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EXTREME VALUE THEORY FOR SYNCHRONIZATION OF
COUPLED MAP LATTICES

Abstract. We show that the probability of the appearance of synchronization in

chaotic coupled map lattices is related to the distribution of the maximum of a cer-

tain observable evaluated along almost all orbits. We show that such a distribution

belongs to the family of extreme value laws, whose parameters, namely the extremal

index, allow us to get a detailed description of the probability of synchronization. The-

oretical results are supported by robust numerical computations that allow us to go

beyond the theoretical framework provided and are potentially applicable to physically

relevant systems.

D. Faranda 1 2, H. Ghoudi3, P. Guiraud4, S. Vaienti5

1. Introduction

Coupled Map Lattices (CML) are discrete time and space dynamical systems intro-

duced in the mid 1980’s by Kaneko and Kapral as suitable models for the study and

the numerical simulation of nonlinear phenomena in spatially extended systems. The

phase space of a CML is a set of scalar (or vector) sequences indexed by a lattice L,

e.g. L = Zd, Z or Z/nZ. For instance, a configuration x ∈ IL of the lattice may rep-

resent a spacial sample of a mesoscopic quantity with value in an interval I, such as a

chemical concentration, the velocity of a fluid, a population density or a magnetization.

The dynamics of the lattice is given by a map T̂ : IL → IL which is usually written

as the composition of two maps, i.e. T̂ := Φγ ◦ T̂0, where T̂0 : IL → IL is called the

uncoupled dynamics and Φγ : IL → IL the coupling operator. The uncoupled dynamics

acts on a configuration x ∈ IL as the product dynamics of a local map T : I → I, that is

T̂0(x)i := T (xi) for every i ∈ L. The coupling operator models spacial interactions, which

intensity is given by the parameter γ ∈ [0, 1]. In particular, in the absence of interaction
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γ = 0 and Φ0 = Id. For example, for L = Z or L = Z/nZ the coupling operator often

writes as

(Φγ(x))i :=
∑
j∈L

cγ,jxi−j ∀i ∈ L, (1.1)

where cγ,j ≥ 0,
∑

j∈L cγ,j = 1 and c0,0 = 1.

In the huge literature about CML, one can find many possible choices for the local map

and the coupling operator. For instance, the dynamics of CML of bistable, unimodal, or

chaotic maps have been studied for different kind and range of coupling, revealing a rich

phenomenology including spatial chaos, stable periodic points, space-time chaos, clusters,

traveling waves and synchronization, (see [6, 4, 10] and references therein). In this paper,

we will consider a system of n coupled chaotic local maps (the precise properties are given

in Section 2) defined for any x := (x1, . . . , xn) ∈ In by:

(T̂ (x))i = (1− γ)T (xi) +
γ

n

n∑
j=1

T (xj) ∀i ∈ {1, . . . , n}.

Note that the study of this system is equivalent to that of a CML on a periodic lattice

where the coupling operator is defined by (1.1) with L = Z/nZ, cγ,0 = (1 − γ + γ
n
) and

cγ,j = γ
n

for all j ∈ {1, . . . , n− 1}. The chaotic and synchronization properties of CML of

logistic local maps with this mean-field-type global coupling were observed and studied

by Kaneko in [23] and then, among others, by P. Ashwin [2] (and references therein).

The first contribution which looked at CML in the framework and with the tools

of ergodic theory, was the work by Bunimovich and Sinai. In the famous paper [3],

using thermodynamic formalism, they proved the existence of mixing SRB measures for

infinite CML with chaotic local map and weak (nearest neighbor) coupling. Since then,

the progress in the study of the statistical properties of chaotic CML has been enormous,

with the contribution of several people, and the development of a spectral theory [15, 16].

We defer to the book [4] for a wide panorama on the different approaches to CML and

for exhaustive references.

