Harold Rosenberg 
  
MINIMAL PLANES IN ASYMPTOTICALLY FLAT THREE-MANIFOLDS

. We prove that, in an asymptotically flat 3-manifold M that contains no closed minimal surfaces, fixing q ∈ M and a 2-plane V in TqM there is a properly embedded minimal plane Σ in M such that q ∈ Σ and TqΣ = V . We also prove that fixing three points in M there is a properly embedded minimal plane passing through these three points.

Introduction

This paper is inspired by the recent work of Otis Chodosh and Daniel Ketover [START_REF] Chodosh | Asymptotically flat three-manifolds contain minimal planes[END_REF]. They consider an asymptotically Euclidean 3-manifold M that contains no closed minimal surfaces. Then, for any point q in M , they prove the existence of a properly embedded minimal plane passing through the point q.

Here we obtain some more information:

• if q ∈ M and V ⊂ T q M is a 2-plane, then there is a properly embedded minimal plane Σ in M with q ∈ M and T q Σ = V . • if q 1 , q 2 , q 3 are 3 points of M , there is a properly embedded minimal plane Σ in M containing the three points. The main ingredient is the following Theorem Theorem. Let B be the unit ball of R 3 and let M be B with a Riemannian metric g satisfying

• ∂M is strictly mean convex, and • M contains no closed minimal surfaces. Then we have the following statements.

(1) If q ∈ int(M ) and V ⊂ T q M is a 2-plane, there is an embedded minimal disk D ∈ M with ∂D = D ∩ ∂M , q ∈ D and T q D = V . (2) If q 1 , q 2 , q 3 are 3 points in int(M ), there is an embedded minimal disk D in M with ∂D = D ∩ ∂M and q 1 , q 2 , q 3 in D.

The introduction to the paper of Chodosh and Ketover [START_REF] Chodosh | Asymptotically flat three-manifolds contain minimal planes[END_REF] contains an excellent exposition of the problem o the existence of minimal surfaces in asymptotically flat 3-manifolds, in particular, properly embedded minimal planes. They discuss the relevance of this theory to general relativity. They also explain why they employ the theory of Brian White "moduli space of minimal surfaces and degree theory" to prove their theorem rather than variational techniques, solving Plateau problems in geodesic balls and taking limits.

Our proof of our main Theorem above also starts with the theory of White, the moduli space of embedded minimal disks in the ball M = (B, g).

A natural question is what are the complete Riemannian 3-manifolds that contain properly embedded minimal planes and what are such planes. In the Euclidean R 3 , we know the only such planes are affine planes and helicoids [START_REF] William | The uniqueness of the helicoid[END_REF]. Moreover affine planes are completely characterized by a point in it and its tangent plane at that point or by 3 non collinear points contained in it. This explains why we are interested in prescribing these constraints. We notice that in the case of the Euclidean R 3 our proof produces affine planes and no helicoids.

Actually, in the general case, the minimal planes we construct have quadratic area growth. It would be interesting to know that these minimal planes are the only ones with a prescribed point and unit normal or 3 non collinear points (i.e., not on a geodesic) and quadratic area growth as it is the case of R 3 . Actually, we believe this is true.

For other ambient spaces, the existence of properly embedded planes is still an open question. For example, when g is a complete metric of non positive curvature on R 3 (a Hadamard manifold), we do not know if such a minimal plane exists. When the curvature is strictly pinched, by the work of Anderson they exist [START_REF] Michael | Complete minimal hypersurfaces in hyperbolic n-manifolds[END_REF]. When S is a closed surface, there is no properly embedded minimal plane in S × R, with the product metric. The same problem for embedded minimal annuli S 1 × R is also very interesting: is it possible to construct "catenoids" in some ambient manifolds?

The paper is organized as follow. In Section 2, we recall the main points of White's theory. Section 3 is devoted to the proof of item 1 of the above main theorem (Theorem 3). Section 4 deals with item 2 of the main theorem (Theorem 9). In the last section, we explain how one can pass from a minimal disk in a compact ball to a properly embedded minimal plane in an asymptotically Euclidean space, here we use ideas developed by Chodosh and Ketover in [START_REF] Chodosh | Asymptotically flat three-manifolds contain minimal planes[END_REF].

The space of minimal disks

After Tomi and Tromba [START_REF] Tomi | Extreme curves bound embedded minimal surfaces of the type of the disc[END_REF], White [START_REF]The space of m-dimensional surfaces that are stationary for a parametric elliptic functional[END_REF] has developed the theory of the moduli space of minimal submanifolds. Here we recall some of the aspects of this theory that we will use.

Let us denote by B the closed unit ball in R 3 and D the closed unit disk in R 2 . Let M be B endowed with a Riemannian metric g.

Let f i : D → R 3 (i = 1, 2) be two C k,α maps (k ≥ 2 and 0 < α < 1). They are said to be equivalent if f 1 = f 2 • ϕ for some C 1 diffeomorphism ϕ of D that is the identity on ∂D = S 1 ; let F denote the set of equivalence classes. We also denote by Diff k,α (D, ∂D) the set of C k,α diffeomorphisms of D that are the identity on ∂D.

On F, there is a boundary operator δ :

F → C k,α (S 1 , R 3 ) which is defined by δ([f ]) = f |S 1 . The space of immersed minimal disks M * is then the space of equivalence classes [f ] of C k,α minimal immersions f : D → M such that δ([f ]) ∈ C k,α (S 1 , ∂M ) and f is never tangent to ∂M (see Section 8 in [8]). We notice that if [f 1 ] = [f 2 ] where f 1 and f 2 are two C k,α immersions then ϕ ∈ Diff 1 (D, ∂D) such that f 1 = f 2 • ϕ is actually in Diff k,α (D, ∂D) (see Appendix A).
The main result of [START_REF]The space of m-dimensional surfaces that are stationary for a parametric elliptic functional[END_REF] is the following theorem.

Theorem 1. The space M * is a smooth Banach manifold and

δ : M * → C k,α (S 1 , ∂M ) is a smooth Fredholm map of index 0.
The descriptions of the charts of M * are given in [START_REF]The space of m-dimensional surfaces that are stationary for a parametric elliptic functional[END_REF]Theorem 3.3] (see also the proof of Lemma 6).

Actually, we are going to consider just the open subset M of [f ] ∈ M * where f is a minimal embedding of the disk. M is the space of minimal embedded disks in M with boundary in ∂M and never tangent to ∂M .

A second important result gives conditions under which the map δ is proper.

Theorem 2. Let us assume that M satisfies the following two conditions

• ∂M is strictly mean-convex towards M and • M contains no closed minimal surfaces. Then the map δ :

M → C k,α (S 1 , ∂M ) is proper
This result comes by combining different results by White: Theorem C in [START_REF]New applications of mapping degrees to minimal surface theory[END_REF] gives the properness thanks to the area estimate of Theorem 2.1 in [START_REF]Which ambient spaces admit isoperimetric inequalities for submanifolds?[END_REF] (M has mean convex boundary and no closed embedded minimal surfaces) and the curvature estimate given by Theorem 0 in [START_REF] White | Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals[END_REF].

