and plausible behaviours, and



still preserving important dynamical constraints on fixpoints and causality of
transitions: the fixpoints of the interval semantics form a one-to-one relationship
with the fixpoints of the generalized asynchronous updating, and it preserves
the influence graph, notably its cycles and their signs.

We illustrate the benefit of the interval semantics on a small example of
Boolean network, which is actually embedded in many models of biological net-
works (e.g., [16,17,26]). Therefore, the analysis of dynamics of these biological
models can be substantially impacted by considering the interval semantics.

Outline. Sect. 2 gives the definitions of Boolean networks and their synchronous,
asynchronous, and generalized asynchronous updating, as well as their influence
graph. Sect. 3 gives a motivating example showing the limit of the generalized
asynchronous updating. Sect. 4 introduces the interval semantics for Boolean
networks by providing an encoding as an asynchronous Boolean network and
by establishing the relation with the generalized asynchronous updating and
consistency criteria. Further extensions of the interval semantics are discussed
in Sect. 5. Finally, Sect. 6 discusses the relevance of the results for the analysis
of biological models, and suggests further work.

2 Definitions

We write B = {0, 1} and [n] = {1, . . . , n}. Given a configuration x ∈ Bn and
i ∈ [n], we denote xi the ith component of x, so that x = x1 . . . xn. Given two

configurations x, y ∈ Bn, the components that differ are noted ∆(x, y)
∆
= {i ∈

[n] | xi 6= yi}.

Definition 1 (Boolean network). A Boolean network (BN) of dimension n
is a collection of functions f = 〈f1, . . . , fn〉 where ∀i ∈ [n], fi : Bn → B.

Given x ∈ Bn, we write f(x) for f1(x) . . . fn(x).
Fig. 1 (a) shows an example of BN of dimension 3.
When modelling biological systems, each node i ∈ [n] usually represents

a biochemical species, being either active (or present, value 1) or inactive (or
absent, value 0). Each function fi indicates how the evolution of the value of i
is influenced by the current value of other components j ∈ [n]. However, this
description can be interpreted in several ways, therefore several updating mode
coexist for BNs, depending on the assumptions about the order in which the
evolutions predicted by the fi apply.

The asynchronous updating assumes that only one component is updated at
each time step. The choice of the component to update is non deterministic.

Definition 2 (Asynchronous updating). Given a BN f , the binary irreflex-

ive relation
f−−−→

async
⊆ Bn × Bn is defined as:

x
f−−−→

async
y

∆⇐⇒ ∃i ∈ [n], ∆(x, y) = {i} ∧ yi = fi(x) .
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Fig. 1. (a) Example BN f of dimension 3; (b) Transition relations between configu-
rations in B3 according to the generalized asynchronous updating of f ; (c) Influence
graph G(f); positive edges are with normal tip; negative edges are with bar tip; (d) A
possible evolution of the quantities of the species (species 1 in dashed line, species 2
plain, species 3 dotted).

We write
f−−−→

async

∗ for the transitive closure of
f−−−→

async
.

The synchronous updating can be seen as the opposite: all components are
updated at each time step. This leads to a purely deterministic dynamics.

Definition 3 (Synchronous updating). Given a BN f , the binary irreflexive

relation
f−−−→

sync
⊆ Bn × Bn is defined as:

x
f−−−→

sync
y

∆⇐⇒ x 6= y ∧ ∀i ∈ [n], yi = fi(x) .

By forcing all the components to evolve synchronously, the synchronous up-
dating makes a strong assumption on the dynamics of the system. In many
concrete cases, for instance in systems biology, this assumption is clearly unre-
alistic, at least because the components model the quantity of some biochemical
species which evolve at different speeds.

As a result, the synchronous updating fails to describe some behaviours, like
the transition 010→ 011 represented in Fig. 1 (b) which represents the activation
of species 3 when species 1 is inactive and species 2 is active (f3(010) = 1).
There are also transitions which are possible in the synchronous but not in the

asynchronous updating, for instance 000 → 110. Remark that 110 is not even
reachable from 000 in the asynchronous updating.