In this paper, we present a new application of Extreme Value Theory (EVT) to CML

on a finite (or periodic) lattice. Our aim is to provide a first approach to CML by using

EVT and to show how to get a certain number of rigorous results about the statistics

of some rare events, such as the synchronization in chaotic CML. We say that the CML

is synchronized when it is near a homogeneous configuration (in a small neighborhood

of the diagonal of the phase space). Synchronization is usually intended to last for a

while once it has started and this is what usually happens for some kinds of chains of

synchronized oscillators. This is not the case of course for chaotic CML, since almost every

orbit is recurrent by the Poincaré Theorem. What we actually investigate is therefore the

probability of a first synchronization and how long we should wait to get it with a prescribed

accuracy. EVT provides this kind of quantitative information, since synchronization
2



processes can be interpreted and quantified by computing the asymptotic distribution of

the maximum of a suitable random process, see Sections 3 and 4.

Although we could not get a global synchronization persisting in time, we could ask

about the distribution of the number of successive synchronization events when the sys-

tems evolves up to a certain time. We will see that after a suitable rescaling, the dis-

tribution of that number follows a compound Poisson statistics: it is worth mentioning

that for two uncoupled expanding maps of the circle, this result dates back to a paper by

Coelho and Collet, [5].

Actually a first result in our direction was given in the paper [13], although not ex-

plicitly related to EVT, where the authors considered two coupled interval maps and

applied their spectral theory of open systems with holes to investigate the first entrance

of the two components into a small strip along the diagonal, which is equivalent to the

synchronization of the two-components lattice up to a certain accuracy. In more general

situations, we will present arguments about the spectral properties of the transfer opera-

tor of the system to sustain the existence of a limit distribution for the maxima of some

observables related to synchronization, and we will discuss a formula approximating the

extremal index (a parameter of the distribution) for lattices with an arbitrary number

of components. We therefore estimate the behavior of such an index when the number

of components is large. We will then generalize the theory to CML which are randomly

perturbed with additive noise and show, in particular with numerical evidence, that the

extremal index is 1 for any dimension of the lattice. We hope that our approach could

be helpful to understand and quantify those phenomena, like in neuronal spikes or in

business cycles of financial markets, where bursts of synchronization happen, disappear,

happen again, apparently in a disordered manner, but very often following the extreme

distributions arising in chaotic systems.

In Section 2, we present a powerful and general approach based on perturbation of the

transfer operator, and which has the advantage of being applicable to a large class of

observables arising in the study of EVT. In Section 3, we give a short insight into basic

notions of EVT, especially when it is applied to recurrence in dynamical systems. In

particular, we define the extremal index and show that it goes to one when the size of

the lattice goes to infinity or in presence of noise. In Section 4, we apply EVT to com-

pute the probability of synchronization events, and sustain the results by computing the

extremal index in Section 5. This computation depends on the behavior of the invariant

density in the neighborhood of the diagonal; our formula (5.35) can be proved under the

assumption P8 which we believe to be unavoidable. In Section 6, we study the distribu-

tion of the number of successive synchronization events. In Section 7, we show that our
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analytic results and estimates are supported by numerical computations. They confirm

the existence of an extreme value distribution for a different kind of synchronization,

which we called local, and they validate the expected compound Poisson statistics for the

distribution of the number of successive visits. The fact that the extremal index for local

synchronization seems not to depend on the size of the lattice is an interesting numerical

discovery. In forthcoming papers we will study more general CML with non-local form of

coupling including the important case of diffusive or Laplacian interaction. A few other

possible developments are presented at the end of the paper (see section 7.2).

2. The map and the operators

As mentioned in the Introduction, we consider a finite CML of size n ≥ 2 with a local

map T : I → I and a global coupling. It is defined for any x = (x1, . . . , xn) ∈ In and

γ ∈ [0, 1] by 6:

T̂ (x)i = (1− γ)T (xi) +
γ

n

n∑
j=1

T (xj) ∀ i ∈ {1, 2, . . . , n}, (2.2)

where x = (x1, . . . , xn) ∈ In, γ ∈ [0, 1]. We suppose that T is a piece-wise expanding

map of the unit interval onto itself, with a finite number of branches, say q, and which we

take of class C2 on the interiors of the domains of injectivity A1, . . . , Aq, and extended

by continuity to the boundaries. The C2 assumption is used in the proof of Propositions

(5.5) and (5.6), although it could be relaxed with a C1+α condition. Instead the finitness

of the number of branches is widely used in almost all the arguments. Let us denote by

Uk, k = 1, . . . , qn, the domains of local injectivity of T̂ . By the previous assumptions on

T , there exist open sets Wk ⊃ Uk such that T̂|Wk
is a C2 diffeomorphism (on the image).

