
HAL Id: hal-01768193
https://hal.science/hal-01768193

Submitted on 16 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quadcopter-performed cinematographic flight plans
using minimum jerk trajectories and predictive camera

control
Gauthier Rousseau, Cristina Stoica Maniu, Sihem Tebbani, Mathieu Babel,

Nicolas Martin

To cite this version:
Gauthier Rousseau, Cristina Stoica Maniu, Sihem Tebbani, Mathieu Babel, Nicolas Martin.
Quadcopter-performed cinematographic flight plans using minimum jerk trajectories and predic-
tive camera control. 16th European Control Conference (ECC 2018), Jun 2018, Limassol, Cyprus.
�10.23919/ecc.2018.8550309�. �hal-01768193�

https://hal.science/hal-01768193
https://hal.archives-ouvertes.fr


Quadcopter-performed cinematographic flight plans
using minimum jerk trajectories and predictive camera control*

Gauthier Rousseau1,2, Cristina Stoica Maniu1, Sihem Tebbani1, Mathieu Babel2 and Nicolas Martin2

Abstract— This paper proposes a receding waypoint horizon
strategy generating a piecewise polynomial trajectory with
minimum jerk and predictive tracking of camera references
for quadrotors, in the context of autonomous aerial single-
sequence shots in a static environment. In order to deal
with the limited on-board computation resources, the camera
control is performed with an undersampled model predictive
controller generating a set-point trajectory and a feedforward
control signal, both used by a larger frequency controller. The
performance of the overall strategy is illustrated with a real
flight, on a Parrot Bebop 2 drone.

I. INTRODUCTION

With the spreading use of multirotor UAVs (Unmaned
Aerial Vehicles) for aerial video making, research on trajec-
tory generation and tracking has come closer to the concept
of the flying camera, a high end solution for which the
piloting aspect of the drone is completely transparent. Such
a system would allow cinematographers to focus on artistic
considerations and communicate high level instructions to
their drones, which would autonomously take care of the
trajectory generation and the tracking aspects.

The literature concerning the different areas of automatic
control for multirotors (path planning, control etc.) is dense,
as this has been a popular domain of research for the past
few years. Different approaches have been suggested for the
path planning problem. In [1] and [2] piecewise polynomial
trajectories with minimum snap have been proposed, and
successfully used in an obstructed environment in [3]. This
strategy ensures constraints validation, such as flight corridor
constraints, on a finite number of points of the trajectory that
must be large enough in order to satisfy these constraints
on the overall trajectory. In [4], an algorithm to generate
feasible minimum jerk trajectories is described and applied
to a ball catching quadrotor. B-Splines based methods have
also proved their efficiency in [5], [6] and [7], and allow to
enforce constraints on the overall trajectory rather than on
a finite number of points, at the cost of more conservative
trajectories. Flatness-based methods have also been studied
for video making with multirotors with flight tests in [8].
Solutions with high end goals have been presented in [9]
and [10]. Such a solution with a flatness-based method,
adapted for filming static environments can be found in [11].
The method from [12] allows a drone to follow a trajectory

*This work was supported by Parrot Drones.
1Laboratoire des Signaux et Systèmes, CentraleSupélec-CNRS-Univ.

Paris-Sud, Université Paris Saclay, Gif-sur-Yvette, France (e-mail:
{gauthier.rousseau, cristina.maniu, sihem.tebbani}@centralesupelec.fr)

2Flight Control Department, Parrot Drones, Paris, France, (e-mail:
{gauthier.rousseau, mathieu.babel, nicolas.martin}@parrot.com)

Fig. 1. Parrot Bebop 2 drone

intuitively drawn by hand with considerations on the jerk
of the trajectory in order to ensure its smoothness. The
authors of [13] and [14] investigate solutions for filming
dynamic environment with a trajectory generation method
which directly takes into account the video produced by one
or several flying cameras, avoiding to have a drone in the
field of view of another one.

In this paper, a bilevel optimization approach is used
to generate a visually satisfying trajectory from a given
flight plan, specified by waypoints and flight corridors, speed
references and camera behaviours between the considered
waypoints. This optimal trajectory minimizes the jerk of the
drone subject to feasibility constraints. Camera references
are tracked by a Model Predictive Control (MPC) law that
anticipates the future set-points in order to reduce framing
errors while keeping the video smooth. A receding horizon
strategy is used to reduce the computation load required
by the proposed trajectory generation algorithm. One con-
tribution of this paper is related to the used of a smooth,
undersampled predictive control strategy for tracking camera
references. A second contribution consists in the validation
of the overall methodology with an outdoor flight, performed
by a Parrot Bebop 2 drone (see Fig. 1).