Prescribing the tangent plane to a minimal disk in a

Riemannian 3-ball

In this section we want to find a minimal disk in M passing through a point q with a prescribed tangent space. We still assume that M is B endowed with a metric g but we also assume that g can be extended to the whole R 3 . Thus the main result of this section is the following theorem Theorem 3. Let M = (B, g) be as above such that (H1) ∂M is strictly mean convex towards M and (H2) M contains no closed minimal surfaces. Let us consider q ∈ M \ ∂M and V be a 2-dimensional subspace of T q M . There exists σ ∈ M such that q ∈ σ and V = T q σ. The remaining part of this section is devoted to the proof of this theorem. Let us describe the boundary curves that we will consider. The unit tangent bundle to

S 2 is U S 2 = {(p, v) ∈ S 2 × S 2 | p, v = 0}. For t ∈ (-1, 1), (p, v) ∈ U S 2
and e iθ ∈ S 1 , we define P (p, v, t, e iθ ) = tp + √ 1 -t 2 (cos θv + sin θp ∧ v). When e iθ runs along S 1 , this describes the parallel circle {q ∈ S 2 | p, q = t}.

Thus we obtain a map:

(1) Φ :

U S 2 × (-1, 1) -→ C k,α (S 1 , S 2 ) (p, v, t) -→ ζ → P (p, v, t, ζ)
Actually Φ gives the whole family of parallel curves on S 2 . By changing v, we only change the origin of the parametrization.

Basically, the idea of the proof of Theorem 3 consists in considering all the minimal disks in M bounded by a parallel Φ(p, v, t) and then finding a perturbation of one of them that satisfies the desired property.

3.1.

Study when |t| is close to 1. In this section we prove than when |t| is close to 1 there is only one minimal disk in M bounded by Φ(p, v, t). More precisely we have the following statement.

Proposition 4. There is ε > 0 such that, for any (p, v) ∈ U S 2 and 1 -ε ≤ |t| < 1, there is a unique minimal disk D p,v,t in M bounded by δ(D p,v,t ) = Φ(p, v, t).
Moreover, when (p, v) are fixed, the D p,v,t form a foliation for t ∈ [1-ε, 1) and t ∈ (-1, -1 + ε] by stable non-degenerate minimal disks. D p,v,t can be parametrized by

F (p, v, t) : (x, y) ∈ D → 1 -t 2 (xv + yp ∧ v) + (t + u p,v,t (x, y))p
where (p, v, t) → u p,v,t is a smooth family of C k,α functions with u p,v,t = (1 -t)h p,v + o(1 -t) (we have the same formula close to -1) and 0 boundary values.

Proof. First let us recall that if a Riemannian metric in R 3 is given by symmetric matrices G and u is a function defined on a subset of R 2 then its graph is minimal if

0 = 1 √ det G div 3 √ det G t ∇ 3 f (G -1 )∇ 3 f G -1 ∇ 3 f |(x,y,u(x,y))
where f is the function on R 3 defined by f (x, y, z) = u(x, y) -z and div 3 and ∇ 3 are the Euclidean divergence and gradient operator on R 3 . For (p, v, t) ∈ U S 2 × (-1, 1) we are looking for a minimal disk that is a graph over the Euclidean disk bounded by Φ(p, v, t). So we are looking for a function u p,v,t defined on D with vanishing boundary values such that the surface

F (p, v, t) : (x, y) ∈ D → 1 -t 2 (xv + yp ∧ v) + (t + u p,v,t (x, y))p
is in B 3 and is minimal for the metric g. Since t is close to 1 (the same can be done for t close to -1), we write t = cos β and we look for w p,v,β = u p,v,cos β such that

F (p, v, β) : (x, y) ∈ D → sin β(xv + yp ∧ v) + (cos β + w p,v,β (x, y))p
is in B 3 and is minimal for the metric g. For fixed p, v, β, we define the conformal map M p,v,β :

D × R → R 3 ; (x, y, z) → sin β(xv + yp ∧ v) + (cos β + sin βz)p. So F (p, v, t) is minimal if the graph of wp,v,β = w p,v,β sin β in D × R is minimal for the metric g p,v,β = M * p,v,β g sin 2 β . As explained above if G is the matrix of g in R 3 , the graph of w in D × R is minimal for g p,v,β if 0 = 1 det G p,v,β div 3   det G p,v,β t ∇ 3 f (G -1 p,v,β )∇ 3 f G -1 p,v,β ∇ 3 f   |(x,y, w(x,y)) = H(p, v, β, w)(x, y) where f (x, y, z) = w(x, y)-z and G p,v,β = (v, p∧v, p) * (G•M p,v,β )(v, p∧v, p)
where (v, p ∧ v, p) is the matrix whose columns are v, p ∧ v and p. So one can consider the map

H : U S 2 × (-ε, ε) × C k,α 0 (D) → C k-2,α (D); (p, v, β, w) → H(p, v, β, w)
where C k,α 0 (D) is the subset of C k,α -functions vanishing on ∂D. We want to solve H(p, v, β, w) = 0.

Let us remark that for β = 0, H(p, v, 0, w) computes the mean curvature of the graph of w in the constant metric G p,v,0 = (v, p∧v, p) * G(p)(v, p∧v, p). So the function w ≡ 0 is a solution, H(p, v, 0, 0) = 0. Besides we have

D wH (p, v, 0, 0)(h) = 1 (G 33 p,v,0 ) 3/2 2 i,j=1 (G ij p,v,0 G 33 p,v,0 -G i3 p,v,0 G j3 p,v,0 )h ij
where the G ij p,v,0 are the coefficients of G -1 p,v,0 . This operator is elliptic with constant coefficients so it is invertible from C k,α 0 (D) to C k-2,α (D) and the implicit function theorems applies. So there is a family of functions wp,v,β (β close to 0) which solves H(p, v, β, wp,v,β ) = 0 and wp,v,0 = 0. Moreover we have wp,v,β = β hp,v + o(β).

Thus the family (u p,v,t ) is well defined for any (p, v) ∈ U S 2 and t ∈ (1 -ε, 1). Using that t = cos β, we obtain u p,v,t = (1 -t) hp,v + o(1 -t). It still remains to prove that these disks are in B and form local foliations. By (H1), we notice that in the metric g the Euclidean spheres S 2 r of radius r are mean convex for r ∈

[1 -δ, 1 + δ). Since the F (p, v, 1)(D) = p, for t close to 1, F (p, v, t)(D) is contained in the part of R 3 foliated by the S 2 r (1 -δ < r < 1 + δ). Since ∂(F (p, v, t)(D)) ⊂ S 2 , the comparaison principle implies F (p, v, t)(D) ⊂ B for any (p, v, t) ∈ U S 2 × (1 -ε, 1). If t < t < 1, the boundary curve Φ(p, v, t )(S 1
) is between Φ(p, v, t)(S 1 ) and p. Besides, for t close to 1, F (p, v, t )(D) is close to p and does not intersect F (p, v, t)(D). So by the maximum principle F (p, v, t )(D) does not intersect F (p, v, t)(D) for any 1 -ε < t < t < 1. Thus at fixed (p, v), the minimal disks {F (p, v, t)(D)} 1-ε<t<1 form a foliation. As a consequence, these minimal disks are stable, non degenerate and moreover they are the unique minimal disk with boundary Φ(p, v, t)(S 1 ) at least for 1 -ε ≤ t < 1 (ε < ε). This uniqueness statement comes from the work of White in [START_REF]New applications of mapping degrees to minimal surface theory[END_REF] (the arguments start at the bottom of page 148, notice that here we have already constructed a foliation, see also Remark 2 below).