We will require that

sn := sup
k

sup
x∈T̂ (Wk)

||DT̂−1
|Wk

(x)|| < λ < 1,

where λ := supi supx∈T (Ai)
|DT−1

|Ai (x)|, and || · || stands for the euclidean norm. We will

write dist for the distance with respect to this norm.

An important tool for our further considerations is the transfer, or Perron-Frobenius

(PF), operator. The PF operator P̂ of the map T̂ is simply defined by the duality integral

relation ∫
P̂ (f)gdLeb =

∫
fg ◦ T̂ dLeb,

where Leb denotes the Lebesgue measure on In, f ∈ L1 and g ∈ L∞.7 The spectral

properties of the PF operator become interesting when it acts on suitable Banach spaces.

6We will not index the map T̂ with n, hoping it will be clear from the context.
7In the following we will use the same symbol Leb for any n. Moreover L1, Lp and L∞ will be

taken with respect to Leb. Finally the integral with respect to Lebesgue measure will be denoted with∫
dLeb(x) or

∫
dx.
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Let us therefore suppose that there exists a Banach space B with norm || · ||B, which is

compactly injected in L1 and the following properties hold8:

• P1 (Lasota-Yorke inequality) For any f ∈ B there exists η < 1 and C > 0 such

that

||P̂ f ||B ≤ η||f ||B + C||f ||1.

The Lasota-Yorke inequality implies that P̂ has an isolated eigenvalue equal to 1 which is

also the spectral radius of P̂ (spectral gap property). We will often call η the contraction

factor in the Lasota-Yorke inequality.

Remark 2.1. By iterating the previous inequality one easily get that

||P̂ kf ||B ≤ ηk||f ||B +
C

1− η
||f ||1, ∀ k > 1. (2.3)

This last inequality is actually needed in the perturbation theory used below. If one cannot

achieve it because P1 fails, it is enough to get P1 for an iterate of T̂ . In this case a

standard argument allows us to get again (2.3).

• P2 The eigenvalue 1 is simple and P̂ has no other eigenvalue on the unit circle.

This implies that P̂ preserves a mixing measure µ̂ which is the unique absolutely

continuous invariant measure with respect to Lebesgue. We moreover assume that

the associated density ĥ ∈ L∞.

It is well known that with our assumptions on T , the uncoupled dynamics T̂0, i.e γ = 0

in (2.2), satisfies P1 on any reasonable functional space B. We will give examples of such

spaces just below. Therefore, the spectral decomposition theorem of Ionescu-Tulcea-

Marinescu, see for instance [21], guarantees the existence of a finite number of absolutely

continuous ergodic components. They reduce to a unique absolutely continuous mixing

measure, which is P2, with some topological transitivity condition on the map T , which

could be achieved by asking, for instance, T to be Bernoulli, Markov, covering, etc (see,

e.g., Example 2.2).

In order to transfer the properties P1 and P2 to the map T̂ with γ > 0, we invoke the

perturbation theory by Keller and Liverani developed in [14]. According to that theory,

one should previously show the persistence of the Lasota-Yorke inequality (2.3) for the

map T̂ and then check that, for any f ∈ B, we have

||(P̂ − P0)f ||1 ≤ pγ||f ||B, (2.4)

where P0 is the PF operator of the uncoupled system (γ = 0), and pγ is a monotone upper

semi-continuous function converging to 0 when γ goes to 0. We defer again to Example

2.2 for a particular case, where this technique can be applied.

8 We will call a Banach space with this property adapted (to L1).
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The aforementioned perturbation theory was successively improved in [13] by the same

authors, in order to deal with open systems which produce a different kind of perturbation

for the transfer operator. This perturbation arises naturally in the context of the EVT,

as we will see in the next section. In order to introduce and define it, let {Dl}l∈N be

an increasing collection of nested subsets of In such that Leb(Dl) → 1 when l → ∞.

Moreover, suppose that the sets Dl are the closures of their interiors and have piece-wise

C∞ and co-dimension 1 boundaries. According to the observable used for the application

of EVT, the sets Dl have a specific definition, and they will be given by (3.18) and (4.22).