Notation. Denote by A> the transpose of a matrix A. For
i, j ∈ N, with i < j, the set [[i, j]] contains the consecutive
integers {i, i+ 1, . . . , j − 1, j}. The 2-norm of x ∈ Rn is
denoted by ‖x‖2, while ‖x‖2Q = x> Q x, with Q ∈ Rn×n.

II. FLIGHT PLAN SPECIFICATIONS

The considered flight plan consists in a series of N + 1
consecutive 3D waypoints {W0,W1, . . . ,WN}, i.e. a starting
position W0 followed by N waypoints to join, and flight
corridors to be respected between each two consecutive way-
points. These corridors are considered as straight cylinders
joining each pair of waypoints. Different types of waypoints
are further considered
• Stop waypoint: reaching it with null speed and null

acceleration. The first and last waypoints of the flight
plan are usually stop waypoints, but stop points can



also be used during the mission for taking pictures, for
standing at a given point in order to record a panorama.

• Lock waypoint: passing on the waypoint. This kind of
waypoint can be used to impose precisely the position
of the drone when passing through a window or a door
for instance, or for a specific camera shot.

• Autonext waypoint: passing in a neighborhood of spec-
ified radius around the waypoint. The drone performs
wider turns around the waypoint, while remaining in the
flight corridors, leading to more natural trajectories.

A reference velocity vi (i ∈ [[1, N ]]), a flight corridor radius
ri and a camera behaviour (i.e. type of camera heading
and camera elevation reference) are specified between each
pair of waypoints. The most common types of camera angle
references (heading or elevation) are
• Constant reference. The reference is fixed between two

waypoints. This is typically used for travelings.
• Ramp reference. The reference consists in a ramp with

a constant slope. This kind of reference is mostly used
for panoramas.

• Tangent reference. The direction of recording is given
by the speed vector of the drone relatively to a ground
fixed frame. This results in subjective, point-of-view
like camera shots.

• Point Of Interest (POI) reference. The camera points
toward a given target. This is a very popular type of
camera behaviour among drone users.

• Smooth reference. This kind of reference consists in a
smooth transition between the camera behaviours on the
previous and the next pieces of trajectory. In this work,
this kind of transitions are realized using a third order
polynomial reference, with angle and rotation speed
continuity constraints.

Notice that the camera heading and elevation can combine
two different reference types on a same piece of trajectory,
for instance a constant elevation and a ramp heading.

The drone used to perform the flight plan is a Parrot Bebop
2, which include a fixed, digitally stabilized camera. The
camera can be considered as a virtual gimbal with limited
elevation and heading, relatively to the drone.

III. TRAJECTORY GENERATION

In [1], piecewise polynomial trajectories with minimum
snap are used for completing a flight plan under corridor
constraints. The choice to minimize the snap is justified by its
strong link to the control signals of the drone. The validation
time of each waypoint must be specified and is chosen
depending on the context, as imposed values or solution of
an optimization problem. In the present paper, the quality
of the video is the main factor to take into account. Thus,
based on the strategy in [1], the jerk is minimized instead of
the snap for several reasons. Firstly, the jerk quantifies the
amplitude of the jolts of a mechanical system and should be
as low as possible in order to ensure a good quality of the
video. Secondly, the jerk of the drone is strongly linked to its
rotation speed [4]. As the Parrot Bebop 2 drone used in this

Fig. 2. Bilevel optimization strategy for generating the trajectory

work has a digitally stabilized camera, fixed relatively to the
drone, both the drone and the camera have the same rotation
speed. This means that, though the video is stabilized, motion
blur can still appear on the video when increasing too much
the rotation speed of the drone. The way of choosing the
times of flight is also adapted to the problem.