Remark 1. Actually the function hp,v can be computed by the equation 0 = D β H(p, v, 0, 0)+D wH (p, v, 0, 0)( hp,v ) that can be solved since D wH (p, v, 0, 0) is invertible. Moreover, D β H(p, v, 0, 0) can be computed and is given by the difference of the mean curvatures at p of S 2 ⊂ (M, g) (which is positive) and

S 2 ⊂ R 3 endowed with the constant metric G(p) (which is also positive). So D β H(p, v, 0, 0) is a constant function on D and hp,v (x, y) = λ(1 -(x 2 + y 2 )) for some λ.
Remark 2. For the readers benefit, we give the arguments of White concerning uniqueness. So we fix (p, v) ∈ U S 2 . We know that for any (p, v)

there is an open neighborhood (U p,v ) of p foliated by the minimal disks

{F (p, v, t)(D)} 1-ε<t<1 = {D p,v,t } 1-ε<t<1 . Let (p i , v i , t i ) → (p, v, 1). Let R i be a minimal surface in M with ∂R i = Φ(p i , v i , t i )(S 1 ) with R i = D p i ,v i ,t i .
Let T i be a minimal disk with boundary Φ(p i , v i , t i )(S 1 ) that minimizes the area in the connected component of M \ R i that contains -p i . T i is an embedded minimal disk and area(T i ) ≤ area(∂M ).

Unless area(T i ) → 0, by Theorem 3 in [START_REF] White | Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals[END_REF], T i converges to a minimal surface T with ∂T = p and T is smooth outside p. By Theorem 2 in [START_REF] White | Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals[END_REF], T is regular even at p. So this is impossible since ∂M is strictly mean convex.

So area(T i ) → 0 and, by the monotonicity formula, T i can't contain points outside of U p i ,v i so the same is true for R i . Since the minimal disks

{D p i ,v i ,t } 1-ε<t<1 foliate U p i ,v i this implies that R i = D p i ,v i ,t i by the maxi- mum principle.
3.2. The family of minimal disks. In this section we are going to prove the following result.

Proposition 5. There is a connected proper 4-dimensional submanifold Σ ⊂ M that contains all the minimal disks D p,v,t for any (p, v) and

1-ε ≤ |t| < 1. Moreover, for any σ ∈ Σ, δ(σ) is close to some Φ(p, v, t).
Besides there is a map

F : Σ → C 2,α (D, B), continuous in the C 2 topology, such that σ = [F (σ)].
Actually δ(σ) can be chosen as close to Φ(p, v, t) as we want. First we recall that δ : M → C 2,α (S 1 , S 2 ) is proper by Theorem 2. The map Φ is an embedding of U S 2 × (-1, 1) in C 2,α (S 1 , S 2 ). Moreover, by Proposition 4, when 1-ε ≤ |t| < 1, there is a unique minimal disk σ ∈ M such that δ(σ) = Φ(p, v, t) and σ is non degenerate. So when t is close to ±1, Φ is transverse to the boundary map δ.

Let us fix (p 0 , v 0 ) ∈ U S 2 . By the Smale transversality theorem [START_REF]An infinite dimensional version of Sard's theorem[END_REF], there exists Φ : (p 0 , v 0 ) × (-1, 1) → C 2,α (S 1 , S 2 ), a perturbation of Φ on (p 0 , v 0 ) × (-1, 1), which is transverse to δ. Moreover we can assume that Φ = Φ when

1 -ε ≤ |t| < 1. Thus δ -1 (Φ ((p 0 , v 0 ) × (-1, 1))) is a submanifold of M. Since δ is proper, δ -1 (Φ ((p 0 , v 0 )×(-1, 1))) is a proper 1-dimensional submanifold of M. Let γ be its component that contains D p 0 ,v 0 ,t for t close to 1. Since δ -1 (Φ ((p 0 , v 0 )× (-1, 1))) is proper, it must contain also D p 0 ,v 0 ,t for t close to -1.
Since Φ is a perturbation of Φ on (p 0 , v 0 ) × (-1, 1), we can extend its definition to the whole U S 2 × (-1, 1) as a perturbation of Φ such that Φ is still an embedding. We notice that a priori Φ is not transverse to δ on U S 2 × (-1, 1) but it is the case on (p 0 , v 0 ) × (-1, 1) and (U S 2 × ((-1,

-1 + ε] ∪ [1 -ε, 1
)) where we choose Φ = Φ. The Smale transversality theorem implies there is a perturbation Φ of Φ on the whole U S 2 × (-1, 1) which is transverse to δ and coincides with Φ on (p 0 , v 0 ) × (-1, 1) and

(U S 2 × ((-1, -1 + ε] ∪ [1 -ε, 1)). So δ -1 ( Φ(U S 2 × (-1, 1))) is a proper 4-dimensional submanifold of M.
Inside it, we only consider the connected component Σ that contains D p,v,t for any (p, v) and t close to ±1 (Σ exists since γ ⊂ Σ).

We denote by π the map Φ -1 • δ : Σ → U S 2 × (-1, 1). For t close to ±1 we know that π is a bijection. Let us define

Σ ± = δ -1 Φ(U S 2 ×[±(1-ε), ±1)) = D p,v,t ; (p, v, t) ∈ U S 2 × [±(1 -ε), ±1) Let us also define Σ 0 = δ -1 Φ(U S 2 × [-1 + ε, 1 -ε]) .
So let us construct the map F that parametrizes all these minimal disks. First when σ ∈ Σ ± , we know that we can identify σ with (p, v, t) = π(σ) and we define:

F (σ) = F (p, v, t) : (x, y) ∈ D → 1 -t 2 (xv + yp ∧ v) + (t + u p,v,t (x, y))p
as in Proposition 4. So we need to define F (σ) when σ ∈ Σ 0 . Lemma 6. There is a map F : Σ → C 2,α (D, B) continuous in the C 2 topology which coincides with the above definition on

Σ ± such that σ = [F (σ)]. We have F (σ) |∂D = Φ(π(σ)).
Proof. First we notice that F is well defined on ∂Σ 0 . Let us recall what are the charts around σ ∈ M. By Theorem 3.3 and Section 8 in [START_REF]The space of m-dimensional surfaces that are stationary for a parametric elliptic functional[END_REF], if ker Dδ(σ) has dimension j (the set of Jacobi fields on σ that vanish on the boundary has dimension j), there is a neighborhood of σ in M that can be identified with a submanifold in C 2,α (∂D, ∂M ) × R j of codimension j (such that δ correspond to the projection on the first factor). Moreover there is H : C 2,α (∂D, ∂M ) × R j → C 2,α (D, M ) such that its restriction to the submanifold gives a parametrization of any minimal surface in a neighborhood of σ.

Let Y = Y 0 ⊂ • • • ⊂ Y 4 be
a triangulation of Σ 0 such that each 4-cell is contained in one of the above charts of M that are diffeomorphic to a ball. First for any σ in Y 0 , we choose a parametrization F (σ) of σ such that, if σ ∈ Y 0 ∩ ∂Σ 0 , F (σ) coincides with the preceding definition of F .

By induction, let us assume that F : Y p → C 2,α (D, B) continuous in the C 2 topology is defined and consider e a p + 1-cell in Y p+1 . If e belongs to ∂Σ 0 , we extend F by the preceding definition. If not, e belongs to an above chart of M. So combining the inclusion of e in the submanifold of [START_REF] Smale | Diffeomorphisms of the 2-sphere[END_REF] and by Appendix A), Z can be extended continuously (for the C 2 topology) in Diff 2,α (D, ∂D) to the whole e. We then extend F by F (σ) = X(σ) • Z(σ) ∈ C 2,α (D, B). So we can extend F to the whole Y p+1 ; this finishes the proof.

C 2,α (∂D, ∂M ) × R j with H, there is a continuous X : e → C 2,α (D, B) such that [X(σ)] = σ. Besides there is a continuous map Z : ∂e → Diff 2,α (D, ∂D) such that F (σ) = X(σ) • Z(σ). Since Diff ∞ (D, ∂D) is contractible (cf.
The proof of Proposition 5 is finished.