The EVT can be related to the spectral theory by considering the perturbed transfer

operator P̃l, which is defined for any h ∈ B by:

P̃l(h) := P̂ (h1Dl).

We now add new assumptions this operator must satisfy in order to apply the pertur-

bation theory for open systems. The goal is to compare the operators P̂ and P̃l and get an

asymptotic expansion for the spectral radius of P̃l close to 1 for large values of l. We will

see that it will give us the extremal index in the limiting distribution of Gumbel’s law.

We follow in particular the scheme proposed by Keller in [12], that we also summarized

in [1], Section 5, and in Chapter 7 of the book [25] to which we defer for more details.

There are 6 assumptions in [12], Section 2. The first three ask for uniform (in the “noise”

parameter l) quasi-compactness for the operator P̃l. We summarize them in the following

single assumption:

• P3 The operators P̃l satisfy a Lasota-Yorke inequality, uniform in l, on the space

B, namely, the factors η and C are the same for every sufficiently large l.

The next two properties P4 and P5 cover assumptions (5) and (6) in Keller [12]. We

also notice that P4, together with P2, implies assumption (4) in [12], as explained in

Remark 3 still in [12].

• P4 For any h ∈ B, the quantity

rl := sup
h,||h||B≤1

|
∫

(P̂ h− P̃lh)dLeb|

goes to zero when l→∞.

• P5 The density ĥ of the (unique mixing) invariant measure µ̂ of T verifies

rl||(P̂ − P̃l)ĥ||B ≤ C ′µ̂(Dc
l ), (2.5)

where C ′ is a constant independent of l and Dc
l denotes the complement of Dl.

We moreover assume that the density ĥ is strictly positive, namely its infimum is

larger than ĥ(inf) > 0 on a set of full measure.

We finally assume that
6



• P6 The following limit

qk := lim
l→∞

qk,l := lim
l→∞

∫
(P̂ − P̃l)P̃ k

l (P̂ − P̃l)(ĥ)dLeb

µ̂(Dc
l )

(2.6)

exists for any k ∈ N ∪ {0}.

Under the assumptions P1-P6, it has been proved in [13] that

θ := 1−
∞∑
k=0

qk, (2.7)

exists and is equal to liml→∞
1−ρl
µ̂(Dcl )

, where ρl is the spectral radius of P̃l. Therefore we

have the following asymptotic expansion for ρl:

1− ρl = µ̂(Dc
l )θ(1 + o(1)), in the limit l→∞. (2.8)

We stress that ρl is the largest eigenvalue of P̃l, that there are no other eigenvalues on

the circle of radius ρl, and that there exist functions ĝl ∈ B and measures µ̂l for which

the operators P̃l satisfy

P̃lh = ρlĝl

∫
hdµ̂l +Qlh (2.9)

for all h ∈ B. Moreover
∫
ĝldµ̂ = 1,

∫
hdµ̂l →

∫
hdµ̂ when l → ∞ and finally Ql is a

linear operator with spectral radius strictly less than ρl and satisfying: ||Qn
l ||B ≤ ςnl , for

a suitable 0 < ςl < 1, see again [13] for the derivation of these formulas.

It is a remarkable fact that this approach automatically provides the scaling exponent

θ for the asymptotic distribution of the maxima, see (4.25) below, and therefore it gives

a new proof of the existence of that distribution. The quantity θ is called the extremal

index (EI) and it will play an important role in the following. We will see in particular

that it gives a correction to the pure exponential law for the distribution of the maxima.

In that respect it coincides with the extremal index as it is defined in EVT, see [8], [25].

Our next task will therefore be to look for a Banach space which verifies the preceding

six properties.

One natural candidate would be the space BV (In) of functions of bounded variation

on Rn restricted to the L1 functions supported on Ĩn := interior(In). This space was used

in [13] in dimension 2, but it seems difficult to use it in higher dimensions to obtain P5.

The reason is that in order to get P5 one needs first to compute the quantity rl in P4.