The strategy used in this work for generating a feasible and
visually satisfying trajectory can thus be resumed as follows.
Firstly, a pre-processing of the flight plan is performed, to
check that the velocity references are pertinent. Indeed, the
reference velocity on each piece of trajectory is clamped so
that the vertical component of the speed vector lies within
admissible bounds and so that the lateral velocity does not
exceed a given limitation. For i ∈ [[1, N ]], we denote by ṽi
the clamped reference velocity for the i-th piece of trajectory.
Secondly, a bilevel optimization method generates a visually
satisfying feasible trajectory. This optimization is illustrated
on Fig. 2: for a vector of times of flight between each pair of
consecutive waypoints, ∆t, a trajectory ζ∗∆t is generated by
solving an optimization problem, as described in Section III-
A. This vector of times of flight is then modified and
the procedure is repeated until a satisfying trajectory is
generated. A criterion for deciding which vector of times
of flight should be chosen is described in Section III-B.

In Section III-C, a receding horizon strategy is proposed
for dealing with large flight plans, containing numerous
waypoints.

A. Minimum jerk trajectory

For a given vector ∆t =
(
∆t1 ∆t2 . . . ∆tN

)>
of

times of flight between the waypoints, a minimum jerk piece-
wise polynomial trajectory ζ∗∆t is generated as a solution of
an optimization problem. The validation of autonext way-
points is ensured by an inequality constraint on the distance
between the drone and the waypoint at the corresponding
validation time. The position is constrained on the waypoints
for lock and stop waypoints, with additional constraints of
null speed and null acceleration for the stop waypoints.
The continuity of the position, speed and acceleration is
imposed on the connections between the different pieces
of trajectory when not already ensured by the waypoint
validation constraints. The possible discontinuities of jerk
and snap are absorbed and smoothed by the controller (which
is beyond the scope of this paper) in charge of trajectory
tracking, which only requires C2 trajectories. Finally, flight
corridor validation is ensured by inequality constraints on a
finite number of checkpoints, based on [1]. The problem can
be formulated as a Quadratic Programming (QP) problem, by
optimizing, for instance, the vector of polynomial coefficients
of ζ∆t or the value of its derivatives on each waypoint, as
described in [2]. Indeed, denoting by x the vector to optimize



(coefficients, derivatives etc.) and by tN =
N∑
k=1

∆tk, it is

possible to write [1], [2]∫ tN

0

∥∥∥ζ(3)

∆t(t)
∥∥∥2
2

dt = x>Hx

with ζ
(3)
∆t the third derivative of ζ∆t and H a positive

semidefinite square matrix. Thus, the optimization problem
has the following form [1], [2]

x∗ = arg min x>Hx (1)

s.t.



AStop · x = bStop

ALock · x = bLock

AAutonext · x 6 bAutonext

AContinuity · x = bContinuity

ACorridor · x 6 bCorridor

Its solution gives the optimal trajectory ζ∗∆t for the vector
of times of flights ∆t.

B. Times of flight
The vector of times of flight ∆t is chosen to minimize

the time for completing the entire flight plan, such that the
velocity on each piece of trajectory should not exceed the
reference velocity and such that the acceleration and jerk
norms should not exceed the maximum admissible values.
Finally, camera heading and elevation excursions between
each two consecutive waypoints are computed. Given a
maximum camera rotation speed, these excursions give a
lower bound on the times of flight on each piece of trajectory.
For instance, if two waypoints are very close but a 120◦

heading panorama has to be performed between them at a
maximum rotation speed of 5◦/s, the time of flight between
these two waypoints cannot be less than 24s. The times of
flight (considered positive) are hence reduced until at least
one constraint is active solving

∆t∗ = arg min

N∑
i=1

∆ti (2)

s.t.



∆ti > ∆timin , ∀i ∈ [[1, N ]]∥∥ζ∗∆t(t)
∥∥
2
6 ṽi, ∀i ∈ [[1, N ]], ∀t ∈ [ti−1, ti]∥∥∥ζ̈∗∆t(t) + λ ζ̇∗∆t(t)

∥∥∥
2
6 amax, ∀t ∈ [0, tf ]∥∥∥ζ∗(3)∆t (t)

∥∥∥
2
6 jmax, ∀t ∈ [0, tf ]

with ζ∗∆t the minimum jerk trajectory obtained by solving
the problem (1), amax the maximum admissible accelera-
tion for a zero velocity, λ a friction coefficient, jmax the
maximum admissible jerk for ensuring a good quality of
the video as previously described. The constraint on the
acceleration is derived from a simplified, first order friction
model that translates the loss of acceleration capability when
the drone velocity increases. When an estimation of the wind
speed vector relatively to the ground vwind is available, this
constraint can be replaced by∥∥∥ζ̈∗∆t(t) + λ

