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Introduction

Solid-fluid interactions in the case of extreme deformations appear in many industrial applications (blast effects on structures, hypervelocity impacts,...). This kind of problems may involve high pressures and strain rates as well as a high density ratio. The hyperelastic models [START_REF] Godunov | Elements of continuum mechanics[END_REF][START_REF] Kluth | Perfect plasticity and hyperelastic models for isotropic materials[END_REF][START_REF] Godunov | Elements of continuum mechanics and conservation laws[END_REF][START_REF] Miller | A high-order Eulerian Godunov method for elastic-plastic flow in solids[END_REF][START_REF] Plohr | A conservative formulation for plasticity[END_REF][START_REF] Merzhievsky | The role of numerical simulation in the study of highvelocity impact[END_REF][START_REF] Favrie | Mathematical and numerical model for nonlinear viscoplasticity[END_REF] for which the stress tensor is defined in terms of a stored energy function are well adapted to treat accurately such problems. The hyperelastic models are conservative by construction. They are also objective and thermodynamically consistent. In this paper, a multi-component hyperelastic Eulerian formulation is used to compute several impact test cases [START_REF] Hank | Modeling hyperelasticity in non equilibrium multiphase flows[END_REF]. The modelling is based on a 'diffuse interfaces method' which was developed for multi-component fluids [START_REF] Abgrall | Discrete equations for physical and numerical compressible multiphase mixtures[END_REF][START_REF] Saurel | A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation[END_REF][START_REF] Saurel | A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation[END_REF] and generalized to the case of interaction of multiple solids and fluids [START_REF] Favrie | Diffuse interface model for compressible fluid-compressible elasticplastic solid interaction[END_REF][START_REF] Ndanou | Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation[END_REF]. Relaxation terms for an accurate description of plastic transformations proposed in solids in [START_REF] Favrie | Mathematical and numerical model for nonlinear viscoplasticity[END_REF] have been added. No hardening parameter is used to deal with the evolution of the yield strength.

The paper is organized as follows. In Section 2, the mathematical model is presented. In Section 3, the numerical method is briefly described. Two test cases are studied in Section 4. In particular, a symmetric copper rod impact is computed and compared to the experimental data provided in [START_REF] Forde | Symmetrical Taylor impact studies of copper[END_REF]. Then, a low velocity clay suspension impact is studied and compared to the experimental results obtained in [START_REF] Luu | Drop impact of yield-stress fluids[END_REF].

Viscoplastic model 2.1 Eulerian multi-component formulation of hyperelasticity

Hyperelasticity models have been intensively studied in the past few years [START_REF] Godunov | Elements of continuum mechanics[END_REF][START_REF] Godunov | Elements of continuum mechanics and conservation laws[END_REF][START_REF] Godunov | Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium[END_REF][START_REF] Barton | An Eulerian finite-volume scheme for large elastoplastic deformations in solids[END_REF][START_REF] Miller | A high-order Eulerian Godunov method for elastic-plastic flow in solids[END_REF][START_REF] Kluth | Perfect plasticity and hyperelastic models for isotropic materials[END_REF][START_REF] Merzhievsky | The role of numerical simulation in the study of highvelocity impact[END_REF][START_REF] Plohr | A conservative formulation for plasticity[END_REF][START_REF] Ghaisas | High-order Eulerian methods for elastic-plastic flow in solids and coupling with fluid flows[END_REF][START_REF] Ortega | Numerical simulation of elasticplastic solid mechanics using an Eulerian stretch tensor approach and HLLD Riemann solver[END_REF][START_REF] Brauer | A Cartesian scheme for compressible multimaterial models in 3D[END_REF]. In this paper, we consider a modified conservative formulation adapted to the case of isotropic solids. The Eulerian formulation of the multi-component hyperelasticity proposed in [START_REF] Favrie | Solid-fluid diffuse interface model in cases of extreme deformations[END_REF][START_REF] Favrie | Diffuse interface model for compressible fluid-compressible elasticplastic solid interaction[END_REF][START_REF] Ndanou | Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation[END_REF]] is considered. The numerical algorithm for solving this model is based on the generalization of the discrete equations method developed earlier for multi-component fluids in [START_REF] Abgrall | Discrete equations for physical and numerical compressible multiphase mixtures[END_REF][START_REF] Saurel | A multiphase Godunov method for compressible multifluid and multiphase flows[END_REF][START_REF] Saurel | A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation[END_REF] and multi-component solids [START_REF] Hank | Modeling hyperelasticity in non equilibrium multiphase flows[END_REF].