Since h may not be necessarily in L∞, we should use Sobolev’s inequality to estimate

the integral and we get rl of order Leb(Dc)
1
n . This is not enough to recover P5, since

the Banach norm ||(P̂ − P̃l)ĥ||B is simply bounded by a constant as a consequence of the

Lasota-Yorke inequality. Instead for n = 2 the characterization of the total variation as

the maximum of sectional variations along the coordinate axis is sufficient to get (P5),

and it was just used in [13]. By referring to (2.12) below, we can in fact bound the integral
7



∫
|h1Dcl |dLeb by 1/2 times the total variation of the density times the Lebesgue measure

of the section of Dc
l along one of the two coordinate axis (we are using here the corollary

2.1 in [15]). But that sectional measure is of the same order of the Lebesgue measure of

the whole Dc
l , just because we are on the unit square. We therefore turn our attention

to another functional space, the quasi-Hölder space, whose importance for expanding

dynamical systems was stressed in the seminal works by Keller [11] and Saussol [27].

We start by defining for all functions h ∈ L1(In) a semi-norm, which given two real

numbers ε0 > 0 and 0 < α ≤ 1, writes

|h|α := sup
0<ε≤ε0

1

εα

∫
osc(h,Bε(x))dLeb,

where osc(h,A) := Esupx∈Ah(x) − Einfx∈Ah(x) for any measurable set A. We say that

h ∈ Vα(In) if |h|α < ∞. Although the value of |h|α depends on ε0, the space Vα(In)

does not. Moreover the value of ε0 can be chosen in order to satisfy a few geometric

constraints, like distortion, and to guarantee the forthcoming bound (2.10)9. We equip

Vα with the Banach norm

||h||α := |h|α + ||h||1,

and from now on Vα will denote the Banach space B = (Vα(In), || · ||α). With the assump-

tions we put on the map T̂ , in particular for the nature and smoothness of the boundaries

of the domains Uk, it can be shown that the transfer operator P̂ leaves Vα invariant with

α = 1, and moreover a Lasota-Yorke inequality (P1) holds, whenever

η := sn +
4sn

1− sn
Z
Yn−1

Yn
< 1, (2.10)

where Yn is the volume of the unit ball in Rn and Z is the maximal number of the

boundaries of the domains of local injectivity that meet in one point, see [27]. Also, one

can show that B can be continuously injected into L∞ and in particular, [27], ||h||∞ ≤
CH ||h||α, where CH =

max(1,εα0 )

Ynεn0
.

Our next step is to show that B is invariant under the perturbed operator P̃l. By

comparing with the computations in [27], we see that the new term we should take care

of is:

|h1Dl |α = sup
0<ε≤ε0

1

εα

∫
osc(h1Dl , Bε(x))dLeb.

Using the results in [27] and with Bε(Dl) denoting the ε-neighborhood of the set Dl
10 we

have:

osc(h1Dl , Bε(x)) ≤ osc(h,Dl ∩Bε(x))1Dl+

2
[
EsupBε(x)∩Dl |h|

]
1Bε(D)∩(Bε(Dcl ))

(x).

9For explicit computations of ε0 on concrete examples, see [27] and [22]; for the example (2.2) below,

that value was computed in Proposition 6 in [28].
10To be more precise we have Bε(Dl) := {x ∈ Rn : dist(x,Dl) ≤ ε}.
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By integrating and dividing by ε−α we get

|h1Dl |α ≤ |h|α + sup
0<ε≤ε0

2

εα

∫
Bε(x)∩D

sup |h(x)|1Bε(Dl)∩(Bε(Dcl ))
(x)dLeb ≤

|h|α + 2||h||∞
Leb(Bε(Dl) ∩ (Bε(D

c
l ))

εα
.

Before continuing we must say what really the set Dl is in our case. Its complement, Dc
l

is given in (4.22) and with the actual notation reads

Dc
l = {x ∈ In : max

i 6=j
|xi − xj| ≤ νl},

where νl goes to zero when l→∞. In this case it is easy to see that

Leb(Bε(Dl) ∩ (Bε(D
c
l )) ≤ Cnενl, (2.11)

see Appendix 1 for the proof. Therefore we can continue the previous bound as:

|h1Dl |α ≤ |h|α[1 + 2CHCnε
1−ανl].

This computation shows that B is preserved by P̃l, but if we want to get a Lasota-Yorke

inequality for it, and therefore satisfy (P3), we should multiply η by (1 + 2CHCnνl)

and ask that η(1 + 2CHCnνl) < 1, which is surely satisfied by taking l large enough.