The generalized asynchronous updating generalizes both the asynchronous
and the synchronous ones: it allows updating synchronously any nonempty sub-
set of components.

Definition 4 (Generalized asynchronous updating). Given a BN f , the

binary irreflexive relation
f−→⊆ Bn × Bn is defined as:

x
f−→ y

∆⇐⇒ x 6= y ∧ ∀i ∈ ∆(x, y) : yi = fi(x) .

Clearly, x
f−−−→

async
y ⇒ x

f−→ y and x
f−−−→

sync
y ⇒ x

f−→ y. The converse proposi-

tions are false in general. It is even false that x
f−→ y implies x

f−−−→
async

y∨x f−−−→
sync

y.

Note that we forbid “idle” transitions (x→ x) whatsoever the updating mode.

For each node i ∈ [n] of the BN, fi typically depends only on a subset of
nodes of the network. The influence graph of a BN (also called interaction or
causal graph) summarizes these dependencies by having an edge from node j
to i if fi depends on the value of j. Formally, fi depends on xj if there exists
a configuration x ∈ Bn such that fi(x) is different from fi(x

′) where x′ is x
having solely the component j different (x′j = ¬xj). Moreover, assuming xj = 0
(therefore x′j = 1), we say that j has a positive influence on i (in configuration
x) if fi(x) < fi(x

′), and a negative influence if fi(x) > fi(x
′). It is possible that

a node has different signs of influence on i in different configurations (leading
to non-monotonic fi). It is worth noticing that different BNs can have the same
influence graph.

Definition 5 (Influence graph). Given a BN f , its influence graph G(f) is
a directed graph ([n], E+, E−) with positives and negatives edges such that

(j, i) ∈ E+
∆⇐⇒ ∃x, y ∈ Bn : ∆(x, y) = {j}, xj < yj , fi(x) < fi(y)

(j, i) ∈ E−
∆⇐⇒ ∃x, y ∈ Bn : ∆(x, y) = {j}, xj < yj , fi(x) > fi(y)

A (directed) cycle composed of edges in E+ ∪ E− is said positive when it is
composed by an even number of edges in E− (and in number of edges in E+),
otherwise, it is negative.

The influence graph is an important object in the literature of BNs [24,2].
For instance, many studies have shown that one can derive dynamical features
of a BN f by the sole analysis of its influence graph G(f). Importantly, the
presence of negative and positive cycles in the influence graph, and the way
they are intertwined can help to determine the nature of attractors (that are the
smallest sets of configurations closed by the transition relationship) [21], and
derive bounds on the number of fixpoints and attractors a BN having the same
influence graph can have [20,1,4].



3 Motivating example

Fig. 1 shows an example of BN of dimension 3, its influence graph and
f−→ relation

between configurations. The BN and its influence graph show that the quantity
of 3 increases when 1 is absent and 2 is present. In any scenario starting from
000 where 3 eventually increases, 2 has to increase to trigger the increase of 3.
Hence, according to the generalized asynchronous updating represented in Fig. 1
(c), the only transition which represents an increase of 3 is 010 → 011. After
this, no transition is possible.

But, assuming the BN abstracts continuous evolution of quantities, the fol-
lowing scenario, pictured in Fig. 1(d), becomes possible: initially, the absence of
species 1 causes an increase of the quantity of species 2, represented in plain line
on the figure. Symmetrically, the absence of species 2 causes an increase of the
quantity of species 1 (dashed line). This corresponds to the evolution described
by the arrow 000 → 110 in Fig. 1(b) and leads to a (transient) configuration
where species 1 and 2 are present.

Assume that 1 and 2 increase slowly. After some time, however, the quantity
of 2 becomes sufficient for influencing positively the quantity of 3, while there
is still too little of species 1 for influencing negatively the quantity of 3. Species
3 can then increase. In the scenario represented in the figure, 3 (dotted line)
increases quickly, and then 1 and 2 continue to increase. In summary, the quantity
of species 3 increased from 0 to 1 during the increase of 1 and 2, which was not
predicted by the generalized asynchronous updating (Fig. 1(b)).