As we deal with non-equilibrium flows, each component admits its own equation of state with its own stress tensor. This approach allows us to treat configurations involving several solids and fluids. The discrete equations are obtained by integrating the conservation laws over a multiphase control volume. The general model is written hereafter for the phase k (in 1D case for the sake of simplicity).

                                                       ∂α k ∂t + u I ∂α k ∂x = 0, ∂(αρ) k ∂t + ∂(αρu) k ∂x = 0, ∂(αρu) k ∂t + ∂(αρu 2 -ασ 11 ) k ∂x = -σ 11,I ∂α k ∂x , ∂(αρv) k ∂t + ∂(αρuv) k ∂x + ∂(-ασ 12 ) k ∂x = -σ 12,I ∂α k ∂x , ∂(αρw) k ∂t + ∂(αρuw) k ∂x + ∂(-ασ 13 ) k ∂x = -σ 13,I ∂α k ∂x , ∂(αρE) k ∂t + ∂(αρEu -ασ 11 u -ασ 12 v -ασ 13 w) k ∂x = -(σ 11,I u I + σ 12,I v I + σ 13,I w I ) ∂α k ∂x , ∂(αa β ) k ∂t + ∂(αa β u) k ∂x + (αb β ) k ∂v k ∂x + (αc β ) k ∂w k ∂x = 0, β = 1, 2, 3 ∂b β k ∂t + u k ∂b β k ∂x = 0, β = 1, 2, 3 ∂c β k ∂t + u k ∂c β k ∂x = 0, β = 1, 2, 3. (1) 
Here, for k th phase: α k is the volume fraction, ρ k is the phase density,

u k = (u k , v k , w k ) T is the velocity field, σ k is the stress tensor: σ k = S k -p k I, (2) 
where S k is the deviatoric part of the stress tensor and p k is the thermodynamical pressure. As the model belongs to the class of hyperelastic models, the stress tensor can be expressed as the variation of the internal energy (their exact expressions are given in the following subsection). The evolution equations of hyperelasticity are written for deformation measures (in particular, for the Finger tensor defined below). E k is the total energy associated to the phase k and is given by the following expression:

E k = ∥u k ∥ 2 2 + e k (η k , G k ), (3) 
where η k is the entropy of the phase k and G k is the Finger tensor. The exact expressions of e k (η k , G k ) in (3) will be given in the next subsection.

The variables with subscripts 'I' are the 'interface' variables. They are obtained directly when solving the Riemann problem. The model is thermodynamically consistent and satisfies the second principle of thermodynamics. The proof is not straightforward. Nevertheless, the thermodynamic consistency has been verified on numerical test cases (for example, a shock wave propagation in a media in presence of material interfaces). In the right hand side of the system (1), non conservative terms are present: these terms exist if the volume fraction gradient is non zero.

The geometric variables a β k , b β k , c β k related to the deformation gradient will now be defined. To simplify the presentation, we will not further use in this section the subscript k for unknowns. Let us define the Finger tensor G as the inverse of the left Cauchy-Green tensor B: G=B -1 . The Finger tensor can also be expressed in the form:

G = 3 ∑ β=1 e β ⊗ e β , e β = (a β , b β , c β ) T , e β = ∇X β , β = 1, 2, 3, F -T = (e 1 , e 2 , e 3 ).

2

Here X β are the Lagrangian coordinates, the gradient is taken with respect to the Eulerian coordinates, F is the deformation gradient. In the next subsection the equation of state is presented, allowing the system closure. Different relaxation phenomena can easily be added into the model (pressure and velocity relaxation, phase transitions...).