(
ζ̇∗∆t(t) − vwind

)∥∥∥
2
6 amax, ∀t ∈ [0, tf ]

in order to take into account the airspeed rather than the
ground speed of the drone. However it implies that the wind
must be low enough for a feasible solution to exist and may
not be pertinent if the wind varies too much during the
mission. This constraint is also a way to limit the drone

Fig. 3. Example of minimum jerk trajectory

angle while tracking the trajectory. More than improving
the feasibility of the trajectory, it can also be justified by
limitations on the camera orientation, since the tilt of the
camera relatively to the drone is often limited. Situations
where the camera cannot reach its reference because the
drone angle is too high should be avoided.

Example 1. An example of optimal trajectory is presented
on Fig. 3. The flight plan contains 6 waypoints. It starts and
ends on stop waypoints. The third waypoint is of type lock,
while the remaining ones are autonext waypoints. Velocity,
acceleration and jerk constraints are the limiting factor in
decreasing the times of flight between the waypoints.

C. Receding waypoints horizon

In order to reduce the computation load, especially for
flight plans containing a large number of waypoints, this
paper considers a receding waypoint horizon methodology.
In this case, if the flight plan contains more waypoints than
a given limit, the trajectory is not computed over the entire
flight plan at once but in several steps, over truncated parts
of the overall flight plan.

For a horizon NH and a flight plan containing at least
NH + 2 waypoints, the trajectory is first computed between
the first and the NH following waypoints (i.e. the waypoints
W0,W1, . . . ,WNH ), using the strategy presented above. This
results in a piecewise polynomial trajectory ζ̃1 containing
NH pieces. The first piece of this trajectory corresponds
to the trajectory joining W0 to W1. As the trajectory does
not necessarily pass on the waypoint (for autonext type),
we call P1 the end point of this first piece of trajectory
(see Fig. 4). P1 is reached with a speed vector vP1 and an
acceleration vector aP1 . Only this first piece of trajectory is
kept and will constitute the first piece of the overall, final



Fig. 4. Receding horizon strategy used for trajectory generation

trajectory ζ. According to the receding horizon strategy,
the horizon is then moved by one waypoint and a new
trajectory ζ̃2 is computed, but with a starting waypoint
replaced by P1 instead of W1. This starting waypoint is of
special type constrained, meaning that the position, speed
and acceleration are imposed, in this case equal to P1, vP1

and aP1 , respectively. Again, only the first piece of this
new trajectory ζ̃2 is kept and constitutes the second piece
of the final trajectory ζ. The continuity at the connection
between the two pieces is ensured by the constraints on the
position and its derivatives on P1. The process is repeated
until the last waypoint of the flight plan is reached. In order
to ensure the feasibility of the problem, the last waypoint
of the horizon is always imposed to be of type stop, even
though it was not in the initial flight plan.

Example 2. A flight plan containing 5 waypoints
{W0, . . . ,W4} and a horizon NH = 3 is illustrated in Fig. 4.
The trajectory is then computed in 2 steps: between the
waypoints W0 and W3 first, and between P1 and W4 next.

Step 1: a trajectory is generated between W0 and W3,
with W3 replaced by a stop waypoint at the same position.

Step 2: a trajectory is generated between the waypoints
W1 and W4, with the waypoint W1 replaced by a constrained
waypoint at the position P1, ensuring the continuity with the
trajectory computed at Step 1. Since the trajectory reaches
the final waypoint W4, there is no need to repeat the process.

For online computation, the trajectory is updated each time
a waypoint is validated. A constraint on the time of flight
on the first piece of trajectory is added in the optimization
problem (2), so that it is greater than the average trajectory
computation time plus a security margin. In the event that a
waypoint would still be validated before finding the optimal
solution of the problem (2), the optimization process is
interrupted and a feasible (yet suboptimal) trajectory is sent
to the drone.

The loss of optimality of the final trajectory induced by
this strategy is illustrated on Fig. 5, where the same flight
plan as the one on Fig. 3 is processed with different horizons
NH . This loss is negligible for a sufficiently large horizon.

Notice that the systematic replacement of the last waypoint
by a stop waypoint can reduce the speed of the trajectory
for a series of close waypoints though, especially if they are
aligned.