One could argue that in this case, one should better consider more fine-
grained models, for instance by allowing more than binary values on nodes in
order to reflect the different activation thresholds. However, the definition of
the refined models would require additional parameters (the different activation
thresholds) which are unknown in general. Our goal is to allow capturing these
behaviours already in the Boolean abstraction, so that any refinement would
remove possible transitions, and not create new ones.

4 Interval Semantics for Boolean Networks

Interval semantics has been proposed for Petri nets in [11] with the aim at
generalizing the notion of steps [13], that are sets of transitions that can be si-
multaneously fired. The interval semantics adds the possibility to trigger, within
a single step, transitions that become enabled by the firing transitions. The mo-
tivating example given in the previous section illustrates how this semantics can
augment the set of reachable configurations.

In this section, we propose an encoding of the interval semantics for Boolean
networks as an asynchronous Boolean network. Essentially, each node i ∈ [n]
is decoupled in two nodes: a “write” node storing the next value (2i − 1) and
a “read” node for the current value (2i). The decoupling is used to store an
ongoing value change, while other nodes of the system still read the current (to
be changed) value of the node. A value change is then performed according to
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Fig. 2. Automaton of the value change of a node i in the interval semantics. The states
marked 0 and 1 represents the value 0 and 1 of the node. The labels fi(x) and ¬fi(x)
on edges are the conditions for firing the transitions; ε indicates that the transitions
can be done without condition. The states are labeled by the corresponding values of
nodes (2i− 1)(2i) in our encoding.

the automaton given in Fig. 2: assuming we start in both write and read node
with value 0, if fi(x) is true, then the write node is updated to value 1. The read
node is updated in a second step, leading to the value where both write and read
nodes are 1. Then, if fi(x) is false, the write node is updated first, followed, in
a second stage by the update of the read node.

Once the write node (2i − 1) has changed its value, it can no longer revert
back until the read node has been updated. Hence, if fi(x) become false in
the intermediate value 10, the read node will still go through value 1 (possibly
enabling transitions) before the write node can be updated to 0, if still applicable.

4.1 Encoding

From the automaton given in Fig. 2, one can derive Boolean functions for the
write (2i−1) and read (2i) nodes. It results in the following BN f̃ , encoding the
interval semantics for the BN f :

Definition 6 (Interval semantics for Boolean networks). Given a BN f
of dimension n, f̃ is a BN of dimension 2n where ∀i ∈ [n],

f̃2i−1(z)
∆
= (fi(γ(z)) ∧ (¬z2i ∨ z2i−1)) ∨ (¬z2i ∧ z2i−1)

f̃2i(z)
∆
= z2i−1

where γ(z) ∈ Bn is defined as γ(z)i
∆
= z2i for every i ∈ [n].

Given x ∈ Bn, α(x) ∈ B2n is defined as α(x)2i−1 = α(x)2i
∆
= xi for every i ∈ [n].

A configuration z ∈ B2n is called consistent when α(γ(z)) = z.

The function γ : B2n → Bn maps a configuration of the interval semantics
to a configuration of the BN f by projecting on the read nodes. The function
α : Bn → B2n gives the interval semantics configuration of a configuration of the
Boolean network f , where the read and write nodes have a consistent value.



Example 1. Applied to the BN f of Fig. 1, we obtain the following possible
sequence of asynchronous iterations of f̃ :

00 00 00
f̃−−−→

async
10 00 00

f̃−−−→
async

10 10 00
f̃−−−→

async
10 11 00

f̃−−−→
async

10 11 10
f̃−−−→

async
10 11 11

f̃−−−→
async

11 11 11

Therefore, with the interval semantics, the configuration 111 of f is reachable
from 000, contrary to the generalized asynchronous semantics. This is due to the
decoupling of the update of node 1: the activation of 1 is delayed which allows
activating node 3 beforehand.

