
HAL Id: hal-01768190
https://hal.science/hal-01768190

Submitted on 17 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UTXOs as a proof of membership for Byzantine
Agreement based Cryptocurrencies

Emmanuelle Anceaume, Antoine Guellier, Romaric Ludinard

To cite this version:
Emmanuelle Anceaume, Antoine Guellier, Romaric Ludinard. UTXOs as a proof of membership for
Byzantine Agreement based Cryptocurrencies. IEEE Symposium on Recent Advances on Blockchain
and Its Applications, Jul 2018, Halifax, Canada. pp.1-8, �10.1109/Cybermatics_2018.2018.00248�.
�hal-01768190�

https://hal.science/hal-01768190
https://hal.archives-ouvertes.fr

UTXOs as a proof of membership for Byzantine
Agreement based Cryptocurrencies

Emmanuelle Anceaume
CNRS / IRISA, France

emmanuelle.anceaume@irisa.fr

Antoine Guellier
CNRS / IRISA, France
antoine.guellier@irisa.fr

Romaric Ludinard
IMT Atlantique, France

romaric.ludinard@imt-atlantique.fr

Abstract—The presence of forks in permissionless blockchains
is a recurrent issue. So far this has been handled either a
posteriori, through local arbitration rules (e.g., “keep the branch
which has required the most computational power”) which are
applied once a fork is present in the blockchain, or a priori, via
a Byzantine resilient agreement protocol periodically invoked by
a committee of well identified and online nodes. In the former
case, local arbitration rules guarantee that if they are correctly
applied by a majority of the users of the system, then with high
probability forks are progressively resolved, while in latter case,
the sequence of Byzantine resilient agreements decide on the
unique sequence of blocks to be appended to the blockchain.
The question we may legitimately ask is the following one: To
prevent the period of uncertainty inherent to optimistic-based
solutions, are we doomed to rely on the decisions made by a
unique committee whose members are already actively involved
in the creation of blocs ? We negatively answer this question
by presenting a solution that combines the best features of
optimistic and pessimistic approaches: we leverage the presence
of users and the “public-key as identities” principle to make users
self-organize in small Byzantine resilient committees “around”
each new object (i.e., blocks and transactions) to decide on
their validity. Once validated, objects can be pushed in the
network, appended to the blockchain without fearing any fork
nor double spending attacks: we guarantee a “0”-confirmation
delay. Additionally, our solution mitigates selfish attacks. We are
not aware of any solutions enjoying such features.

I. INTRODUCTION

Blockchains, also called distributed ledgers, initially ap-
peared as the technological solution for the deployment of
the Bitcoin digital cryptocurrency system, a secure system,
usable by anyone, in a peer-to-peer way, with no trusted third
party whatsoever. Blockchains achieve the impressive result
of constructing a persistent, distributed, append-only log of
transactions, and publicly auditable and writable by anyone in
case of permissionless (i.e., public) blockchains. Construction
of distributed ledgers typically relies on a sophisticated or-
chestration of cryptographic primitives, agreement algorithms,
and broadcast communication primitives.

To face recurrent double-spending attacks — which are
inherent to digital cash systems — blockchains are built so
that their records (i.e blocks of transactions) are totally and
securely ordered. So far, two main designs exist to totally
and securely order blocks: the optimistic and the pessimistic
approaches. The optimistic approach mainly consists in reg-
ularly running elections among a subset of the nodes of the

system (i.e., miners), at the outcome of which, leaders (i.e.,
successful miners) properly and securely gathers transactions
into blocks, with the hope that no concurrent blocks already
exist in the system. Transient inconsistencies (i.e., the presence
of concurrent forks) are locally handled, but at the expense
of a substantially long block confirmation time. For instance
Bitcoin guarantees that if a block has been stored for more than
one hour in any local copy of the ledger, then it will remain
there forever, and at the very same position in the local copies
maintained at all the nodes of the system. This holds with very
high probability even if up to 10% of the miners are malicious.
More recently Ethereum [31] and Spectre [28] have succeeding
in decreasing the block confirmation time but at the expense of
more involved arbitration rules. The second approach, which
we call pessimistic, aims at preventing forks from happening
so that once recorded in the ledger, a block will never be
pruned. This is achieved by relying on Byzantine resilient
agreement algorithms (e.g. [8], [20]) fed with all the currently
submitted transactions. An already impressive amount of work
has been focusing on the properties of those algorithms to
securely and totally order transactions in distributed ledgers,
but the foremost difference that exists among all these works
is related to the essential notion of identity. In consortium
blockchains, including RedBelly [9] and HyperLedger [5],
participants - those who control and manage copies of the
blockchain - form a clique of carefully selected institutions
with appropriate permissions. In Byzantine-based permission-
less blockchains, such as PeerCensus [10], Bizcoin [19], or
BitcoinNG [12], those in charge of executing the Byzantine
resilient agreement algorithms are selected among all the suc-
cessful miners. Note that one may be careful in the way miners
are selected to form the Byzantine algorithms committees not
to violate the system safety [2].

To summarize, the pessimistic approach achieves an irre-
vocable decision on the next block to be appended to the
permissionless ledger at the cost of running a Byzantine-
tolerant algorithm among several hundred of nodes for each
created block. The optimistic approach guarantees that in
presence of forks on the ledger the probability that a given
branch will remain in the ledger increases exponentially with
the number of blocks appended after it.