The strategy proposed in this section allows us to generate

Fig. 5. Optimality loss induced by the receding horizon strategy when
decreasing NH

a smooth and feasible 3D trajectory for completing the flight
plan. Camera references along this trajectory are presented
in the next section.

IV. CAMERA REFERENCES TRACKING
As described in Section II, different types of camera

behaviours can be specified over each piece of trajectory.
A way to smoothly track the considered camera references
while keeping the framing error low is further proposed.

A. Architecture

The drone used for this work is a Parrot Bebop 2, equipped
with a fixed, digitally stabilized front camera, which acts
as a virtual gimbal. This virtual gimbal can roll without
restrictions but its heading and elevation relatively to the
drone are limited into a cone. In order to keep the allowed
camera elevation excursion as high as possible, the drone
heading relatively to the ground is imposed to be the same
as the one of the camera (still relatively to the ground).
This way, without perturbations on the yaw axis, the virtual
gimbal only has to roll and pitch during the flight.

This implies that the yaw axis behaviour of the attitude
loop of the drone must meet some requirements in order
to ensure a good video quality. These performance specifi-
cations are typically, in order of priority: a minimum phase
behaviour, a smooth and slow time response and the absence
of oscillations, undershoots and/or overshoots. The tracking
errors result in bad framing of the video and thus should
also be limited, which means that the disturbance rejection
dynamics should be stiff (contrary to the reference tracking).

To achieve this, the Nominal Model Following Control
(NMFC) architecture proposed in [15] is used in this work.
This architecture consists in a 2-stage controller as illustrated
Fig. 6. Its robustness regarding disturbances and its perfor-
mances in decoupling reference tracking and disturbances
rejection dynamics are discussed in [16].



Fig. 6. Architecture of the heading controller

Heading references can vary significantly from a piece
of trajectory to another, depending on the chosen camera
behaviour. As a consequence, the heading reference over the
entire mission can include steps, ramps or smooth parts. Due
to its anticipating action, a model predictive controller is
used as virtual controller, in order to efficiently track this
reference. Furthermore, this type of controller can explicitly
take constraints into account, e.g. in order to limit the rotation
speed, acceleration or jerk.

B. Virtual model
The virtual heading dynamics is described by a

continuous-time Linear Time Invariant (LTI) system

ẋ(t) = A x(t) + B u(t)

z(t) = C x(t) + D u(t)
(3)

with x the state vector, u the control vector, z the output
vector and the matrices A, B, C and D of appropriate
dimensions. In the following, we choose

u = uψ and z =
(
ψ r ṙ

)>
where uψ is the control signal on the yaw axis, ψ denotes the
drone heading, r and ṙ denote its rotation speed and rotation
acceleration around the yaw axis, respectively. Though the
real drone is not a linear system, it is well described in the
literature [17] or [18] with decoupled roll, pitch, yaw and
vertical acceleration linear models at low angles and rotation
speed, corresponding to a common context for video making.

C. MPC controller
The virtual model (3) is discretized with a sampling period

TMPC. In the sequel, this equivalent discrete-time model is

ẋMPC[k + 1] = FMPC xMPC[k] + GMPC uMPC[k]

zMPC[k] = CMPC xMPC[k] + DMPC uMPC[k]
(4)

This discretized model (4) is controlled by a model predictive
control law. The controlled variables are the heading and its
two first derivatives, i.e. the rotation speed and acceleration
on the yaw axis. For a discrete signal s, we denote by
ŝ[k + i|k] the prediction of the value of s at instant k + i,
computed using its value at instant k. The MPC controller
generates at each step a control signal minimizing the fol-
lowing classical cost function (as described in [19] and [20])

J [k] =

Hp∑
i=1

∥∥∥zref
MPC[k + i] − ẑMPC[k + i− 1|k]

∥∥∥2
Q

+

Hu−1∑
i=0

∥∥uMPC[k + i] − uMPC[k + i− 1]
∥∥2

R

(5)

Fig. 7. Block diagram of the heading virtual controller

where Hp and Hu define the prediction and control hori-
zons, respectively, and ẑMPC denotes the prediction of
zMPC. The weighting terms are the diagonal matrix Q =
diag(µψ, µr, µṙ) and R = µuψ , with µψ , µr, µṙ adjustable
weights on each controlled variable and µuψ a weight on the
control signal variations. We can thus control the heading
angle and speed tracking errors and reduce the acceleration
for a smooth response. The jerk is also of great importance
and should be reduced to prevent jolts in the video and is
implicitly included in the cost function (5), since the variation
of the control signals are linked to the jerk on the yaw axis.