3.3.

Rectifying the parametrization. From now on, we will forget about the metric g on B, so {F (σ)} σ∈Σ is just a family of embedded disks in B 3 with the Euclidean metric. Actually, the parametrization of σ by F (σ) is not good for what we are going to do next. We use the following result.

Proposition 7. There is a continuous map Y : Σ → Diff 1 (D, ∂D) such that F (σ) • Y (σ) is conformal along ∂D. Moreover, if σ ∈ Σ ± , lim Y (σ) = id when t → ±1.
Proof. Actually the proof is based on the following statement: let us consider X :

S 1 → R 2 a C 1 vectorfield such that X, e r > 0 then there is Y ∈ Diff 1 (D, ∂D) such that ∂ r Y = X on ∂D.
In order to construct Y , let r 0 ∈ (0, 1/2) and ϕ : [0, 1] → [0, 1] be a nonincreasing function such that ϕ = 1 on [0, 1 -r 0 ], ϕ(1) = 0 and ϕ (1) = 0 (r 0 and ϕ will be chosen later in order to satisfy other properties). We define

Y (r, θ) = rϕe r + (1 -ϕ)(e r + (r -1)X)
We also write X = λ(cos αe r + sin αe θ ) with λ > 0 and α ∈ (-π/2, π/2). Thus ∂ r Y =(ϕ + rϕ )e r -ϕ (e r + (r -1)λ(cos αe r + sin αe θ ))

+ (1 -ϕ)λ(cos αe r + sin αe θ ) ∂ θ Y =rϕe θ + (1 -ϕ)(e θ + (r -1)(λ θ cos αe r + λ θ sin αe θ -λα θ sin αe r + λα θ cos αe θ + λ cos αe θ -λ sin αe r ))
Choosing r 0 such that 2r 0 max(λ, λ θ , λα θ ) is small and using ϕ = 0 on [0, 1 -r 0 ],

∂ r Y =(ϕ + rϕ -ϕ (1 + (r -1)λ cos α) + (1 -ϕ)λ cos α)e r + (-ϕ (r -1)λ sin α + (1 -ϕ)λ sin α)e θ ∂ θ Y =(rϕ + 1 -ϕ)e θ + ε(r, θ)
where ε(r, θ) can be assumed small by reducing r 0 and is vanishing if r < 1 -r 0 . So the Euclidean Jacobian of Y is

J = 1 r (ϕ + rϕ -ϕ (1 + (r -1)λ cos α) + (1 -ϕ)λ cos α)(rϕ + 1 -ϕ) + 1 r ε
since ϕ will be chosen such that r 0 ϕ is bounded.

If r ≤ 1 -r 0 , we get J = 1. So we focus on the sign of

(ϕ + rϕ -ϕ (1 + (r -1)λ cos α) + (1 -ϕ)λ cos α) = ((ϕ + (r -1)ϕ ) + λ cos α(1 -(ϕ + (r -1)ϕ ))
We will choose ϕ such that this quantity is positive. We can assume that λ ≤ λ 0 , λ cos α ≥ η where λ 0 and η ∈ (0, 1) are some constant. Since ϕ ≤ 0, we have ϕ

+ (r -1)ϕ ≥ ϕ ≥ 0. So if ϕ + (r -1)ϕ ≤ 1 and λ cos α ≥ 1, one has ϕ + (r -1)ϕ + λ cos α(1 -ϕ -(r -1)ϕ ) ≥ λ cos α + (ϕ + (r -1)ϕ )(1 -λ cos α) ≥ λ cos α + (1 -λ cos α) ≥ 1 If ϕ + (r -1)ϕ ≤ 1 and λ cos α ≤ 1, ϕ + (r -1)ϕ + λ cos α(1 -ϕ -(r -1)ϕ ) ≥ λ cos α + (ϕ + (r -1)ϕ )(1 -λ cos α) ≥ λ cos α ≥ η If ϕ + (r -1)ϕ ≥ 1 we have ϕ + (r -1)ϕ + λ cos α(1 -ϕ -(r -1)ϕ ) ≥ ϕ + (r -1)ϕ + λ 0 (1 -(ϕ + (r -1)ϕ )) ≥ (rϕ + (1 -ϕ)(1 + λ 0 (r -1)))
So we will choose ϕ such that (rϕ

+ (1 -ϕ)(1 + λ 0 (r -1))) > 0. Actually we choose ψ : [0, 1] → [0, 1] non increasing with ψ(1) = 0, ψ (1) 
= 0 and ψ(r) = 1 on [0, 1/2] and such that (rψ So in order to conclude the proof of Proposition 7, we will apply the above construction to the vector fields X(σ) given for ζ ∈ ∂D by

+ (1 -ψ)(1 + λ 0 (r -1))) > 0 on [1/2, 1]. Then ϕ is defined by ϕ(r) = 1 if r ≤ 1 -r 0 ψ(1 + r-1 r 0 ) if r ≥ 1 -
X(σ)(ζ) = D(F (σ)) -1 (ζ) r -π/2 (∂ θ F (σ)(ζ))
where r -π/2 is the rotation by angle -π/2 in T F (σ)(ζ) σ.

Let us remark that when π(σ) = (p, v, t) with t close to 1, we have

F (σ)(x, y) = 1 -t 2 (xv + yp ∧ v) + (t + u p,v,t (x, y))p So ∂ θ F (σ)(e iθ ) = √ 1 -t 2 (-sin θv + cos θp ∧ v) + O(1 -t) and ∂ r F (σ)(e iθ ) = √ 1 -t 2 (cos θv+sin θp∧v)+O(1-t). So r -π/2 (∂ θ F (σ)(e iθ )) = √ 1 -t 2 (cos θv+ sin θp ∧ v) + O(1 -t) = ∂ r F (σ)(e iθ ) + O(1 -t). This gives us X(σ)(e iθ ) = e r + O( √ 1 -t).
The same is true for t near -1. As a consequence, all the estimates that appear in the construction can be chosen uniformly in σ. So r 0 can be chosen independently of σ and Y depends continuously on σ. The last remark is that, as t → ±1, Y (σ) → id.

In the sequel, we denote F (σ) = F (σ) • Y (σ) which is conformal on the boundary. Looking at the parametrization F (σ) when σ ∈ Σ ± , we have H(σ, ζ) → (±p, p, v) when π(σ) → (p, v, ±1). This allows us to compactify Σ × D and extend H to this compactification.

Since (π, id) is a bijection from So we get a compact manifold K where H extends to G : K → B × U S 2 . We need to describe G on ∂K:

Σ + × D → U S 2 × [1 -ε, 1) × D, one can extend Σ + × D as U S 2 × [1 -ε, 1] × D
• if k ∈ ∂K is a point added to Σ × D along the compactification corresponding to (p, v, 1), we have G(k) = (p, p, v); • if k ∈ ∂K is a point added to Σ × D along the compactification corresponding to (p, v, -1), we have G(k) = (-p, p, v); • if k is not an added point and k = (σ, ζ) with |ζ| = 1, we have G(k) = (δ(σ)(ζ), ν(σ)(ζ), h(σ)(ζ)). If π(σ) = (p, v, t), δ(σ)(ζ) = Φ(p, v, t)(ζ) which is close to Φ(p, v, t)(ζ) (and even equal on Σ ± × ∂D). ν(σ)(ζ)
is a unit normal vector to Φ(p, v, t). Since F (σ) is conformal along ∂D, we have:

h(σ)(e iθ ) = cos θ∂ r F (σ) -sin θ∂ θ F (σ) ∂ θ F (σ) (e iθ ) = cos θ∂ r F (σ) -sin θ∂ θ Φ(π(σ)) ∂ θ Φ(π(σ)) (e iθ ) = cos θ ∂ θ Φ(π(σ)) ∂ θ Φ(π(σ)) ∧ ν -sin θ ∂ θ Φ(π(σ)) ∂ θ Φ(π(σ)) = cos θẽ θ ∧ ν -sin θẽ θ where ẽθ = ∂ θ Φ(π(σ)) ∂ θ Φ(π(σ))
.