Alternatively, one could take higher iterates of T̂ . In this case the backward images of

Dl will grow as well, but linearly with the power of the map and their contribution will

be dominated by the exponential decay of the contraction factor.

As we said above property (P2) requires that the invariant measure of the unperturbed

map be mixing; we will give an explicit example below.

Since quasi-Hölder functions h are essentially bounded, it is easy to get Property (P4)

estimating as:

|
∫

(P̂ h− P̃lh)dLeb| ≤
∫
|h1Dcl |dLeb ≤ ||h||∞Leb(Dc

l ) ≤ CH ||h||αLeb(Dc
l ). (2.12)

To check (P5), we begin to observe that the Banach norm ||(P̂ − P̃l)ĥ||B is bounded by

a constant, say Ĉ depending on ĥ as a consequence of the Lasota-Yorke inequality. Since

the density is bounded away from zero, we immediately have rl||(P̂−P̃l)ĥ||B ≤ CH Ĉ

ĥ(inf)
µ(Dc

l ).

Example 2.2. We now give an easy example which satisfies P1 to P3 with B the

space of quasi-Hölder functions; P4 and P5 follow from the above arguments and finally

Property (P6) will be proved in Section 5 under the additional assumption P0 and for

a much larger class of maps. We stress that our example will be used for the numerical

simulations in Section 7. Moreover the techniques we are using could be easily extendable

to other transformations not necessarily affine. As the one-dimensional map T we will take

T (x) = 3x mod1. By coupling n of them as in (2.2) we get a piece-wise linear uniformly

expanding higher dimensional map. We first notice that this map is not necessarily
9



continuous on the n-torus, but it satisfies the assumption (P0) in Section 5. The Lasota-

Yorke inequality (2.1) can be proved for l large enough, say for l > l0 if we verify the

condition (2.10). If it does not hold for the map T̂ it will be enough to get it for an iterate

of T̂ and this is surely possible thanks to Theorem 11 in Tsujii’s paper [28], which holds

for expanding piecewise linear maps whose locally domains of injectivity are bounded by

polyhedra. The constants η and C in (2.1) depend in our case (local affine maps), simply

on the contraction rate sn = 3−n to the power l. The next step is to prove the bound

(2.4).

This can be easily achieved by adapting our proofs of Proposition 4.3 in [1], or of Lemma

7.5 in [20]. The basic ingredients of such proofs are: (i) the control of the distance between

the preimages of the same point z ∈ In with the maps T̂0 and T̂ (for a given γ); (ii) the

distortion, involving the two determinants | det(DT̂0)| and | det(DT̂ )| (for a given γ). By

the structure of the map (2.2), one immediately sees that the distance at point (i) is of

order γ times a constant depending on the dimensionality n of ambient space. The ratio

of the determinants at point (ii) is instead of order (1− γ)n as it follows from the proof

of Proposition 3.2 below. This is enough to obtain the bound (2.4); we left the details to

the reader. We should finally check that the invariant density is bounded away from zero

for the map T̂ . We dispose of, at least, two criteria of covering type for that. The first

is taken from Section 7.3.1 and Lemma 7.5 in our paper [20] and requires the existence

of a domain of local injectivity Uk (see Section 2), whose image is the full hypercube In.

The second is described in Sublemma 5.3 in [22] and requires the so-called topological

exactness, namely the existence for any x ∈ In and ε > 0, of an integer Nε = Nε(x, ε) > 0

such that T̂NεBε(x) = In. Both results rely on an interesting property of the quasi-Hölder

functions, namely the existence of a ball where the (essential) infimum of such a function

is bounded away from zero, see [27]. We believe such covering conditions are satisfied in

our cases. As an example, we report the computation of the density for two and three

coupled maps; it is also interesting to observe that the density does not oscillate too much

in the vicinity of the diagonal, which is required by our assumption P8, see Figure 1 for

n = 2 and Figure 2 for n = 3.

3. Extreme values and localizations

In this section and in the next one, we apply EVT to the study of a few recurrence

behaviors for our system of CML.

There are, at least, two approaches to EVT. The first, which we call the pure prob-

abilistic one (PPA) uses strong mixing properties to get fast decay of correlations for

a suitable class of observables and to control short returns around a given point. It is

worth mentioning that the PPA covers cases where there is no spectral gap and therefore
10



the correlations do not decay exponentially fast, see for instance [25] for a rich variety of

examples.