D. MPC undersampling

To be pertinent, an MPC strategy must be able to predict
the set-point and the system behaviour over a time horizon
consistent with the desired time response of the closed-
loop. In the case of the camera angle control, slow and
smooth responses are desired, leading to a prediction horizon
around one second or more. This is an issue as a low
sampling period is required to efficiently control and reject
disturbances. Typical orders of magnitude for this sampling
period lie from 1ms to 10ms, which results in large prediction
horizons of hundreds to thousands of steps (such as in [21]).
The computation resources of the drone being restricted, a
solution is to undersample the MPC to a lower frequency
in order to get a more reasonable prediction horizon. The
control signals sent by the MPC are then interpolated at
higher frequency and sent as a feedforward to the real drone.
Early simulations showed that undersampling the MPC to a
reasonable sampling frequency prevented the use of a zero-
order hold for this task, as the discontinuities of the control
signal would produced small jolts in the video and that even
smooth camera angles inputs from the user would still end
looking like a sequence of steps.

In order to prevent this jerky behaviour, the MPC generates
piecewise affine control signals at low frequency which can
then be interpolated at higher frequency. To achieve this, two
virtual models are used
• An oversampled virtual model, discretized at the drone

sampling period TS
• An undersampled virtual model, discretized at the MPC

sampling period TMPC = N TS, with N ∈ N.
Figure 7 illustrates the block diagram of the proposed head-
ing virtual MPC controller. The reference generation then
works as follows
• The undersampled virtual model is controlled by the

MPC controller, which generates an undersampled con-
trol signal uMPC[k]



Fig. 8. Oversampling strategy for the MPC control of the heading: in red
the undersampled signal, in green the undersampled signal filtered by the
causal FOH and in blue the oversampled signal

• The undersampled control signal is interpolated using
an affine law, leading to a continuous piecewise affine
control signal uMPC(t)

• This piecewise affine control signal is sampled at the
drone sampling period, which gives an oversampled
control signal uS[l], sent to the oversampled virtual
model

• The output of the oversampled signal constitutes the
reference to be tracked by the physical attitude con-
troller, while the oversampled control signal is sent as
a feedforward input

• The undersampled control signal keeps being interpo-
lated until an entire sampling period TMPC has passed,
and a new undersampled control signal uMPC[k + 1] is
generated by the MPC controller.

An example of an undersampled signal filtered by a causal
First Order Hold (FOH) filter before resampling at a higher
frequency is presented on Fig. 8. Notice that the Zero-Order
Hold (ZOH) discretization does not hold anymore for the
undersampled virtual model. For a given time t such as
l TS 6 t < (l + 1)TS, with l ∈ N, and l TS = k TMPC +
i TS = (kN + i) TS, with k ∈ N and i ∈ [[0, N − 1]], the
following expression holds

uS(t) = uS[l] =

(
1− i

N

)
uMPC[k − 1] +

i

N
uMPC[k] (6)

The continuous-time system is modeled by the LTI state-
space representation (3). The ZOH discretization at the
period TS of this continuous-time system is given by

uS[l + 1] = F xS[l] + G uS[l]

zS[l] = C xS[l] + D uS[l]
(7)

with F = eATS and G =
(∫ TS

0
eAθ dθ

)
B.

The discretized expression of the undersampled system
controlled by the MPC law is recursively computed

xMPC[k + 1] = xS

[
(k + 1)N

]
= F xS

[
(k + 1)N − 1

]
+ G uS

[
(k + 1)N − 1

]
= FN xS[kN ] +

N−1∑
i=0

FN−1−iG uS[kN + i]

Using (6), it leads to

xMPC[k + 1] = FN xMPC[k]

+

(
N−1∑
i=0

(
1− i

N

)
FN−1−iG

)
uMPC[k − 1]

+

(
N−1∑
i=0

i

N
FN−1−iG

)
uMPC[k]

This leads to the new augmented discretized model

x̃MPC[k + 1] = FMPC x̃MPC[k] + GMPC uMPC[k]

zMPC[k] = CMPC x̃MPC[k]
(8)

with FMPC =

 FN
N−1∑
i=0

(
1− i

N

)
FN−1−iG

0p×n 0p×p

, GMPC =N−1∑
i=0

i
N

FN−1−iG

Ip

, x̃MPC[k] =

(
xMPC[k]

uMPC[k − 1]

)
, CMPC =(

C D
)

. The same strategy as in Section IV-C can then be
applied, but with the model (4) replaced by the model (8).
Since the inputs and outputs of those two models are the
same, the expression of the cost function (5) is unchanged
(but model (8) is used for the prediction).