Actually we have

Proposition 8. On ∂K, choosing Φ close enough to Φ, G is homotopic to G : ∂K → S 2 × U S 2 ; (σ, ζ) → Φ(π(σ))(ζ), π 1 (σ) where π 1 (σ) = (p, v) if π(σ) = (p, v, t).
Proof. In order to construct this homotopy we can construct it for each factor S 2 and U S 2 . We focus on the second one.

To do this, we endow U S 2 with a Riemannian metric such that the following identifications RP 3 SO 3 U S 2 are isometries. Let us recall that these identifications are constructed in the following way. If (a, b, c, d) ∈ S 3 , the unit norm quaternion q = a + bi + cj + dk acts by conjugation on the unit sphere of purely imaginary quaternions by the following matrix of SO 3 :

  a 2 + b 2 -c 2 -d 2 2(-ad + bc) 2(ac + bd) 2(ad + bc) a 2 -b 2 + c 2 -d 2 2(-ab + cd) 2(-ac + bd) 2(ab + cd) (a 2 -b 2 -c 2 + d 2 )  
We notice that only (a, b, c, d) and (-a, -b, -c, -d) are identified with the above matrix; so RP 3 SO 3 . Besides, if (p, v) ∈ U S 2 , we can consider the matrix (p, v, p ∧ v) ∈ SO 3 . This gives the second identification U S 2 SO 3 . Finally we use them to put on U S 2 the Riemannian metric of RP 3 inherited from the one on S 3 . As a consequence, the cut-locus of ((1, 0, 0), (0, 1, 0)) (which is [a : b : c : d] = [1 : 0 : 0 : 0] ∈ RP 3 ) is given by {a = 0}. So the cut-locus of I 3 is the set of matrices of trace -1: the rotation of angle π.

In order to construct the homotopy, we are going to prove that for any (σ, ζ) the matrix ν(σ

)(ζ), h(σ)(ζ), ν(σ)(ζ) ∧ h(σ)(ζ)
is not in the cut-locus of (p, v, p ∧ v) where π 1 (σ) = (p, v). Because of the group structure of SO 3 and the invariance of the below arguments by left multiplication, we assume that π 1 (σ) = (p 0 , v 0 ) = ((1, 0, 0), (0, 1, 0)). Moreover we recall that Φ is close to Φ and even equal when t is close to ±1.

At Φ(p 0 , v 0 , t)(e iθ ), the unit vector ẽθ is close to e θ = (0, -sin θ, cos θ). So we can write ẽθ = (sin α, -cos α sin θ , cos α cos θ ) with α close to 0 and θ close to θ. We write ν = (cos ϕ, sin ϕ cos β, sin ϕ sin β) with β close to θ and even equal if t close to ±1. Thus As α is close to 0 and θ close to θ, the trace is close to 1 + 2 cos ϕ.

For |t| ≥ 1 -ε, we know θ = θ = β and α = 0. Moreover ϕ is close to 0 (its value when t = ±1). So the value of the trace is close to 3 for |t| ≥ cos ξ (for some positive ξ close to 0).

For t not close to ±1, we know that ẽθ ∧ ν points to the outside of B at Φ(p 0 , v 0 , t)(e iθ ) = (cos γ, sin γ cos θ , sin γ sin θ ) where cos γ is close to t and θ is close to θ since ν is never normal to S 2 = ∂B. So 0 < ẽθ ∧ ν, Φ(p 0 , v 0 , t)(e iθ ) = -cos γ cos α sin ϕ cos(θ -β) + sin γ cos θ (-sin α sin ϕ sin β + cos α cos ϕ cos θ ) + sin γ sin θ (sin α sin ϕ cos β + cos α cos ϕ sin θ ) = -cos γ cos α sin ϕ cos(θ -β) + sin γ sin α sin ϕ sin(θ -β)

+ sin γ cos α cos ϕ cos(θ -θ )
As θ θ θ β and α 0, we get 0 < sin(γ -ϕ) + ε. So γ -π -η < ϕ < γ + π + η for some small η. We notice that all the above approximations depends on how far Φ is from Φ. Since we can choose Φ as close of Φ as we want, we can make all these approximations very precise. So where we have to pertub Φ into Φ, ξ ≤ γ ≤ π -ξ. Since we can assume η < ξ, we get 3.5. The final argument. We are going to prove that G is surjective on the interior of B×U S 2 . If it is true, this will tell us that for any (q, ν) ∈ B×S 2 there is a disk σ passing through q with unit normal ν: this is exactly the statement of Theorem 3.

-π < -π + ξ -η < ϕ < π + η -ξ < π So tr(ν, h, ν ∧ h) 1 + 2 cos ϕ > -1.
Let us assume that this is not the case. Let A = (a, b) ∈ B × U S 2 be not in the image of G. Let us notice that B \ {a} can be deformation retracted to S 2 and U S 2 \ {b} can be deformation retracted to the equatorial RP 2 in RP 3 U S 2 with pole at b. So B × U S 2 \ {A} can be deformation retracted to ∆ = (S 2 × U S 2 ) ∪ S 2 ×RP 2 (B × RP 2 ) where both terms are glued together along the common S 2 × RP 2 .

Let us consider homology with Z/2Z coefficients since it is not clear if K is orientable. Composing G with the deformation retract defines a map

G : K → ∆ which coincides with G on ∂K. As a consequence, [G(∂K)] = [G (∂K)] = [∂G (K)] = 0 ∈ H 5 (∆, Z/2Z).
A part of the Mayer-Vietoris sequence associated to ∆

= (S 2 ×U S 2 )∪ S 2 ×RP 2 (B × RP 2 ) is H 5 (S 2 × RP 2 ) → H 5 (S 2 × U S 2 ) ⊕ H 5 (B × RP 2 ) → H 5 (∆) Since H 5 (S 2 × RP 2 ) = 0 and H 5 (B × RP 2 ) = 0, the inclusion i : S 2 × U S 2 → ∆ gives an injective inclusion H 5 (S 2 × U S 2 , Z/2Z) → H 5 (∆, Z/2Z). G is homotopic to G : ∂K → S 2 × U S 2 ⊂ ∆; (σ, ζ) → (Φ(π(σ))(ζ), π 1 (σ)
) which is a degree 1 map: indeed when t is close to 1 there is exactly one antecedent.

So [G(∂K)] = [ G(∂K)] = [S 2 × U S 2 ] = 0 ∈ H 5 (∆, Z/2Z
). Thus we have a contradiction and G is surjective.

A minimal disk containing three points

In this section, we do similar arguments to the preceding section in order to prove that choosing three points in a Riemannian ball there is a minimal disk containing these three points. Theorem 9. Let M = (B, g) be as in Theorem 3. Let q 1 , q 2 , q 3 ∈ M be three points, then there is σ ∈ M such that q i ∈ σ for 1≤ i ≤ 3.