Very recently, an elegant pessimistic-based approach to
mitigate the presence of blockchain forks has appeared with

Algorand [14]. In Algorand, members of the Byzantine-
tolerant algorithm are selected no more proportionally to their
computational power, but proportionally to their stake. Among
them, a leader is elected, the one with the largest stake,
and handles all the currently submitted transactions. Algorand
guarantees that in periods of strong synchrony, the blockchain
correctly grows (absence of forks and double-spending), while
in presence of variable communication delays, growth is not
guaranteed.

In this paper, we propose a solution that borrows ingredients
of both approaches to guarantee that once a block, mined
in isolation, is declared valid by the system, then it cannot
be confronted with any other conflicting block, and thus
will irremediably be registered in the ledger. Our solution
also guarantees that double-spending attacks are detected and
prevented once any conflictual transaction is submitted to the
peer-to-peer network. Hence, once a transaction is declared
valid by the system, then it cannot be confronted with any
other conflicting transaction, relieving sellers of any fraud.

The block validation protocol and the transaction validation
one are essential in our design. The core of both protocols
relies on Byzantine agreements (BA). BA allows the block val-
idation protocol to reach an agreement on the unique block that
can reference an earlier block in the blockchain, and allows the
transaction validation protocol to reach an agreement on the
unique transaction that can redeem all the unspent transaction
outputs (UTXOs) referenced as its inputs. In contrast to all
the pessimistic approaches described above (and to the best of
our knowledge to all them), BAs are executed “around” the
objects to be validated. It briefly means that, when a newly
created transaction is submitted to the peer-to-peer network
for validation, the transaction validation protocol is executed
by a subset of users randomly chosen among those that are
(logically) close to the UTXOs referenced in the input of
the transaction. Participation of those randomly chosen users
is publicly verifiable by anyone. Similarly, when a newly
created block is submitted to the network, the block validation
protocol is executed by a subset of users randomly chosen
among those that are (logically) close to the predecessor
block referenced by this block. Participation of those users
is also publicly verifiable. As an additional consequence of
our design, selfish attacks are mitigated. Since a selfish miner
can not create a block without disclosing it, no one is able to
built a private sequence of blocks in order to prune the tail
of the blockchain. Finally, beyond giving users an incentive
to correctly behave, relying on their participation to execute
Byzantine agreement protocols allows for greater equality in
the management of the blockchain. By the “locality” principle
of the validation protocols, participation in the execution of
a Byzantine agreement protocol is de facto temporary and
unfrequent.

The remainder of the paper is organized as follows. Sec-
tion II describes the computational and system model adopted
in this work and then presents the main features of blocks and
transactions in Bitcoin. Section III presents a brief survey of
some of the attempts that have been made at solving Bitcoin

issues. Section IV presents the key elements that we leverage
to derive our solution. Section V describes the orchestration of
these elements to validate blocks and transactions. Section VI
and Section VII detail implementations of both protocols.
Finally, Section VIII concludes.

II. MODEL, TRANSACTIONS AND BLOCKS

A. Model

We assume a large, finite yet unbounded set Π of nodes
whose composition may change over time. Nodes commu-
nicate with each other through unreliable channels, meaning
that messages can be lost, altered, duplicated or reordered. We
assume the existence of a finite but unknown upper-bound on
message propagation time, which fits the the partial synchrony
model [11].

We suppose that a bounded proportion µ, with µ ≤ b1/3c
of the nodes in Π are Byzantine (i.e., behave arbitrarily, either
in collusion or on their own to maximize some utility function
of their choice). All the other nodes are said correct or honest.
We assume that nodes have access to basic cryptographic func-
tions, including a cryptographic hash function h – modeled
as a random oracle – and an asymmetric signature scheme
– that allows nodes to generate public and secret key pairs
(pr, sr), to compute signatures σr,h(d) on messages d, and
to verify the authenticity of a signature. These primitives are
assumed to be safe – i.e., forging signatures, and finding hash
collisions, pre-image or second pre-image is impossible. By
these properties, each object o of the system – i.e., UTXO
(for unspent transaction output), transaction and block – is
assumed to be uniquely identified.

We assume that correct nodes use their cryptographic keys
in a safe way, i.e. they do not disclose, share or drop their
secret keys. As a consequence, their identity can not be
spoofed and their received coins cannot be stolen. We do not
suppose the existence of any trusted public key infrastructure
(PKI) to establish nodes identities. Finally, we assume that
each object o is well-formed. For example, a transaction can
be rejected (by a correct node) only if that transaction tries
to double-spend inputs and not e.g. because a script is not
correctly written.

B. Transactions and blocks

Prior to describing our solution, let us first recall some
background on transactions and blocks manipulated in most
of the cryptosystems that derive from Bitcoin. A transaction
is made of two sets, the input set denoted by I and the output
one denoted by O. Set I contains the set of outputs, credited
by previous transactions, that the creator of the transaction
wishes to spend, together with the proof that she is allowed
to redeem each of those outputs. The output set O contains
transferred coins, together with the challenges that will allow
their owners to redeem those coins.