V. EXPERIMENTS

A. PSO-based MPC tuning

The model (8) is used for the MPC controller synthesis,
which requires to tune 6 parameters: Hp, Hu µψ , µr, µṙ
and µuψ . The sampling period for the MPC controller is
considered TMPC = 0.1s. A time response around 1s is
chosen for the closed-loop in this work, which means that a
pertinent prediction horizon Hp would be around 10 steps.
Finally, the control horizon Hu should be reduced in order
to limit the computing resources requirement if constraints
are to be added.

For given values of Hp and Hu, the tuning of the 4
remaining parameters is performed by a Particle Swarm
Optimization (PSO) algorithm. First, an ideal response of
the oversampled model to a heading step reference and a
heading ramp reference are defined, as well as a template
around these ideal responses. Then, the optimization program
has to find the set of parameters of the undersampled MPC
controller that leads to the closest oversampled response to
the ideal one in the mean square sense. Penalties are added
to the cost function should the closed-loop response exit the
template, overshoots or undershoots, show a non-minimum
phase behavior or oscillate.

The task is then repeated for different values of Hp

and Hu and the best settings, meaning those that produce
the lowest cost function value, are retained. This entire
procedure is automatized for more convenience. Simulation
results obtained with this method are shown on Fig. 9. For
a ramp reference (red), the MPC generates an undersampled
control signal (blue). This control signal is resampled at
higher frequency (light blue) and sent to the oversampled
virtual model, whose heading (light blue, serving as a filtered
reference for the physical controller) is close to a previously
defined ideal response (dash green).

The elevation of the camera does not have any dynamics
since it is given by the virtual gimbal of the Bebop 2. The
camera elevation references can then be either filtered by a
non-causal low pass filter, which does not induce any phase
distortion, or tracked using the same method as the heading,
by conferring the camera elevation a virtual dynamics.



1.5 2 2.5 3 3.5 4 4.5

0

0.2

0.4

0.6

0.8

1

Reference

Ideal Response

Undersampled Response

Filtered Reference

Response Template

1.5 2 2.5 3 3.5 4 4.5

0.1

0.2

0.3

0.4

0.5

Undersampled Response

Filtered Reference

1.5 2 2.5 3 3.5 4 4.5

-0.5

0

0.5
Undersampled Control Signal

Feedforward

Fig. 9. Heading ramp response with the optimal settings

B. Outdoor flight

A outdoor flight has been performed on a Parrot Bebop 2
quadcopter in order to validate the overall strategy presented
in this paper. The flight plan performed contains 6 waypoints,
{W0, . . . ,W5}. All the waypoints are autonext except W0,
W4 and W5. The trajectory thus contains 5 pieces. The
horizon for the trajectory generation is NH = 4. The camera
references are the following: Piece 1 - tangent heading and
constant elevation, Piece 2 - Smooth transition to the next
piece, both for the camera heading and elevation, Piece 3 -
POI reference both for the camera heading and elevation,
Piece 4 - Smooth transition to the next piece, both for
the camera heading and elevation, and Piece 5 - Constant
references both for the camera heading and elevation.

The video recorded by the drone is available at
https://youtu.be/eOl1HqfLmm0. The produced
video respects the specifications previously defined in terms
of jerk, acceleration, and velocity, resulting in a smooth,
continuous sequence. Notice that during the flight test, the
digital stabilization of the camera of the Bebop 2 does not
add any smoothing to the output of the MPC. However,
due to the vibrations of the drone and the limitations of
the encoding system of the camera signals, the video still
presents small jolts (independent of the proposed algorithm).

VI. CONCLUSIONS

A strategy for shooting aerial long takes with a quadrotor
has been presented. The proposed strategy is based on the
use of piecewise polynomial, minimum jerk trajectories and
predictive tracking of camera references. In order to reduce
the computation load for both the trajectory generation
and camera reference tracking, a receding horizon method
is proposed for the trajectory generation problem, and an
undersampling strategy is adopted for the predictive tracking

of camera references. The overall work is validated on an
outdoor flight.