In order to do the proof we need an equivariant version of the construction of the preceding section. Let R and S be defined as maps z) and S(X)(z) = X(z). We notice that these maps induce maps R and S on M such that the boundary map δ is equivariant. We also notice that R and S generate a free actions of G = (Z/2Z) 2 on M and C 2,α (S 1 , S 2 ).

C 2,α (S 1 , S 2 ) → C 2,α (S 1 , S 2 ) or C 2,α (D, B) → C 2,α (D, B) by R(X)(z) = X(-
On U S 2 × (-1, 1) we also define r(p, v, t) = (p, -v, t) and s(p, v, t) = (-p, v, -t). It also generates a free action of G = (Z/2Z) 2 on U S 2 × (-1, 1) such that Φ • r = R • Φ and Φ • s = S • Φ where Φ is defined by [START_REF] Michael | Complete minimal hypersurfaces in hyperbolic n-manifolds[END_REF].

Let us denote M = M/G, U = (U S 2 × (-1, 1))/G, Γ = C 2,α (S 1 , S 2 )/G; we denote by Π : M → M the projection map. Let Ψ and δ be the induced map from Φ and δ. We then have a commutative diagram

M U Γ δ Ψ
Since the action of G on M and C 2,α (S 1 , S 2 ) are free and G is finite, M and Γ are Banach manifolds and δ is Fredholm of index 0. Moreover U is a smooth manifold and Ψ is an embedding. So now the idea is to do an equivariant version of the work in Section 3.

4.1. The equivariant construction. As in the preceding section (Proposition 4), when t is close to ±1, there is a unique σ ∈ M such that δ(σ) = Ψ(p, v, t) and D δ is invertible at σ. So we can perturb Ψ into Ψ : U → Γ such that δ and Ψ are transverse and Ψ = Ψ close to t = ±1.

As above

Σ = δ-1 ( Ψ( U )) is a proper smooth submanifold of M. Let Σ = Π -1 ( Σ) ⊂ M.
As above, we want to have a parametrization of all the minimal disks in Σ.

When t is close to ±1, we have the parametrizations

F (p, v, t) : (x, y) → 1 -t 2 (xv + yp ∧ v) + (t + u p,v,t (x, y))p
We notice that, by the implicit function theorem, we have

F (r(p, v, t))(z) = F (p, v, t)(-z) and F (s(p, v, t))(z) = F (p, v, t)(z)
As above we define

Σ ± = D p,v,t ; (p, v, t) ∈ U S 2 × [±(1 -ε), ±1
) and Σ 0 = Σ \ (∪Σ ± ). So we want to extend this to the whole Σ in an equivariant way.

Lemma 10. There is a continuous map F : Σ → C 2,α (D, B) in the C 2 topology which coincides with the above definition on Σ ± such that [F (σ)] = σ and F is equivariant: As above the proof is by induction. For any 0-cell ẽ in Y 0 , let {e, R(e), S(e), R• S(e)} be Π -1 (ẽ). Let F (e) ∈ C 2,α (D, B) be a parametrization of e and define respectively the parametrizations of R(e), S(e), R•S(e) by F (R(e))(z) = F (e)(-z), F (S(e))(z) = F (e)(z) and F (R • S(e))(z) = F (e)(-z). Since e, R(e), S(e) and R • S(e) are disjoint this is well defined and moreover F is G-equivariant.

F (R(σ))(z) = F (σ)(-z) and F (S(σ))(z) = F (σ)(z) Proof. Let Σ 0 be Π(Σ 0 ). Let Y 0 ⊂ • • • ⊂ Y 4 be
By induction let us assume that an equivariant F : Y p → C 2,α (D, B) is defined. Consider ẽ a p + 1 cell in Y p+1 and {e, R(e), S(e), R • S(e)} be Π -1 (ẽ). As in Lemma 6, F is defined on ∂e and can be extended to the interior of e. Then we define, for any σ ∈ e, F (R(σ) z). This extends the definition of F to S(e), R(e) and R • S(e). So F is well defined on Π -1 (ẽ) in an equivariant way. We then end the construction by induction.

)(z) = F (σ)(-z), F (S(σ))(z) = F (σ)(z) and F (R • S(σ))(z) = F (σ)(-

The degree argument. Let us now define

H : Σ × [-1, 1] × D × D → B × B × B by H(σ, x 1 , z 2 , z 3 ) = (F (σ)(x 1 ), F (σ)(z 2 ), F (σ)(z 3 )).
Our goal is to prove that H is surjective. We notice that x 1 is real.

On Σ × [-1, 1] × D 2 , there is an action of G = (Z/2Z) 2 which is defined by

R(σ, x 1 , z 2 , z 3 ) = (R(σ), -x 1 , -z 2 , -z 3 ) and S(σ, x 1 , z 2 , z 3 ) = (S(σ), x 1 , z2 , z3 )
Because of the equivariance of F , we have H • R = H and H • S = H. As a consequence the map H induces a map H on the quotient Let us compute this degree. Let (p, v) ∈ U S 2 and t close to 1. We are interested in

K = Σ × [-1, 1] × D 2 /G. It is enough to prove that H is surjective. Let L be the interior of K i.e. (σ, x 1 , z 2 , z 3 ) ∈ L if |x 1 | < 1, |z 2 | < 1 and |z 3 | < 1.
H -1 (tp + √ 1 -t 2 v, tp + √ 1 -t 2 p ∧ v, tp - √ 1 -t 2 v).
Clearly it is made of four points in K:

(F (p, v, t), 1, i, -1), (F (p, -v, t), -1, -i, 1), (F (-p, v, -t), 1, -i, -1), (F (-p, -v, -t), -1, -i, 1)

We recall that x 1 is real here. As a consequence,

H -1 (tp + √ 1 -t 2 v, tp + √ 1 -t 2 p ∧ v, tp - √ 1 -t 2 v
) has only one element. Let us see that it is also the case of H -1 (q 1 , q 2 , q 3 ) for (q 1 , q 2 , q 3 ) ∈ 

• B × • B × • B close to (tp + √ 1 -t 2 v, tp + √ 1 -t 2 p ∧ v, tp - √ 1 -t 2 v). First we remark that, if (F (p n , v n , t n )(x 1,n ), F (p n , v n , t n )(z 2,n ), F (p n , v n , t n )(z 3,n )) -→ (tp + 1 -t 2 v, tp + 1 -t 2 p ∧ v, tp -1 -t 2 v), then (p n , v n , t n , x
)(x 1,n ), F (p n , v n , t n )(z 2,n ), F (p n , v n , t n )(z 3,n )) →
±(p, p, p). Once t n → t ∈ (-1, 1), the convergence to (p, v, t, 1, i, -1) is clear. So we can focus on a neighborhood of (p, v, t, 1, i, -1).

Let us compute the differential of H(p, v, t, x 1 , x 2 , y 2 , x 3 , y 3 ) at (p, v, t, 1, 0, 1, -1, 0). Actually we consider the differential of h(p, v, θ, x 1 , x 2 , y 2 , x 3 , y 3 ) = H(p, v, cos θ, x 1 , x 2 , y 2 , x 3 , y 3 ).