4.2 Asynchronous Weak Simulation of Generalized Asynchronous

The following theorem configurations that any transition of the generalized asyn-
chronous semantics can be simulated by the interval semantics.

Theorem 1. For all x, y ∈ Bn,

x
f−→ y ⇒ α(x)

f̃−−−→
async

∗ α(y) .

Proof. By decomposition along ∆(x, y): first, for each i ∈ ∆(x, y), update the
(2i − 1)-th component: we obtain after i asynchronous steps z ∈ B2n where
z2i−1 = yi. Indeed, remark that fi(γ(z)) = fi(x) and, as yi 6= xi, fi(γ(z)) = ¬z2i,
therefore f̃2i−1(z) = ¬z2i = fi(x) = yi. Then, update all (2i)-th components,
leading to z′ ∈ B2n with z′2i = z′2i−1 = yi, thus α(y) = z′. ut

4.3 Consistency

The above theorem shows that the asynchronous semantics of the Boolean net-
work encoding our interval semantics can reproduce any behaviour of the gen-
eralized asynchronous semantics. The aim of this section is to show that the
interval semantics still preserves important constraints of the BN on its dynam-
ics. In particular, we show the one-to-one relationship between the fixpoints
of the BN and its encoding for interval semantics; and that the influences are
preserved with their sign.

Lemma 1 states that from any configuration of encoded BN, one can always
reach a configuration which corresponds to a configuration of the original BN
(i.e., a configuration z ∈ B2n such that α(γ(z)) = z):

Lemma 1 (Reachability of consistent configurations). For any z ∈ B2n

such that α(γ(z)) 6= z, ∃y ∈ Bn : z
f̃−−−→

async

∗ α(y).

Proof. For each i ∈ [n] such that z2i−1 6= z2i, we update the 2i node, in whatever
order. This leads to the configuration z′ ∈ B2n where ∀i ∈ [n], z′2i = z′2i−1 =

z2i−1. Hence, by picking y = γ(z), we obtain z
f̃−−−→

async

∗ α(y). ut



The one-to-one relationship between fixpoints of f and fixpoints of f̃ is given
by the following lemma:

Lemma 2 (Fixpoint equivalence). ∀x ∈ Bn, f(x) = x ⇒ f(α(x)) = α(x);
and ∀z ∈ B2n, f̃(z) = z ⇒ α(γ(z)) = z ∧ f(γ(z)) = γ(z).

Proof. Let x ∈ Bn be such that f(x) = x. We have that α(x)2i−1 = α(x)2i =
xi = fi(x). Hence, f̃2i−1(α(x)) = fi(γ(α(x))) = fi(x) = α(x)2i−1; and
f̃2i(α(x)) = α(x)2i−1 = α(x)2i. Thus, f̃(α(x)) = α(x).

Let z ∈ B2n be such that f̃(z) = z. For each i ∈ [n], because f̃2i(z) = z2i, by
the definition of f̃2i, we obtain that z2i = z2i−1. Thus, α(γ(z)) = z. Moreover,
as (¬z2i ∨ z2i−1) reduces to true and (¬z2i ∧ z2i−1) reduces to false, f̃2i−1(z) =
fi(γ(z)) = z2i−1 = γ(z)i. Therefore, f(γ(z)) = γ(z). ut

Influence graph As defined in Sect. 2, the influence graph provides a summary
of the causal dependencies between the value changes of nodes of the BN. We
show that our encoding of interval semantics preserves the causal dependencies
of the original network, and in particular, preserves the cycles and their signs.

From the definition of f̃ , one can derive that all the influences in f are
preserved in f̃ , and no additional influences between different variables i, j are
created by the encoding. This latter fact is addressed by the following lemma:

Lemma 3. For any i, j ∈ [n], i 6= j, there is a positive (resp. negative) edge
from j to i in G(f) if and only if there is a positive (resp. negative) edge from
2j to 2i− 1 in G(f̃).