Including robustness issues with respect to uncertainties
and bounded disturbances in the control strategy will be
addressed in future work. Adding constraints in the MPC
law for the camera references tracking so that the control
signals and the drone rotation speed do not exceed maximum
values would also be a way to improve the camera references
tracking.

REFERENCES

[1] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE ICRA, 2011.

[2] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
quadrotor flight,” IEEE ICRA, 2013.

[3] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environments,” in
International Symposium of Robotics Research, 2016.

[4] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient motion primitive for quadrocopter trajectory generation,”
IEEE Transactions on Robotics, vol. 31, no. 6, 2015.

[5] W. V. Loock, G. Pipeleers, and J. Swevers, “B-spline parameterized
optimal motion trajectories for robotic systems with guaranteed con-
straint satisfaction,” Mechanical Sciences, vol. 6, no. 2, 2015.

[6] R. Van Parys and G. Pipeleers, “Spline-based motion planning in an
obstructed 3D environment,” 20th IFAC World Congress, 2017.

[7] T. Mercy, R. Van Parys, and G. Pipeleers, “Spline-based motion
planning for autonomous guided vehicles in a dynamic environment,”
Trans. on Control Systems Technology, 2017.

[8] T. Engelhardt, T. Konrad, B. Schafer, and D. Abel, “Flatness-based
control for a quadrotor camera helicopter using model predictive
control trajectory generation,” in 24th Mediterranean Conference on
Control and Automation, 2016.

[9] N. Joubert, L. E. Jane, D. B. Goldman, F. Berthouzoz, M. Roberts,
J. A. Landay, and P. Hanrahan, “Towards a drone cinematographer:
guiding quadrotor cameras using visual composition principles,” ACM
Trans. Graph., 2016.

[10] N. Joubert, “Tools to facilitate autonomous quadrotor cinematogra-
phy,” Ph.D. dissertation, Stanford University, 2017.

[11] M. Roberts and P. Hanrahan, “Generating dynamically feasible tra-
jectories for quadrotor cameras,” ACM Trans. Graph., vol. 35, no. 4,
2016.

[12] C. Gebhardt, B. Hepp, T. Nägeli, S. Stevšić, and O. Hilliges, “Airways:
Optimization-based planning of quadrotor trajectories according to
high-level user goals,” Conf. on Human Factors in Computing Systems,
2016.

[13] T. Nägeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges,
“Real-time motion planning for aerial videography with dynamic
obstacle avoidance and viewpoint optimization,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, 2017.

[14] T. Nägeli, L. Meier, A. Domahidi, J. Alonso-Mora, and O. Hilliges,
“Real-time planning for automated multi-view drone cinematography,”
ACM Trans. Graph., vol. 36, no. 4, 2017.

[15] G. Li, K. M. Tsang, and S. L. Ho, “A novel model-following
scheme with simple structure for electrical position servo systems,”
International Journal of Systems Science, vol. 29, no. 9, 1998.

[16] S. Skoczowski, “The robust control system with use of nominal
model of controlled plant,” IFAC Symposium on Advanced Control
of Chemical Processes, vol. 33, no. 10, 2000.

[17] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ control
techniques applied to an indoor micro quadrotor,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, vol. 3, 2004.

[18] G. Rousseau, C. Stoica Maniu, S. Tebbani, and M. Babel, “Impact of
propellers inertia and asymmetries on a V-shaped quadrotor,” in 20th
IFAC World Congress, 2017.

[19] E. F. Camacho and C. Bordons, Model Predictive Control, Second
Edition, Springer ed., 2008.

[20] J. M. Maciejowski, Predictive control with constraints, Prentice
Hall ed., 2002.

[21] J. A. J. Ligthart, P. Poksawat, and L. Wang, “Experimentally validated
Model Predictive Controller for a hexacopter,” 20th IFAC World
Congress, 2017.

https://youtu.be/eOl1HqfLmm0

	INTRODUCTION
	FLIGHT PLAN SPECIFICATIONS
	TRAJECTORY GENERATION
	Minimum jerk trajectory
	Times of flight
	Receding waypoints horizon

	CAMERA REFERENCES TRACKING
	Architecture
	Virtual model
	MPC controller
	MPC undersampling

	EXPERIMENTS
	PSO-based MPC tuning
	Outdoor flight

	CONCLUSIONS
	References