We notice that the tangent space to (p, v) in U S 2 is {(q, w) ∈ T p S 2 × T v S 2 |(q, v) + (p, w) = 0}. So D (p,v) h(q, w) = (cos θq +sin θw, cos θq +sin θq ∧v +sin θp∧w, cos θq -sin θw)

We write (q, w) = (av + bp ∧ v, -ap + cp ∧ v) so q ∧ v = -bp and p ∧ w = -cv and this derivative becomes

D (p,v) h(q, w) = ((-sin θp + cos θv)a + cos θbp ∧ v + sin θcp ∧ v, cos θav + (cos θp ∧ v -sin θp)b -sin θcv, (sin θp + cos θv)a + cos θbp ∧ v -sin θcp ∧ v)
For the other derivatives we have ∂ θ h = (-sin θp + cos θv, -sin θv + cos θp ∧ v, -sin θp -cos θv) ∂ x 1 h = (∂ x u p,v,sin θ (1, 0)p + sin θv, 0, 0) ∂ x 2 h = (0, ∂ x u p,v,sin θ (0, 1)p + sin θv, 0) = (0, sin θv, 0) ∂ y 2 h = (0, ∂ y u p,v,sin θ (0, 1)p + sin θp ∧ v, 0)

∂ x 3 h = (0, 0, ∂ x u p,v,sin θ (-1, 0)p + sin θv) ∂ y 3 h = (0, 0, ∂ y u p,v,sin θ (-1, 0)p + sin θp ∧ v) = (0, 0, sin θp ∧ v)
We notice that, by Proposition 4, ∇u p,v,cos θ = O(sin 2 θ). So considering the family

(D p,v h(v, -p), D p,v h(p∧v, 0), D p,0 h(0, p∧v), ∂ θ h, ∂ x 1 h, ∂ x 2 h, ∂ y 2 h, ∂ x 3 h, ∂ y 3 h)
in the basis (p, 0, 0), (p∧v, 0, 0), (0, p, 0), (0, 0, p), (v, 0, 0)(0, v, 0), (0, p∧v, 0), (0, 0, v), (0, 0, p∧ v) the jacobian matrix is

       -sin θ 0 0 -sin θ ∂xu p,v,cos θ (1,0) 0 0 0 0 0 cos θ sin θ 0 0 0 0 0 0 0 -sin θ 0 0 0 ∂yu p,v,cos θ (0,1) 0 0 0 sin θ 0 0 -sin θ 0 0 0 ∂xu p,v,cos θ (-1,0) 0 cos θ 0 0 cos θ sin θ 0 0 0 0 cos θ 0 -sin θ -sin θ 0 sin θ 0 0 0 0 -cos θ 0 cos θ 0 0 sin θ 0 0 cos θ 0 0 -cos θ 0 0 0 sin θ 0 0 cos θ -sin θ 0 0 0 0 0 sin θ        So this matrix has the form sin θ               -1 0 0 -1 0 0 0 0 0 0 cot θ 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 cot θ 0 0 cot θ 1 0 0 0 0 cot θ 0 -1
where c = cot θ. So the local inversion at the boundary applies and the map H sends diffeomorphically a neighborhood of the point (D p,v,t , 1, 0, 1,

-1, 0) in Σ×[-1, 1]× D 2 into a neighborhood of (tp + √ 1 -t 2 v, tp + √ 1 -t 2 p ∧ v, tp - √ 1 -t 2 v)
in B 3 when t is close to 1. This implies that when (q 1 , q 2 , q 3 ) ∈

• B 3 is close to (tp+ √ 1 -t 2 v, tp+ √ 1 -t 2 p∧v, tp- √ 1 -t 2 v) (t close to 1) there is a unique (σ, x 1 , x 2 , y 2 , x 3 , y 3 ) ∈ Σ × (-1, 1) × • D 2
such that H(σ, x 1 , x 2 , y 2 , x 3 , y 3 ) = (q 1 , q 2 , q 3 ) and the differential of H at this point is invertible. So H has mod 2 degree equal to 1.

Since H has odd degree, it is surjective. This finishes the proof of Theorem 9.

Minimal planes in asymptotically flat 3-manifolds

In this section we prove the following result which is an extension of Theorem 1 in [START_REF] Chodosh | Asymptotically flat three-manifolds contain minimal planes[END_REF].

Theorem 12. Let (M, g) be an asymptotically flat 3-manifold containing no closed embedded minimal surface. Let us consider either

• q ∈ M and V ⊂ T q M a 2-dimensional subspace or • q 1 , q 2 , q 3 ∈ M . Then there is a complete properly embedded minimal plane Σ in M satisfying respectively

• q ∈ Σ and T q Σ = V or • q i ∈ Σ for 1 ≤ i ≤ 3.
First let us recall what is the asymptotic flatness hypothesis we consider. M is diffeomorphic to R 3 and, in these coordinates, the metric can be written g = g 0 + h where g 0 is the Euclidean metric and h satisfies |h| + r|Dh| + r 2 |D 2 h| → 0 as r → ∞ (r the Euclidean distance to the origin of R 3 ).

Actually, once Theorems 3 and 9 are known, the proof of the above theorem follows the ideas of Chodosh and Ketover in [START_REF] Chodosh | Asymptotically flat three-manifolds contain minimal planes[END_REF]. More precisely we use a variant of [2, Proposition 7]. Before let us fix a notation. Let {Γ R } be a family of closed curves in S 2 (R) = ∂B(R) where B(R) is the Euclidean ball of radius R. We say that they are C 2,α almost parallel curves if, after rescaling to unit size, 1 R Γ R ⊂ S 2 converges in the C 2,α sense to a parallel curve in S 2 or to a constant map.

Proposition 13. Let (M, g) be an asymptotically flat manifold diffeomorphic to R 3 that contains no closed embedded minimal surfaces.

Let {Σ R } be a family of embedded minimal disks in B(R) containing q ∈ M and whose boundaries ∂Σ R ⊂ ∂B(R) are C 2,α almost parallel curves. Then a subsequence of {Σ R } converges smoothly on compact subsets of M to a complete properly embedded minimal plane Σ ∞ .

The difference with [START_REF] Chodosh | Asymptotically flat three-manifolds contain minimal planes[END_REF] is that we do not assume a priori that ∂Σ R is almost equatorial.

Proof. First we notice that, for large R, the length of ∂Σ R is less than 2π

(1 + o(1))R. Let λ R √ R be such that Σ R ∩ S 2 (λ R ) is transverse. As in [2], area(Σ R \ B 3 (λ R )) ≤ π(1 + o(1))R 2 . So Σ R = 1 R (Σ R \ B 3 (λ R )
) is a stationary integral varifold in (B, gR ) (g R is the homothetic of g by 1 R and converges to the Euclidean metric as R → ∞).

Since Σ R (B) ≤ π(1+o(1)), we can assume that Σ R converge as varifolds to V which is stationary in B 3 \{0} endowed with the flat metric and satisfies V (B \ {0}) ≤ π. Actually, V extends to a stationary varifold of B with V (B) ≤ π. The origin is in the support of V since q/R ∈ Σ R /R converges to the origin.

By the monotonicity formula V is the varifold associated to a flat unit disk through the origin with multiplicity one. This implies that ∂Σ R is converging to an equator. Now the rest of the proof is similar to the one of [START_REF] Chodosh | Asymptotically flat three-manifolds contain minimal planes[END_REF]Proposition 7.2].

Proof of Theorem 12. Let q and V or q 1 , q 2 , q 3 be as in the statement. Since the metric is asymptotically Euclidean, we consider a chart M (R 3 , g) with the prescribed asymptotics for g. This implies that for large R, the ball B(R) is mean convex. So we can apply Theorem 3 or 9 and obtain a minimal disk Σ R whose boundary is an almost parallel curve such that (q, V ) = T q Σ R or q i ∈ Σ R .

By Proposition 13, a subsequence of Σ R converges to Σ ∞ a properly embedded minimal plane in M . Since the convergence is smooth (q, V ) = T q Σ ∞ or q i ∈ Σ ∞ .