System closure

The closure of the system is performed by using an equation of state presented in a separable form [START_REF] Gavrilyuk | Modelling wave dynamics of compressible elastic materials[END_REF]:

e(η, G) = e h (ρ, η) + e e (g), g = G |G| 1/3 , ( 4 
)
where |G| denotes the determinant of the tensor G. This formulation has been used in particular in [START_REF] Favrie | Solid-fluid diffuse interface model in cases of extreme deformations[END_REF][START_REF] Favrie | Diffuse interface model for compressible fluid-compressible elasticplastic solid interaction[END_REF][START_REF] Favrie | A thermodynamically compatible splitting procedure in hyperelasticity[END_REF][START_REF] Ndanou | The piston problem in hyperelasticity with the stored energy in separable form[END_REF]. With such a formulation, the pressure is determined only by the hydrodynamic part of internal specific energy e h (ρ, η). The deviatoric part of the stress tensor can be expressed using the shear part of the specific internal energy e e (g). The hydrodynamic part of the energy satisfies the Gibbs identity:

θdη = de h + pdτ,
where τ is the specific volume (τ = 1/ρ) and θ is the temperature. The expression of the deviatoric part of the stress tensor S is:

S = -2ρ ∂e e ∂G G.
The hydrodynamic part of the internal specific energy is taken as the stiffened gas equation of state:

e h (ρ, p) = p + γp ∞ ρ(γ -1) . (5) 
In [START_REF] Gavrilyuk | An example of a one-parameter family of rank-one convex stored energies for isotropic compressible solids[END_REF], a family of rank-one convex stored energies for isotropic compressible solids with a single parameter (denoted by ã) is proposed:

e e (G) = µ 4ρ 0 ( 1 -2ã 3 j 2 1 + ãj 2 + 3(ã -1) ) , j m = tr(g m ), m = 1, 2, 3. (6) 
Here, µ is the shear modulus of the considered material and ρ 0 is the reference density. Using the criterion proposed in [START_REF] Ndanou | Criterion of hyperbolicity in hyperelasticity in the case of the stored energy in separable form[END_REF][START_REF] Gavrilyuk | An example of a one-parameter family of rank-one convex stored energies for isotropic compressible solids[END_REF], it has been proven that with the equations of state ( 5) and ( 6), the equations are hyperbolic for any ã such that -1 ≤ ã ≤ 0.5. The relation [START_REF] Favrie | Dynamics of shock waves in elastic-plastic solids[END_REF] involves the following expression for the deviatoric part:

S = -µ ρ ρ 0 ( 1 -2ã 3 j 1 { g - j 1 3 I } + ã { g 2 - j 2 3 I }) . ( 7 
)
One can notice that for the value ã = -1, the equation of state describes neo-Hookean solids. Its expression is the following:

e e (G) = µ 4ρ 0 ( j 2 1 -j 2 -6 ) . ( 8 
)
The energy ( 8) is, in particular, suitable for the description of jelly-type materials. In the case of metals, the value ã = 0.5 can be chosen, where the equation of state becomes:

e e (G) = µ 8ρ 0 (j 2 -3) . ( 9 
)

Viscoplasticity modelling

An important class of hyperbolic models describing the plastic behavior of materials under large stresses has been proposed, for example in [START_REF] Godunov | Elements of continuum mechanics[END_REF][START_REF] Godunov | Elements of continuum mechanics and conservation laws[END_REF][START_REF] Godunov | Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium[END_REF][START_REF] Barton | An Eulerian finite-volume scheme for large elastoplastic deformations in solids[END_REF]. An extension of this approach has been proposed in [START_REF] Favrie | Solid-fluid diffuse interface model in cases of extreme deformations[END_REF][START_REF] Favrie | Mathematical and numerical model for nonlinear viscoplasticity[END_REF][START_REF] Favrie | Dynamics of shock waves in elastic-plastic solids[END_REF][START_REF] Ndanou | Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation[END_REF] to include material yield criteria (Von Mises). The relaxation terms are constructed in such a way that they are compatible with the mass conservation law and consistent with the second law of thermodynamics. The Von Mises yield limit is reached at the end of the relaxation step. The built model belongs to Maxwell type model, where the intensity of the shear stress decreases during the relaxation.