Transactions outputs are locked with a challenge and re-
deemed in subsequent transactions by providing the appropri-
ate response. Different types of scripts exist in Bitcoin, but

the most common one is the PAY-TO-PUBKEY-HASH script.1

In that script, the challenge embeds the hash value h = h(pr)
of a public key pr and the response of the challenge contains
the public key pr together with the signature σr signed with the
secret key associated to pr. Thus the only user able to provide
the appropriate values of σr and pr is the effective owner of
the transaction output, that is the owner of the UTXO. As
a consequence, double spending attacks can only be launched
by (malicious) users that create distinct transactions redeeming
exactly one of their transaction outputs.

Once created, a transaction is submitted to the peer-to-peer
network. Each node of the network should check the validity
of the transaction prior to propagating it to its neighborhood.
Informally, a transaction T = (I,O) is locally valid at node
p if p has received all the transactions that have credited all
the inputs in I and for all i ∈ I , i is not in a double-spending
situation. Input i ∈ I is in a double-spending situation if p is
aware of transaction T ′ = (I ′, O′) such that i ∈ I ∩ I ′ 6= ∅.

Transaction T = (I,O) is conflict-free if none of the inputs
of T is involved in a double-spending situation and all of
the transactions that credited T ’s inputs are conflict-free. By
construction, the induction is finite at least in Bitcoin, because
money is created only through coinbase transactions, which are
by definition conflict-free [2].

Blocks are created by successful miners, a subset of the
nodes involved in the proof-of-work competition. The incentive
to participate to such a competition is provided by a reward
given to each successful miner. This reward is made of a
fixed amount of coins (in Bitcoin, the reward is currently
equal to 12.5 bitcoins) and a fee associated to each transaction
contained in the newly created block. This reward is inserted
in the output of a particular transaction, called the coinbase
transaction. Note that coinbase transactions do not have inputs.

A block is made of two parts: the header and the payload.
The payload contains a unique coinbase transaction and a list
of valid transactions. The header of the block contains several
fields among which the reference to its parent block (hence
the blockchain), a proof-of-work, that is a nonce such that the
hash of the block matches a given target (in Bitcoin, this target
is calibrated so that the mean generation time of a block is
equal to 10 minutes), and the fingerprint of the payload. In the
following, we refer by b = (h(b′), c(b)), a block with a parent
block reference h(b) and a payload c(b).

When a transaction T is included in a block b, it is said
confirmed by all the peers that accept that block in their local
copy of the blockchain. The level of confirmation of trans-
action T is the number of blocks included in the blockchain
starting from b; by extension, a 0 confirmation level means that
the transaction has not yet been included in the blockchain.
To limit double-spending attacks, Bitcoin recommends that
sellers do not provide their goods in exchange of a transaction
before it becomes deeply-confirmed. Actually, Nakamoto [25]

1Note that different Bitcoin verification scripts exist and some of them do
not rely on cryptography (ANYONE-CAN-SPEND) or do not ensure a unique
recipient (ANYONE-CAN-SPEND, TRANSACTION PUZZLE). In the following,
we will consider only PAY-TO-PUBKEY-HASH scripts.

as well as subsequent studies [13], [18], [24] have shown that
if the computational power of malicious miners is equal to
10% of the whole computational power, then with probability
less than 0.1%, a transaction can be rejected if its level of
confirmation in a local copy of the blockchain is less than 5.
In the following, we say that a transaction is deeply confirmed
once it reaches such a confirmation level.

Most of the permissionless blockchain-based cryptosystems
guarantee the following two properties:
• Safety If a transaction T is deeply confirmed by some

correct node, then no transaction conflicting with T will
ever be deeply confirmed by any correct node.

• Liveness A conflict-free transaction will eventually be
deeply confirmed in the blockchain of all correct nodes
at the same height in the blockchain.

I case of a blockchain fork, some blocks can be invalidated
and the level of confirmation of their transactions can decrease,
especially if the conflicting branch contains a conflicting
transaction. This deters the use of Bitcoin for fast payment, as
the expected time for a deep confirmation is approximately one
hour. Fast payment are used in most everyday life situations,
where the time between buying and consuming the goods is in
the order of minutes. This impracticality motivates this work.

In the present paper, by preventing double-spending attacks
and blockchain forks we aim at strengthening the safety
property as follows:
• Strong Safety If a transaction T is confirmed by some

correct node, then no transaction conflicting with T will
ever be confirmed by any correct node.

The strong safety property ensures that whenever a trans-
action T has been included in a block, no other block
will ever contain a transaction conflicting with T . An im-
mediate and important consequence of this property is the
capability blockchain-based cryptosystems to safely handle
fast payments. The remaining of the paper is devoted to the
implementation of this property.

III. RELATED WORK

Bitcoin [25] is seen as the pioneer of cryptocurrencies. Since
its inception, several altcoins [1] have emerged. The GHOST
protocol [29] proposes a different rule to solve blockchain
forks, based on the number of blocks contained in each block-
chain subtree (in case of consecutive forks). Recent works have
focused on Bitcoin modeling and evaluation. Authors of [24]
prove that the Bitcoin protocol achieves consensus with high
probability, while [13] show that peers participating in the
Bitcoin network agree on a common prefix for the transaction
history, both in failure-free environments. In contrast, authors
of [17], [18] focused on adversarial environments. These
works study the feasibility of double spending attacks and their
detection. Several studies have shown that Bitcoin behaves
quite well in failure-free environments [24] but is vulnerable
to some attacks such as the double-spending one [18]. Several
attempts to fix it have been published, using a leader [10],
[12], [19], or forming local committees to run consensus