Proof. Let us define x, y ∈ Bn such that ∆(x, y) = {j}, and z, z′ ∈ B2n such
that z = α(x) and ∆(z, z′) = {2j}, i.e., z′2j = yj . Because z2i = z2i−1 and, as

i 6= j, z′2i = z′2i−1, we obtain that f̃2i−1(z) = fi(x) and f̃2i−1(z′) = fi(y). ut

Lemma 4. For any i ∈ [n],

a. there is a positive self-loop on 2i−1 in G(f̃) if and only if there exists x ∈ Bn
such that fi(x) = xi;

b. there is never a negative self-loop on 2i− 1 in G(f̃);
c. there is never a positive edge from 2i to 2i− 1 in G(f̃);
d. there is a negative edge from 2i to 2i− 1 in G(f̃) if and only if there exists

x ∈ Bn such that fi(x) 6= xi
e. there is always exactly one edge from 2i− 1 to 2i in G(f̃) and it is positive.

Proof. (a) Let us consider z, z′ ∈ B2n such that ∆(z, z′) = {2i−1} with z2i−1 =
0: f̃2i−1(z) = 0 = ¬f̃2i−1(z′)⇔ [(z2i = 0 ∧ fi(γ(z)) = 0) ∨ (z2i = 1 ∧ fi(γ(z)) =
1)] ⇔ fi(γ(z)) = z2i. (b) Let us consider z, z′ ∈ B2n such that ∆(z, z′) =
{2i− 1} with z2i−1 = 0 and f̃2i−1(z) = 1 = ¬f̃2i−1(z′). Thus, z2i = 0, therefore,
f̃2i−1(z′) = z′2i−1 = 1, which is a contradiction. (c) Let us consider z, z′ ∈ B2n

such that ∆(z, z′) = {2i} with z2i = 0: if z2i−1 = z′2i−1 = 0, then f̃2i−1(z) ≥
f̃2i−1(z′); if z2i−1 = z′2i−1 = 1, then f̃2i−1(z) ≥ f̃2i−1(z′); therefore there cannot



be a negative edge from 2i to 2i − 1 in G(f̃). (d) ∃z, z′ ∈ B2n: ∆(z, z′) = {2i},
z2i = 0, f̃2i−1(z) = 1 = ¬f̃2i−1(z′) ⇔ [(z2i−1 = z′2i−1 = 0 ∧ fi(γ(z)) = 1) ∨
(z2i−1 = z′2i−1 = 1 ∧ fi(γ(z′)) = 0)] ⇔ ∃x ∈ Bn : fi(x) = ¬xi. (e) By f̃2i
definition.

From Lemma 4, one can deduce that if there is a positive self-loop on i in
G(f), then there is a positive self-loop on 2i−1 in G(f̃); and if there is a negative
self-loop on i in G(f), then there is a negative edge from 2i to 2i− 1 in G(f̃).

We can then deduce that the positive and negative cycles of G(f) are pre-
served in G(f̃). It is worth noting that the encoding may also introduce negative
cycles between 2i− 1 and 2i and positive self-loops on 2i− 1, for some i ∈ [n].

Lemma 5. To each positive (resp. negative) cycle in G(f) of length k > 1, there
exists a corresponding positive (resp. negative) cycle in G(f̃) of length 2k. To
each positive self-loop in G(f) corresponds one positive self-loop in G(f̃); to each
negative self-loop in G(f) corresponds a negative cycle in G(f̃) of length 2.

Proof. For cycle of length k > 1, by Lemma 3 and by the fact that there is a
positive edge from 2i − 1 to 2i in G(f̃): each edge (i, j) in the cycle in G(f) is
mapped to the string (2i, 2j − 1)(2j − 1, 2j), giving a cycle in G(f̃) of the same
sign. Correspondence of self-loops is given by Lemma 4 ut

5 Further Extensions

Our interval semantics decouples the update of a node in order to allow the
interleaving of transitions during the interval when the next value has been
computed (write node) but not applied yet (read node still with the before-
update value). This also implies that, during this interval, the other nodes have
access only to the before-update value. A third feature of the interval semantics
is the enforcement of the update application: once an update is triggered (write
node gets a different value than the read node), no further update on the same
node is possible until the update has been applied. Thus, if for instance the
update triggers a change of value from 0 to 1, the interval semantics guarantees
that the read node will eventually have the value 1.