We use the formulation proposed in [START_REF] Favrie | Mathematical and numerical model for nonlinear viscoplasticity[END_REF]. The governing equations for e β are now written as follows:

De β Dt + ( ∂u ∂x
) T e β = - 1 τ rel Re β , ( 10 
)
where τ rel corresponds to a relaxation time and R is a symmetric tensor (R = R T ). As the Finger tensor G is linked to the local cobasis e β , it is possible to write the governing equation for G by using [START_REF] Gavrilyuk | An example of a one-parameter family of rank-one convex stored energies for isotropic compressible solids[END_REF].

DG Dt + ( ∂u ∂x ) T G + G ( ∂u ∂x ) = - 1 τ rel (GR + RG) . ( 11 
)
In [START_REF] Favrie | Mathematical and numerical model for nonlinear viscoplasticity[END_REF], an expression has been proposed for the tensor R. This expression ensures the thermodynamic compatibility of the model: R = -aS, with S being the deviatoric part of the stress tensor derived from ( 6):

S = -µ ρ ρ 0 ( 1 -2ã 3 j 1 { g - j 1 3 I } + ã { g 2 - j 2 3 I }) . ( 12 
)
The relaxation step is performed after the hyperbolic step: there is no space variation during the relaxation process. The derivative D/Dt should be replaced by the partial derivative with respect to time:

D Dt = ∂ ∂t .
In the following, we write

∂ ∂t = d dt .
We have to solve the following relaxation equation for each cell:

dG dt = a τ rel (GS + SG) = 2a τ rel (GS) . ( 13 
)

Von Mises yield criterion

The Von Mises criterion implies that the material starts to yield when the corresponding yield function (noted f (S)) becomes positive:

f (S) = S : S - 2 3 σ 2 Y , ( 14 
)
Here σ Y is the yield strength. When the yield function is negative, the material has an elastic behavior. In this case, the relaxation time τ rel becomes infinite. If the yield function is positive we have to relax the deformations in such a way that at the end of the relaxation step, the yield surface is recovered.

The value of a is taken as,

a = 1 2 (S : S) 1/2 . ( 15 
)
The following expression for the relaxation time is used [START_REF] Favrie | Mathematical and numerical model for nonlinear viscoplasticity[END_REF]:

1 τ rel =            1 τ 0 ( S : S -2 3 σ 2 Y σ 2 Y )n , if S : S -2 3 σ 2 Y σ 2 Y > 0, 0, if S : S -2 3 σ 2 Y σ 2 Y ≤ 0.
The values of the characteristic time τ 0 and the exponent n will be chosen latter. This expression is analogous to the Odquist law [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF].

Numerical treatment

It has been proven that system (1) is hyperbolic when closed by the equation of state ( 5) and ( 6) ( [START_REF] Ndanou | The piston problem in hyperelasticity with the stored energy in separable form[END_REF], [START_REF] Gavrilyuk | An example of a one-parameter family of rank-one convex stored energies for isotropic compressible solids[END_REF]). The full system admits 7 characteristic eigenfields corresponding to 2 longitudinal waves, 4 shear waves and a contact discontinuity. The resolution of the Riemann problem is not straightforward. In order to simplify the resolution of the Riemann problem, a numerical splitting is performed for the full system. This method has been proposed in [START_REF] Favrie | A thermodynamically compatible splitting procedure in hyperelasticity[END_REF]. The full system is split in three sub-models, each of them is hyperbolic. The first sub-system deals with the longitudinal waves and the contact discontinuity while other sub-systems deal with the shear waves. The numerical splitting simplifies the solution of the Riemann problem at each cell edges. Indeed, as each sub-model admits the propagation of three waves. An HLLC type Riemann solver can be considered to compute fluxes. The details of the splitting for the multi-component case and multi-dimensional case are presented in [START_REF] Hank | Modeling hyperelasticity in non equilibrium multiphase flows[END_REF]. The three sub-models are written hereafter (in one dimensional case).