algorithms at the local level [22] but these proposals encounter
various scalability or security issues which make them un-
usable. Specifically, Bitcoin-NG [12], PeerCensus [10], and
BizCoin [19], have proposed to rely exclusively on miners to
take in charge the full process of validation and confirmation to
guarantee that all the operations triggered on the transactions
are atomically consistent. Atomic consistency guarantees that
all the updates on shared objects are perceived in the same
order by all entities of the system. In all these protocols,
time is divided into epochs. An epoch ends when a miner
successfully generates a new block. This miner becomes the
leader of the subsequent epoch. Each of these solutions rely
on a dedicated set E`, with ` ∈ {1, w,∞}. This set is
built along consecutive epochs as follows. At epoch k, if
|E`| < `, the new leader is added to E`. Otherwise, the leader
at epoch k + 1− ` is removed from E` and the new leader is
added. Once set E` reaches size `, it remains at constant size
`. Strong consistency is implemented in these protocols by
different means. In Bitcoin-NG, it is achieved by delegating
the validation process to E1, i.e. the leader of the current epoch.
In PeerCensus it is implemented by relying on Byzantine
Fault Tolerant consensus protocols (e.g. [8], [15], [20]) run
by E∞ (recall that it contains all the miners that successfully
generated a block). Finally, BizCoin leverages both ideas by
using the leader and a consensus run by Ew. In all these
protocols, members of E`, with ` ∈ {1, w,∞}, are entitled
to validate and confirm issued transactions and blocks and to
disseminate them so that each peer integrates them in its local
blockchain. It has been shown in a previous paper [2] that none
of the studied solutions enhances Bitcoin’s behavior. Beyond
the complexity introduced by the consensus executions, the
main issue comes from the fact that all important decisions
of Bitcoin are solely under the responsibility of (a quorum
of) miners, and the membership of the quorum is decided by
the quorum members. This magnifies the power of malicious
miners.

Very recently, an elegant pessimistic-based approach to
mitigate the presence of blockchain forks has appeared with
Algorand [14]. In Algorand, members of the Byzantine-
tolerant algorithm (BA*) are selected no more proportionally
to their computational power, but proportionally to their stake.
Among them, a leader is elected, the one with the largest stake,
and handles all the currently submitted transactions. Algorand
guarantees that in periods of strong synchrony, the blockchain
correctly grows (absence of forks and double-spending), while
in presence of variable communication delays, growth is not
guaranteed.

The current paper improves upon a previous work in which
the idea of validating transactions and blocks as early as
possible was introduced [21]. To cope with the risk of Sybil
attacks, participants to BA committees in [21] have to solve a
computational puzzle to create their current identities [22],
which in expectation makes the number of identities per
node proportional to its computational power. In the present
solution, we rely on UTXOs owners to participate to BA
committees for the following reasons. First by relying on the

public key as identity principle, anyone can easily verify BA
committees membership, and second by relying on the fact that
UTXOs are one shot objects (i.e., once debited an UTXO does
not exist anymore), an induced churn is generated allowing
honest participants to escape poisoning attacks by moving to
a new region of the system, and preventing malicious nodes
from staying indefinitely long in the same region of the system,
healing the system from eclipse attacks.

IV. A SET OF INGREDIENTS

The main objectives of our solution are twofold: (i) the
guarantee that only non conflictual objects – blocks and
transactions – are validated and propagated in the system
in order to prevent arbitration rules from being applied a
posteriori and, (ii) the execution of the block and transaction
validation process over distinct committees to mitigate adver-
sarial behaviors (collusion and eclipse attacks) and to improve
the system scalability. Our solution relies on the orchestration
of the following ingredients.

Byzantine agreement (BA). The first ingredient we use
to implement the validation process is Byzantine agreement.
Informally, Byzantine agreement (BA) is a communication
protocol enabling a set of committee members, each of which
holds a possibly different initial value, to agree on a single
value v. Such an agreement is reached by all honest members,
that is, by those who scrupulously follow the protocol despite
the fact that a minority of the members are malicious and
can deviate from the protocol in an arbitrary and coordinated
manner.

Distributed Hash Table (DHT). The second ingredient of
our solution is a distributed hash table. Recall that DHTs
build their topology according to structured graphs, and for
most of them, the following principles hold: the identifier
space, e.g., the set of 256-bit strings, is partitioned among
all the nodes of the system, and nodes self-organize within
the graph according to a distance function D based on node
identifiers (e.g. two nodes are neighbors if their identifiers
share some common prefix), plus possibly other criteria such
as geographical distance. Example of DHTs are [26], [30],
[23], [27]. For resiliency reasons, each vertex of the graph
can be a set or a cluster of nodes. Basically, nodes sharing a
common prefix gather together into clusters, and clusters self-
organize into a graph topology, for instance an hypercube.
By running distributed algorithms inside each cluster, cluster-
based DHTs can be made robust to high churn [16] and
adversarial attacks [3].

Cluster-based DHT. In the following we use PeerCube, a
cluster-based DHT to implement the validation protocols [3].
Briefly, PeerCube is a DHT that conforms to an hypercube.
Vertices of the hypercube are clusters of nodes. Each cluster
is dynamically formed by gathering nodes that are close to
each other according to a distance function D applied on the
bit string identifier space. Distance D consists in computing
the numerical value of the “exclusive or” (XOR) of bit strings.