Remark 3. As in [START_REF] Chodosh | Asymptotically flat three-manifolds contain minimal planes[END_REF], Theorem 12 extends to the case where M is asymptoticaly conical: M is R 3 endowed outside a compact subset with a metric g = g α + h where g α is the conical metric g α = dr 2 + r 2 α 2 g S 2 and h satisfies |h| + r|Dh| gα + r 2 |D 2 h| gα → 0 as r → ∞ Appendix A. About the Smale theorem Let us explain the use of Smale's theorem in Lemma 6. A priori this theorem says that the group Diff ∞ (D, ∂D) is contractible. But here we are not considering C ∞ diffeomorphisms: they are C k,α .

Let us prove a first result about the regularity of the diffeomorphisms we consider. We focus on the case k = 2 since this is enough for us. |ϕ(p) H p -DG -1 |ϕ(q) H q = DG -1 |ϕ(p) H p -DG -1 |ϕ(p) (π p H q ) + DG -1 |ϕ(p) (π p H q ) -DG -1 |ϕ(q) H q = DG -1 |ϕ(p) • π p (H p -H q ) + (DG -1 |ϕ(p) • π p -DG -1 |ϕ(q) • π q )H q Since F and G are C 2,α , H p -H q ≤ C|p-q| α and DG -1 |ϕ(p) •π p -DG -1 |ϕ(q) • π q ≤ C|p -q|. As a consequence, we have D First we remark that ϕ t 2 = a 2 t + b 2 t satisfies ∂ t ϕ t 2 ≤ ∆ ϕ t 2 . From the maximum principle, ϕ t (p) ∈ D for all p ∈ D and t ≥ 0. Thus for t close to 0, ϕ t ∈ Diff ∞ (D, ∂D) since its Jacobian does not vanish.

Let Z be a map from a compact set to Diff k,α (D, ∂D) continuous in the C k topology. By solving the heat equation as above, we construct a map t → Z t ∈ Diff k,α (D, ∂D) for t ∈ [0, ε] with Z 0 = Z and Z t ∈ Diff ∞ (D, ∂D) if t > 0. This map is continuous in the C k topology. Since Z ε is a continuous map with values in Diff ∞ (D, ∂D) which is contractible, we can deform it to the constant map.

So Z can be deformed in the C k topology to the constant map. As a consequence, any homotopy group of Diff k,α (D, ∂D) is trivial. This is sufficient for the proof of Lemma 6.

r 0

 0 Thus the expected estimates about ϕ come from the ones on ψ and are independent of r 0 . Thus Y is a C 1 local diffeomorphism and then an open map. Since Y |∂D = id, Y (D) ⊂ D and Y is a global diffeomorphism. Moreover ∂ r Y = X.

3. 4 .

 4 Extending F and the boundary behaviour. We denote by ν(σ) = ∂x F (σ)∧∂y F (σ) ∂x F (σ)∧∂y F (σ) the Euclidean unit normal to σ. We also define h(σ) = ∂x F (σ) ∂x F (σ) . Finally we define H : Σ × D → B × U S 2 by H(σ, ζ) = ( F (σ)(ζ), ν(σ)(ζ), h(σ)(ζ)).

  then take the quotient by the relation (p, v, 1, ζ) ∼ (p, v, 1, ζ ). Its like compactifying [1 -ε, 1) × D as the upper part of a 3-ball. Then H extends by continuity by H(p, v, 1, ζ) = (p, p, v). The same can be done for Σ -.

-

  cos α sin ϕ cos(θ -β) -sin α sin ϕ sin β + cos α cos ϕ cos θ sin α sin ϕ cos β + cos α cos ϕ sin θ  Moreover ν ∧ h = ν ∧ (cos θẽ θ ∧ ν -sin θẽ θ ) = cos θẽ θ + sin θẽ θ ∧ ν. Thus the trace of (ν, h, ν ∧ h) takes the value tr(ν, h, ν ∧ h) = cos ϕ + cos θ(-sin α sin ϕ sin β + cos α cos ϕ cos θ ) + sin θ cos α sin θ + cos θ cos α cos θ + sin θ(sin α sin ϕ cos β + cos α cos ϕ sin θ ) = cos ϕ + sin α sin ϕ sin(θ -β) + cos α cos ϕ cos(θ -θ ) + cos α cos(θ -θ )

  Thus choosing Φ close enough to Φ, we can be sure that, for any (σ, ζ), (ν(σ)(ζ), h(σ)(ζ)) is not in the cutlocus of π 1 (σ) = (p, v). Thus moving the points along the geodesic from(ν(σ)(ζ), h(σ)(ζ)) to π 1 (σ), we get an homotopy from (σ, ζ) → (ν(σ)(ζ), h(σ)(ζ)) to (σ, ζ) → π 1 (σ). This finishes the proof for the second factor.For the first one, we only remark that (σ, ζ) → Φ(π(σ)(ζ)) and (σ, ζ) → Φ(π(σ)(ζ)) are close since Φ is a perturbation of Φ (and we have equality for points added in the compactification). So the two factors are homotopic. This finishes the proof of Proposition 8.

  a triangulation of Σ 0 such each 4-cell lifts to Σ 0 as 4 disjoint 4-cells. We denote by Y 0 ⊂ • • • ⊂ Y 4 the lift of this triangulation. So if e is a p-cell in Y p , R(e), S(e) and R • S(e) are the other p-cells above Π(e).

Lemma 11 .BB

 11 The map H : L → has mod 2 degree equal to 1.Proof. It is clear that H : L → is proper. So it has a well defined mod 2 degree.

Lemma 14 . 2 F

 142 Let F, G ∈ C 2,α (D, R 3 ) be two immersions and ϕ ∈ Diff 1 (D, ∂D)such that F = G • ϕ. Then ϕ ∈ Diff 2,α (D, ∂D).Proof. Let σ be the surface parametrized by F and G. It is well known that ϕ is actually a C 2 diffeomorphism. If we look at the second differential of F = G • ϕ, we haveD |p = D 2 G |ϕ(p) (Dϕ |p , Dϕ |p ) + DG |ϕ(p) (D 2 ϕ |p ) Thus D 2 ϕ |p = DG -1 |ϕ(p) D 2 F |p -D 2 G |ϕ(p) (Dϕ |p , Dϕ |p ) Let π p be the orthogonal projection from R 3 to T F (p) σ and H p : T p D×T p D → T F (p) σ ⊂ R 3 defined by H p = D 2 F |p -D 2 G |ϕ(p) (Dϕ |p , Dϕ |p ). Thus we have D 2 ϕ |p -D 2 ϕ |q = DG -1

∂∂

  2 ϕ |p -D 2 ϕ |q ≤ C|p -q| α . So ϕ ∈ C 2,α (D, D) and ϕ -1 also. Now let us explain what is the consequence of Smale's theorem : the contractibility of Diff ∞ (D, ∂D). Let ϕ = (ā, b) be in Diff k,α (D, ∂D). Let a t and b t be the two solutions of the heat equations: t a t = ∆a on R * + × D a 0 = ā on D a t (x, y) = x on R + × ∂D and t b t = ∆b on R * + × D b 0 = b on D b t (x, y) = y on R + × ∂D These solutions exist, are unique and a, b ∈ C k (R + × D) ∩ C ∞ (R * + × D). We define ϕ t = (a t , b t ).

  1,n , z 2,n , z 3,n ) → (p, v, t, 1, i, -1). Indeed, we can assume that (p n , v n , t n , x 1,n , z 2,n , z 3,n ) → (p, v, t, x 1 , z 2 , z 3 ) and we notice that t = ±1 since otherwise (F (p n , v n , t n