                                                       ∂α k ∂t + u I ∂α k ∂x = 0 ∂(αρ) k ∂t + ∂(αρu) k ∂x = 0 ∂(αρu) k ∂t + ∂(αρu 2 -ασ 11 ) k ∂x = -σ 11,I ∂α k ∂x ∂(αρv) k ∂t + ∂(αρuv) k ∂x = 0 ∂(αρw) k ∂t + ∂(αρuw) k ∂x = 0 ∂(αρE) k ∂t + ∂(αρEu -ασ 11 u) k ∂x = -σ 11,I u I ∂α k ∂x ∂(αa β ) k ∂t + ∂(αa β u) k ∂x = 0, β = 1, 2, 3, ∂b β k ∂t + u k ∂b β k ∂x = 0, β = 1, 2, 3, ∂c β k ∂t + u k ∂c β k ∂x = 0, β = 1, 2, 3. (16) 
System ( 16) deals with the longitudinal waves and the contact discontinuity. The variables with the subscript 'I' are used to identify the interface variables. These interface quantities are obtained by solving the Riemann problem. The longitudinal sound speed is given by the following expression:

c L k = ∂p k ∂ρ k η k - ∂S 11k ∂ρ k - 1 ρ k 3 ∑ β=1 ∂S 11k ∂a β k a β k . ( 17 
)
The sub-systems for transverse waves are:

                                                       ∂α k ∂t = 0 ∂(αρ) k ∂t = 0 ∂(αρu) k ∂t = 0 ∂(αρv) k ∂t - ∂(ασ 12 ) k ∂x = -σ 12I ∂α k ∂x ∂(αρw) k ∂t = 0 ∂(αρE) k ∂t + ∂(-ασ 12 v) k ∂x = -σ 12I v I ∂α k ∂x ∂(αa β ) k ∂t + (αb β ) k ∂v k ∂x = 0, β = 1, 2, 3 ∂b β k ∂t = 0, β = 1, 2, 3 ∂c β k ∂t = 0, β = 1, 2, 3 ,                                                        ∂α k ∂t = 0 ∂(αρ) k ∂t = 0 ∂(αρu) k ∂t = 0 ∂(αρv) k ∂t = 0 ∂(αρw) k ∂t - ∂(ασ 13 ) k ∂x = -σ 13I ∂α k ∂x ∂(αρE) k ∂t + ∂(-ασ 13 w) k ∂x = -σ 13I w I ∂α k ∂x ∂(αa β ) k ∂t + (αc β ) k ∂w k ∂x = 0, β = 1, 2, 3 ∂b β k ∂t = 0, β = 1, 2, 3 ∂c β k ∂t = 0, β = 1, 2, 3 (18) 
The expressions of the transverse sound speeds are given hereafter:

c t1 k = - 1 ρ k 3 ∑ β=1 ∂S 12k ∂a β k b β k , c t2 k = √ - 1 ρ k ∂S 13k ∂a β k c β k . ( 19 
)
Both sub-systems [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF] deal with the shear waves and can be solved simultaneously. The three submodels correspond to the continuous limit of the discrete models obtained by integrating the pure solid equations over a multiphase control volume. Each sub-system is hyperbolic (see [START_REF] Hank | Modeling hyperelasticity in non equilibrium multiphase flows[END_REF] for details). The integration scheme is a first order finite volume Godunov type scheme. The fluxes must be calculated at each cell edges. To do this, a HLLC type solver is used [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: a practical introduction[END_REF].

After the hyperbolic step solving ( 16), [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF], relaxation terms are treated. A fourth order Runge-Kutta scheme is considered because of the stiffness of the right-hand side terms. Two versions of the code have been developed: a 3D code and 2D axi-symmetric version, both are parallel. The parallelization is performed using the domain decomposition method and using the openMPI library (open source Message Passing Interface).