Thus identifiers that have longer prefix in common are closer
to each other, and for any point p and distance ∆ there is
exactly one point q such that D(p, q) = ∆ (which does not
hold for the Hamming distance). Nodes whose identities share
a common prefix gather together within the same cluster. Each
cluster is uniquely identified with a label that characterizes
the position of the cluster in the overall hypercubic topology.
The label of a cluster is defined as the shortest common
prefix shared by all the users of that cluster such that the
non-inclusion property is satisfied. The non-inclusion property
guarantees that a cluster label never matches the prefix of
another cluster label, and thus ensures that each identifier
belongs to at most one cluster. The length of a cluster label, i.e.
the number of bits of that label, is called the dimension of the
cluster. In the following, notation d-cluster denotes a cluster
of dimension d. Dimension determines an upper bound on the
number of links a cluster has with other cluster of the DHT,
i.e. the number of its neighbors. Clusters self-organize into a
hypercubic topology, such that the position of a cluster into the
hypercube is determined by its label. Ideally the dimension of
each cluster C should be equal to some value d to conform to
a perfect d-hypercube. However, due to the fact that nodes
join and leave the system at anytime, and their identifiers
are random bit strings, then cluster membership evolve, and
thus clusters may grow or shrink more rapidly than others.
In the meantime, cluster size are bounded. Whenever the size
of C exceeds a given value Smax, C splits into clusters of
higher dimensions, and whenever the size of C falls under a
given size of Smin nodes, C merges with other clusters into
a single new cluster of lower dimension. Members of each
cluster run Byzantine agreement protocols to guarantee that the
functioning of the DHT is correct despite targeted attacks [4].
This is achieved by partitioning each cluster into two sets, core
members and spare members. The number of core members is
at any time kept constant to handle a proportion µ of malicious
nodes, while the spare set gathers all the other node of the
cluster, and by doing so handle the churn without impacting
the topology of the hypercube [3].

“Public keys as identities” principle. The third ingredient
of our solution is to use (verification) public keys as user
identities. This means that users can use their public keys as a
reference to them. Digital signatures enables this because one
has the ability to verify the validity of an information based on
the public key, information, and signature. This principle is at
the core of challenges present in transactions to redeem coins
of UTXOs, and as detailed below we deeply use the unique
association UTXO/identity as a proof of membership for BA.

V. DISTRIBUTED HASH TABLE HAS A SUPPORT FOR
RUNNING DISTINCT INSTANCES OF BYZANTINE

AGREEMENTS

We now describe how the above ingredients are orchestrated
to validate transactions and blocks.

BA committee members are the owners of UTXOs. BA
committee members are the owner of UTXOs, that is the users

of the cryptocurrency system – this clearly differs from most of
the BA-based blockchains in which BA protocols are executed
by the successful miners. Note that as each user may own a
multitude of UTXOs (i.e. may have a multitude of identities),
a user may belong to several distinct BA committees. As will
de described in the following, any committee member may
prove its right to belong to a given committee by exhibiting
a digital signature that verifies an UTXO that has never been
redeemed so far.

BA committees as vertices of the DHT. To cope with the
thousands of transactions to be validated per day, a multitude
of BA protocols are run in parallel, each one sitting at the
vertices of PeerCube. Thus a BA committee is identified by
a unique label, which is the shortest common prefix shared
by all the users (i.e. UTXOs owners) of that BA committee.
Validation of each transaction T is handled by a specific BA
committee, the one whose label is a prefix of T identifier
– the identifier of a transaction is equal to its hash. Recall
that by construction, PeerCube guarantees that any identifier
belongs to a single cluster. In the following the BA committee
to which T is affected is called T referee. Similarly, validation
of a block is handled by a unique BA committee. However,
in contrast to transactions, the referee of a block B is the BA
committee whose label is a prefix of B predecessor (Recall
that blocks form a chain by pointing to a predecessor).

UTXOs to prevent targeted attacks. It is very important to
understand that, since UTXOs are one shot objects – that is
UTXOs are debited once and then disappear – the presence of
users in committees is verifiable. Anyone in the system can
check that some user is allowed to participate to the execution
of BA in a given cluster by just checking in her blockchain
that the identity of that user, that is its public key, and thus
its UTXO has never been redeemed so far. This feature is
important as it is a very efficient way to prevent targeted
attacks, attacks in which collusion of malicious nodes devise
strategies to progressively take the leadership of a targeted
region by staying longer than honest nodes [6], [4]. By the
second pre-image property of public keys, it is also very
difficult for malicious nodes to generate identities that allow
them to choose their positions so as to form collusions inside
committees.

VI. TRANSACTION VALIDATION PROTOCOL

The purpose of the transaction validation protocol is to
prevent double spending attacks by ensuring that concurrent
transactions do not try to use common inputs. Say differently,
its objective is to guarantee that at any time at most one
transaction can redeem all the UTXOs referenced in its input
set.

If we make an analogy between transaction inputs and
objects, and an analogy between using an input and writing
an object, then we can refer to database systems, in which
exclusive access to objects is obtained by asking each trans-
action to explicitly lock objects it accesses using some single

object locking mechanism. Yet, unless care is taken, locking
objects one by one may cause deadlocks. As the application
we consider involves different nodes spread over a large area,
it is not advisable to rely on having all of them conform to
the same locking strategies. Moreover, from a performance
viewpoint, it may be impossible to run deadlock detection and
prevention protocols assuming independent object locking. In
the following we propose a transaction validation protocol that
provides the equivalent of an atomic locking mechanism for
all of the inputs of each issued transaction.