These two aspects, restricted access to the before-update value of nodes and
enforcement of update application, were essentially motivated by our choice that
our interval semantics should simulate the synchronous update of nodes used
in the classical synchronous and generalized asynchronous semantics, as stated
in Theorem 1. However, one could go further and consider extended interval
semantics which relax either the restricted access to the before-update value of
nodes, or the enforcement of update application, or both. We will see that these
relaxations of our interval semantics still preserve the consistency properties
stated in Sect. 4.3.
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Fig. 3. Automaton of the value change of a node i in the extended interval semantics
where the update can be canceled if fi(x) changes of value during the interval of update.
Notations follow the ones of Fig. 2

5.1 Update cancellation

The relaxation of the enforcement of update application can be interpreted as the
ability to cancel an ongoing update when fi changes of value during the interval
of update. This can be described by the automaton of Fig. 3, and encoded by
removing ¬z2i and z2i−1 from the definition of f̃2i−1 in Def. 6.

Theorem 1 and the lemmas in previous section are still verified with update
cancellation. Moreover, this extension does not introduce any additional self-loop
on 2i− 1 or negative edge from 2i to 2i− 1 in the influence graph.

5.2 Reading from either the before-update or after-update values

In terms of modeling, the restriction to before-update values can be seen as
an asymmetry in the consideration of transitions: the resource modified by the
transition is still available during the interval of update, whereas the result is
only available once the transition finished. When modelling biological systems,
it translates into considering only species which are slow to reach their activity
threshold.

Actually, the choice of whether the before-update, after-update or both values
are available during the update may be done according to the knowledge of
the modeled system. Our construction can easily be adapted for giving access,
depending on the node, to the after-update value instead of the before-update
value. For instance, if the node i should follow closely value changes of node i,
then node j should access the after-update value (write node) of i, whereas, as
in our motivating example, if i is slow to update compared to j, node j should
access the before-update value (read node) of i.

Finally, one could also consider a more permissive symmetric version which
would allow the access of both before-update and after-update values. This choice
may be very reasonable when not much is known about the system, for instance
about the relative speed of the nodes.



5.3 Comparison with multi-valued networks

Multi-valued networks [7] are an extension of Boolean networks where the do-
main of each node i ∈ [n] ranges over a finite discrete ordered domain Di. The
value changes of the nodes are specified using a function gi : D1 × · · · × Dn →
{−, 0,+} which determines the direction of the value change.

Thus, a strong constraint of this semantics is that value changes are always
unitary: a transition will either change the value to the smallest higher one, or
the highest smaller one, if it exists. However, one can remark that the automaton
modeling the value change with the interval semantics (Fig. 2) does not satisfy
such a constraint, and hence cannot be encoded as a single multi-valued node.

6 Discussion

As shown in our motivating example in Sect. 3, the interval semantics can en-
able the reachability of configurations that are not allowed in other updating
modes, notably asynchronous or generalized asynchronous. This can be prob-
lematic when expecting Boolean networks to produce an over-approximation of
reachable configurations due to the abstraction of parameters related to speed
and activity threshold of components, as it is usually assumed when modelling
biological networks. It appears that the Boolean network in Sect. 3 is embedded
in numerous actual models of biological networks (e.g., [16,17,26]). Therefore,
the result of analysis of the transient dynamics of these models may be deeply
impacted by using the interval semantics, which has never been considered so
far.

The transitions enabled by the interval semantics are due to nodes which
update slowly: whenever committed to a value change, in the meantime of the
update application, the other nodes of the network still evolve subject to its
before-update value. This time scale consideration brings an interesting feature
when modeling biological networks which gathers processes of different nature
and velocity. Our encoding allows the application of the interval semantics only
to a subset of nodes, offering a flexible modelling approach.

Future work consider determining semantics of Boolean networks which guar-
antee the formal simulation of hybrid and continuous network dynamics.
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