Validations

The aim of this section is the validation of the elastic-plastic model. Two test cases are considered in this section: high and low velocity impacts.

Impact of a copper rod

The plastic deformation induced by the normal impact of a rod is a classical problem of impact solid dynamics ( [START_REF] Taylor | The testing of materials at high rates of loading[END_REF][START_REF] Taylor | The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations[END_REF]). We use experimental data provided in [START_REF] Forde | Symmetrical Taylor impact studies of copper[END_REF], where a symmetric rod-on-rod impact has been studied. Symmetric rod-on-rod impact at velocity V is equivalent to a "classical" impact at velocity V /2. Symmetric impact allows us not to consider properties of the impacted surface which can be important in the case of the "classical" Taylor impact.

Initial configuration

The initial configuration is presented in Figure 1 cells. The final physical time is 368 µs. We are interested in the study of the temporal evolution of the shape of the copper rod. The numerical results are then compared to those of [START_REF] Forde | Symmetrical Taylor impact studies of copper[END_REF] wherein the authors measure the copper rod radius as a function of the distance from the impact interface. Two materials are used for these computations: copper and air. Physical characteristics of both components are given in table 1.

Material γ P ∞ (GP a) µ (GP a) σ Y (M P a) ρ 0 (kg/m 3 ) τ 0 (s) n Copper 4.54
29.9 60 450 8924 6.10 -6 2 Air

: stiffened gas parameters and physical characteristics of copper and air.

The properties of the stiffened gas equation of state are determined by using the Russian Shock wave database www.ficp.ac.ru/rusbank/.

Simulation results

The available experimental data are given up to 68 µs. We have made the choice to perform the simulation until the stationary state would be reached. This allows us to measure the final dimensions of the rod (final length, final undeformed length) and especially to compare with the Taylor theory.

Comparison with the experimental results

The rod profiles obtained at different instants are compared to those given in [START_REF] Forde | Symmetrical Taylor impact studies of copper[END_REF], where the authors present high speed photograph of the rod-on-rod impact. The rod profiles are extracted at various time instants from the moment of impact, as a function of the distance from the impact interface. In Figure 2, the experimental results are compared to the numerical ones. The numerical profiles are obtained by extracting the contours of copper volume fractions. The value 0.5 of these contours corresponds to the position of the copper/air interface.

The results presented in Figure 2 show a good agreement, particularly regarding the global shape of the rod. The rod radius at the impact is under-evaluated by the model, especially during the first instants, when the deformation is mainly located near the impact interface. The gap between experimental results and numerical results decreases with time. The gap can be explained by the fact that we did not use work-hardening in the elastic-plastic model. Nevertheless, the error is quite small, just about 1 mm. In Figure 3, the rod radius at the impact interface is plotted as a function of time as well as the rod total length. The final radius is reached after 100 µs, its value is 10.74 mm, the total rod length tends to the value of 73.1 mm. The qualitative evolution of the copper rod profile is presented in order to appreciate the deformation induced by the impact. The Figure 4 shows the deformation of the copper rod due to the impact at different instants. It allows us to notice the appearance of the 'shoulders' on the rod shape (see the rod shape at instant 128µs in Figure 4). The rod shape tends to a stationary state after about 200 µs. It is interesting to compare the resulting final dimensions with the Taylor analysis [START_REF] Taylor | The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations[END_REF]. Let L 1 be the final length of the rod and X the undeformed rod length. The Taylor theory links the final rod dimensions to features of the impact:

σ Y ρ p V 2 = L -X 2(L -L 1 ) 1 L/X ( 20 
)
The simulation gives the following values : L 1 = 73.1mm and X = 39mm. It gives us :

L -X 2(L -L 1 ) 1 L/X ≈ 1.04.
The gap between the theoretical value and the calculated one is equal to 6.8 per cent.