Formally, our transaction validation protocol implements
two methods, grantInputs and release, that both accept
a transaction T = (I,O) as parameter. The grantInputs
method returns with GRANTED or DENIED. When an invoca-
tion returns with GRANTED, we say that the method exclusively
grants the inputs in I to T or, in short, that T has been
GRANTED. Once T has been GRANTED, for any subsequent
transaction T ′ conflicting with T , the service returns DENIED.
T can invoke the release method only if T has not been
granted. Otherwise it has no effect.

The transaction validation protocol prevents double spend-
ing attacks if the following three properties are met:

• Safety: If a transaction T = (I,O) is exclusively granted
the inputs in I , then no other transaction T ′ = (I ′, O′)
is exclusively granted the inputs in I ′ with I ∩ I ′ 6= ∅.

• Liveness: Each invocation of the grantInputs method
eventually returns.

• Non triviality: If there exists an invocation of the
grantInputs method with T = (I,O), and no other
transaction T ′ = (I ′, O′) with I ∩ I ′ 6= ∅ is exclusively
granted the inputs in I ′ then T is granted exclusively all
the inputs in I .

As evoked above, the referee of each transaction T = (I,O)
is the BA committee whose label share a common prefix
with T . Let us call it piT . piT is in charge of invoking the
grantInputs method for T and possibly the release
method if T has not been granted. Granting a transaction
means granting all the inputs of the transactions. Thus sim-
ilarly to the referee of a transaction T = (I,O), each input
i ∈ I of T has a referee. we call it UTXO referee, which is
the BA committee whose label is a prefix of i ∈ I . Let us call
it pii.

Therefore, when a user creates a transaction T = (I,O),
it submits T to PeerCube that routes T to its referee piT .
For each input i ∈ I of T , piT asks an exclusive lock at the
referee pii of each input i ∈ I , in an order that corresponds
to the lexicographical order of the input IDs. If the lock is
DENIED for at least one of these inputs, piT releases all
previously obtained locks (by proving to each of these referees
that a conflicting transaction T ′ has already been GRANTED).
Otherwise, after obtaining all locks, a GRANTED status is
returned to piT . Thus, similarly to transaction referees, UTXO
referees are characterized by the following properties:

• Safety: if an UTXO u is spent by a transaction T =
(I,O), u ∈ I , then no other transaction T ′ = (I ′, O′),

u ∈ I ′ can spend u, i.e. T ′ is considered as invalid.
• Liveness: Each invocation of the grantUTXO method

eventually returns.
• Non triviality: If there exists an invocation of the
grantUTXO method for an UTXO u ∈ I with T =
(I,O), and no other transaction T ′ = (I ′, O′) with
u ∈ I ∩ I ′ is exclusively granted the inputs in I ′ then
u is granted exclusively for T .

Protocol 1 is the pseudo-code run by the referee of a
transaction to orchestrate the grant requests on the involved
UTXOs referees as described in the pseudo-code of Protocol 2.

The correctness and, in particular, the lack of deadlocks,
result from the fact that objects are always obtained in
lexicographical order. A lock can be implemented using a
combination of Test-and-Set and Reset primitives. The referee
pii that wishes to lock input i ∈ I , first checks the value
of a binary register. When this value is 0, it modifies the
register to 1 and uses the lock. Releasing a lock is done by
resetting to 0 the register value. The fact that T has been
granted the lock on each input i ∈ I is proven by pii’s
signature. Each signature is bundled with the identity of the
signer. Note that Bitcoin transactions can easily be extended
to accommodate this process: the referee piT of transaction
T = (I,O) computes a group signature S (e.g. [7]) using the
signatures of each input referee piii∈I

and its own signature
and appends it, along with everything needed to verify this
group signature, to a specific validation output o added to the
set of outputs O of transaction T = (I,O). Any node can
easily verify that transaction T = (I,O) has been GRANTED
by checking the signatures S added by referee piT .

Referees are incentivized by introducing a validation fee. A
fair and easy way to share the validation output is to randomly
pick one of the referees and give it the entire reward. This
requires seeding a random number generator in a publicly
verifiable way, and for example with an information that can
only be published after the transaction validation protocol has
returned, like the hash of the block in which the transaction
is included.

VII. BLOCK VALIDATION PROTOCOL

By following exactly the same validation transaction princi-
ple, BA committees are exploited to prevent blockchain forks,
that is ensure that any validated block has at most one valid
block as immediate successor. It is achieved by providing a
method grantBlock that accepts a block b′ = (h(b), c(b′))
as parameter. This method returns with GRANTED or DENIED.
When an invocation returns with GRANTED, we say that the
method validates block b′ as the unique successor of block b,
i.e. block b′ is granted for h(b). This method has to satisfy the
three following properties:
• Safety: If a block b′ = (h(b), c(b′)) is granted for h(b),

then no other block b′′ = (h(b), c(b′′)) is granted for h(b).
• Liveness: Each invocation of the grantBlock method

eventually returns.
• Non triviality: If there exists an invocation of the
grantBlock method with b′ = (h(b), c(b′)), and no