Impact of a jelly-like material

Studied configuration

In this simulation, a sample of clay suspension of diameter D normally impacts a flat rigid surface. This kind of impact has been studied, in particular, in [START_REF] Luu | Drop impact of yield-stress fluids[END_REF]. Experiments were made on different surface types (smooth glass surface and super hydrophobic surface). In this paper, we extract the results associated to the bentonite impacting a smooth glass surface. In particular, we are interested in the final diameter of the impacting drop. The studied configuration is presented in L 0 as the diameter of the equivalent sphere of the same volume. Two materials are present in this this configuration : the clay suspension cylinder (bentonite) and surrounded air. The corresponding material parameters are given in Table 2. The initial diameter of the cylinder is equal to 14 mm. The associated value of L 0 is 15.08 mm. The experimental results show a quasi-linear behavior of the maximal spread factor with respect to the impact velocity. The aim is then to see if the elastic-plastic model can reproduce this evolution.

Numerical results

Several simulations has been performed with various values of the impact velocity (1 m/s, 2 m/s, 3m/s, 4m/s). The results of these computations are summarized in Figure 6 where the numerical results are compared to those of [START_REF] Luu | Drop impact of yield-stress fluids[END_REF]. The numerical results are in a good agreement with the experimental ones. The points corresponding to the numerical results follow a straight line.

Let us define the time T 0 such that,

T 0 = L 0 V 0 (21) 
Here L 0 is the characteristic dimension of the droplet, and V 0 is the impact velocity. The dimensionless time is then given by t/T 0 , where t corresponds to the physical time. Figure 7 shows the qualitative comparison of the numerical results with the experimental ones at several time instants (t/T 0 = 0.07, t/T 0 = 0.3 t/T 0 = 0.6, t/T 0 = 0.8). validated on impact experiments involving impact velocities varying from 1 m/s to 200 m/s. Very different materials were considered: clay suspension and copper. The numerical solution is in a good agreement with the experimental data. The developed numerical model is also able to describe more complex phenomena like cracks formation and spallation in materials. These results will be presented in future publications.

SolidFigure 1 :

 1 Figure 1: Studied configuration: the impact of a copper rod on a solid wall is performed. The impact velocity is 197.5 m/s. The rod diameter is D = 10 mm and the length L = 100 mm.

Figure 2 :

 2 Figure 2: The copper rod radius is plotted as a function of the distance from the impact interface at several instants.

Figure 3 :

 3 Figure 3: Time evolution of the rod radius at the impact interface between 0 µs and 368 µs.

Figure 4 :

 4 Figure4: The copper rod is presented at several instants from the moment of the impact, 0 µs, 32 µs, 64 µs, 96 µs, 128 µs, 160 µs, 192 µs and 320 µs. The shape of the rod changes during the impact and tends to a stationary state. The formation of "shoulders" (of a new "inflection" point at the rod shape) can clearly be observed at the instant 128 µs.
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 55 Figure 5: Studied configuration: the impact of a clay suspension cylinder at the velocity V.
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 2 Materialγ P ∞ (GP a) µ (P a) σ Y (P a) ρ 0 (kg/m 3 ) τ 0 (s) stiffened gas parameters and features of the clay suspension and air.
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Figure 6: The maximal spread factor L m /L 0 as a function of the impact velocity in the case of a bentonite drop impacting smooth glass surface (comparison with the experimental data of [START_REF] Luu | Drop impact of yield-stress fluids[END_REF]).

Figure 7: Comparison between the experimental results (at the top) with the numerical results (at the bottom) for several time instants of t/T 0 (t/T 0 = 0.07, t/T 0 = 0.3 t/T 0 = 0.6, t/T 0 = 0.8). The velocity impact is equal to 2 m/s.

The initial shape of the 'numerical' drop (see Figure 5) is not exactly the same one compared to the real drop. The real drop is generated by a syringe driver and falls then freely under gravity. This can explain a 'pointed' crest observable on the real drop. The dynamic behaviour of the bentonite drop is well reproduced by the simulation. A good agreement with the experimental results can be observed, both for the maximal spread factor (Figure 6) and for the form of the drop (Figure 7).

Conclusion

A visco-plastic Eulerian hyperbolic model is proposed. A simulation tool has been was developed to model simultaneously an arbitrary number of materials of different nature (fluids and solids). It is