Protocol 1: Transaction validation protocol
1 Upon reception of (GRANT, T=(I,O), user) begin
2 if ∃T ′ = (I′, O′) ∈ B, I ∩ I′ 6= ∅:

// a conflicting transaction
// exists in the blockchain

3 Send (DENIED, T, T ′);

4 BA_Propose ((GRANT, T, user));

5 Upon reception of BA_Decision((GRANT, T, user)) begin
// transaction committed by PBFT

6 pending[h(T)] ← (T, user);
7 signature[h(T)] ← multisign (T);
8 inputs ← sort(I);
9 for i in inputs:

10 granted[h(T)][i] ← false;

11 current[h(T)] ← 1;
// starts asking input grants

12 DHT_Route ((GRANT, h(T), inputs[current[h(T)]],
signature[h(T)]));

13 Upon reception of (GRANTED, h(T), i) begin
14 (T = (I,O), user) ← pending[h(T)];
15 if current[h(T)] < |I|:
16 granted[h(T)][i] ← true;

// try to grant the next input
17 current[h(T)] ← current[T] + 1;
18 DHT_Route ((GRANT, h(T), inputs[current[h(T)]],

signature[h(T)]));
19 else:

// all inputs have been granted
// execute the transaction

20 BA_Propose ((GRANTED, (T, signature[h(T)]));

21 Upon reception of (DENIED, h(T), T ′, i) begin
22 (T = (I,O), user) ← pending[h(T)];
23 granted ← {i ∈ I | granted[h(T)]};

// release previously granted inputs
24 for input in granted:
25 Sends (RELEASE, i, h(T), signature[h(T)]);

26 Send (DENIED, T, T ′, signature[h(T)]) to user;

27 Upon reception of BA_Decision((GRANTED, (T=(I,O), σT)) begin
28 broadcast (GRANTED, T,σ);
29 if I∩ BA_View 6= ∅:
30 BA_ViewChange (I∩ PBFT_View);

invocation of grantBlock with b′′ = (h(b), c(b′′)) has
ever been granted, then block b′ is granted as the unique
successor of block b.

The referee of block B is the BA committee whose label
share a common prefix with B predecessor. Let us call it πB .

Therefore, when a miner creates a block B it submits a
grantBlock request for B to PeerCube that routes it to its
referee piB . The request is granted if piB has never granted
such a request before. Protocol 3 is the pseudo-code of the
block validation protocol.

To summarize, the validation protocols guarantee via BA
committees tessellated at the vertices of a DHT that that a
transaction is validated only if it is the only one to redeem
each of its inputs, and a block is validated if it is the unique
successor of its predecessor. This is achieved by relying on the
ephemeral participation of UTXOs owners as BA committees
members. Indeed once an UTXO has been granted by a
committee, that UTXO does not exist anymore, and thus its
owner leaves the BA committee, and joins the BA committees

Protocol 2: UTXO conflict handling protocol
1 Upon reception of (GRANT, h(T), input, σ) begin
2 if granted[input] = (h(T ′), σ′):

// previously granted... deny !
3 Reply (DENIED, h(T), h(T ′), input)

4 BA_Propose ((GRANT, h(T), input, σ));

5 Upon reception of BA_Decision((GRANT, h(T), input, σ)) begin
6 if granted[input] = ⊥:

// store the grant
7 granted[input] ← (h(T), σ);
8 Reply (GRANTED, h(T), input);
9 else:

// any subsequent request is denied
10 Reply (DENIED, h(T), h(T ′), input)

11 Upon reception of (RELEASE, i, h(T), σ) begin
12 if granted[input] = (h(T), σ):

// release the grant on the input
13 BA_Propose (RELEASE, i, h(T), σ);

14 Upon reception of BA_Decision((RELEASE, i, h(T), σ)) begin
15 if granted[input] = (h(T), σ):

// release the grant on the input
16 granted[input] ← ⊥;

Protocol 3: Block validation protocol
1 Upon reception of (GRANT, b : block, minerAddr)
2 begin
3 if granted[b.prev] = b′ :

// a block b′ referring to b.prev
// have already been granted, it thus
// belong to the local blockchain

4 Send (DENIED, b.prev, b′) to minerAddr;
5 else:

// not aldready granted, try!
6 BA_Propose (GRANT, b, minerAddr);

7 Upon reception of BA_Decision (GRANT, b : block, minerAddr) begin
8 if granted[b.prev] = ⊥ :

// update local state
9 granted[b.prev] ← b;

// multi signature : f+1 out of Smin

10 σb ← multisign (b);
11 broadcast (GRANTED, (b, σb)) ;
12 else:

// Any subsequent request is denied
13 Send (DENIED, b.prev, b′) to minerAddr;

whose labels prefix the newly created UTXOs. This is very
important to prevent eclipse attacks, that is strategies which
allows the adversary to stay forever at the same position in
order to progressively eclipse honest nodes around it.

VIII. CONCLUSION

In this paper we have presented a new idea to prevent
both blockchain forks and double spending attacks, without
relying on successful miners to impose a total ordering on the
blocks they have mined. Our design relies on the ephemeral
participation of UTXO owners, and exploits both the scalabil-
ity and robustness properties of cluster-based DHTs and the
“public key as identity” principle. Those ingredients allow us
to introduce a small amount of synchronization, soon enough

in the validation process, to guarantee that sellers can to deliver
their good as soon as the transaction has been validated by the
system. Fast payments transactions are thus no more an issue.
The same level of local synchronization heals the Bitcoin
system from blockchain forks, and selfish mining. We are
currently evaluating the performance of our design through an
implementation that we have deployed over several hundred
nodes. Preliminary results are very promising.

REFERENCES

[1] S. Ahamad, M. Nair, and B. Varghese. A Survey on Crypto Curren-
cies. In Proceedings of the International Conference on Advances in
Computer Science (AETACS), 2013.

[2] E. Anceaume, T. Lajoie-Mazenc, R. Ludinard, and B. Sericola. Safety
Analysis of Bitcoin Improvement Proposals. In 15th IEEE International
Symposium on Network Computing and Applications (NCA), 2016.

[3] E. Anceaume, R. Ludinard, A. Ravoaja, and F. Brasileiro. PeerCube:
A Hypercube-Based P2P Overlay Robust against Collusion and Churn.
In 2nd IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, SASO 2008.

[4] E. Anceaume, R. Ludinard, and B. Sericola. Performance evaluation
of large-scale dynamic systems. ACM SIGMETRICS Performance
Evaluation Review, 39(4), 2012.

[5] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D.
Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidha-
ran, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick. Hyperledger
Fabric: A Distributed Operating System for Permissioned Blockchains.
https://arxiv.org/pdf/1801.10228v1.pdf.

[6] B. Awerbuch and C. Scheideler. Group spreading: A protocol for
provably secure distributed name service. In Proceedings of the 31rst
International Colloquium on Au- tomata, Languages and Programming
(ICALP), 2004.

[7] A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signa-
tures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In
6th International Workshop on Practice and Theory in Public Key
Cryptography, PKC 2003.

[8] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In
Proceedings of the Symposium on Operating Systems Design and
Implementation (OSDI), 1999.

[9] T. Crain, V. Gramoli, M. Larrea, and M. Raynal.
(Leader/Randomization/Signature)-free Byzantine Consensus for
Consortium Blockchains. http://csrg.redbellyblockchain.io/doc/
ConsensusRedBellyBlockchain.pdf, 2017.

[10] C. Decker, J. Seidel, and R. Wattenhofer. Bitcoin Meets Strong
Consistency. In 17th International Conference on Distributed Computing
and Networking (ICDCN), 2016.

[11] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the Presence of
Partial Synchrony. J. ACM.

[12] I. Eyal, A. E. Gencer, E. Gün Sirer, and R. Van Renesse. Bitcoin-NG: A
scalable blockchain protocol. In 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI’16, 2016.

[13] J. A. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone
Protocol: Analysis and Applications. In Proceedings of the Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques - Advances in Cryptology (EUROCRYPT), 2015.

[14] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP, 2017.

[15] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The Next
700 BFT Protocols. In Proceedings of the European Conference on
Computer Systems (EuroSys), 2010.

[16] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse Attacks on
Bitcoin’s Peer-to-Peer Network. In 24th USENIX Security Symposium,
USENIX Security’15.

[17] G. O. Karame, E. Androulaki, and S. Capkun. Double-spending Fast
Payments in Bitcoin. In Proceedings of the 2012 ACM Conference on
Computer and Communications Security (CCS), 2012.

[18] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Čapkun.
Misbehavior in Bitcoin: A Study of Double-Spending and Accountabil-
ity. ACM Trans. Inf. Syst. Secur., 18(1), 2015.

[19] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford.
Enhancing bitcoin security and performance with strong consistency
via collective signing. In 25th USENIX Security Symposium, USENIX
Security ’16, 2016.

[20] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
Speculative Byzantine Fault Tolerance. In Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07.

[21] T. Lajoie-Mazenc, R. Ludinard, and E. Anceaume. Handling bitcoin
conflicts through a glimpse of structure. In 32nd ACM Symposium on
Applied Computing (SAC), 2017.

[22] L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert, and P. Sax-
ena. SCP: a computationally-scalable Byzantine consensus protocol
for blockchains. Technical report, Cryptology ePrint Archive, Report
2015/1168, 2015.

[23] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric. In Proceedings for the International
Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[24] A. Miller and J. J. LaViola Jr. Anonymous byzantine
consensus from moderately-hard puzzles: A model for bitcoin.
http://bravenewcoin.com/assets/Whitepapers/Anonymous-Byzantine-
Consensus-from-Moderately-Hard-Puzzles-A-Model-for-Bitcoin.pdf,
2014.

[25] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A

Scalable Content-addressable Network. SIGCOMM Computer Commu-
nication Review, 31(4), 2001.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proceed-
ings of the International Conference on Distributed Systems Platforms
(Middleware), 2001.

[28] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. SPECTRE: A fast and
scalable cryptocurrency protocol. IACR Cryptology ePrint Archive,
2016, 2016.

[29] Y. Sompolinsky and A. Zohar. Accelerating Bitcoin’s Transaction
Processing. Fast Money Grows on Trees, Not Chains. IACR Cryptology
ePrint Archive, 2013, 2013.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions. In Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, ACM SIG-
COMM, 2001.

[31] G. Wood. Ethereum: A secure decentralised generalised transaction
ledger. http://gavwood.com/Paper.pdf.