The second approach, developed by Keller [12] and which we name the spectral ap-

proach (SA), is based on the perturbation technique discussed in the preceding section

and which allow us to get Gumbel’s law directly by a smooth perturbation of the spectral

radius of the operator P̃l. We will show explicitly in Section 4 how this method works.

The SA seems particularly adapted to investigate synchronization, while the PPA is not

suited, for the moment, to study observables which become infinite on sets with uncount-

ably many points, which is what happens when we consider synchronization (along the

diagonal). As we have already pointed out in the previous section, the issue in the SA is

to verify the properties P1-P6.

Let us suppose the vector z is given. When the orbit of a point x enters in a sufficiently

small ball centered at z we will say that there is localization of the orbit around the point

z.

Let us introduce the observable

ϕ(x) := − log{
n∑
i=1

|xi − zi|}, (3.13)

and consider the maximum

Mm(x) := max{ϕ(x), ϕ(T̂ x), . . . ϕ(T̂m−1x)}. (3.14)

By adopting the point of view of EVT, we will fix a positive number τ and we will ask

for the existence of a sequence um for which the following limit exists

m µ̂(ϕ > um)→ τ, m→∞. (3.15)

We will say that the sequence Mm has an Extreme Value Law, (EVL), if there exists a

non-degenerate distribution function H : R→ [0, 1], with H(0) = 0 such that

µ̂(Mm ≤ um)→ 1−H(τ), m→∞. (3.16)

By using the expression of ϕ we can rewrite (3.15) as

m µ̂(U (n)
m )→ τ. (3.17)

where

U (n)
m := {x ∈ In :

n∑
i=1

|xi − zi| ≤ νm}, with νm := e−um (3.18)

and consequently (3.16) can be restated as

µ̂(x ∈ In : T̂ k(x) /∈ U (n)
m , k = 0, . . . ,m− 1)→ 1−H(τ). (3.19)

We call νm the accuracy of the localization and we use the symbol ac to denote it. Of

course it depends on m, but as we will see soon, it is sometimes convenient to fix the
11



value of ac and choose m accordingly. If we see {T̂ k}k≥1 : In → In as a vector valued

random variable on the space {In, µ̂} associating to the point x ∈ In its orbit, then the

limit (3.19) could also be interpreted as the probability that each component {T̂ ki }k≥1 is

localized with accuracy ac = e−um around zi for the first time when k > m. In order to

get the probability of such an event, we have to insure a few assumptions, which were

already anticipated in the previous section, and which will allow us to apply Proposition

3.3 in [1] that we restate in the following proposition:

Proposition 3.1. Suppose that the system (In, T̂ , µ̂) has a unique absolutely continuous

invariant and mixing measure µ̂ with density bounded away from zero and exponential

decay of correlations on an adapted Banach space. Let (X0, X1, · · · ) be the process given

by Xm = ϕ ◦ T̂m,m ∈ N, where ϕ achieves a global maximum at some points z. Then we

have an EVL for the maximum Mm and:

(1) if z is not a periodic point, then the EVL is such that H(τ) = 1− e−τ ;

(2) if z is a (repelling) periodic point of prime period p, then the EVL is such that

H(τ) = 1− e−θτ , where the extremal index (EI) is given by θ(z) = 1−| detD(T̂ p)(z)|−1.

We notice that eventually (repelling) periodic points fall in part (1). Our observable

(3.13) satisfies the assumption of the Proposition. On the other hand, by using Theorem

1.7.13 in [24], we have a sufficient condition to guarantee the existence of the limit (3.15)

for 0 < τ < ∞. Such a condition requires that 1−F (x)
1−F (x−)

→ 1, as x → uF , where F is the

distribution function of X0, the term F (x−) in the denominator denotes the left limit of

F at x and uF = sup{x : F (x) < 1}. For the observable just introduced uF = ∞ and if

the probability µ̂ is not atomic at z, then it is easy to conclude that F is continuous at

z and therefore the above ratio goes to 1.

This general result will not allow us to explicitly compute the sequence um. Let us

take the affine sequence: um = y
am

+ bm, with am > 0, and y ∈ R. This suggests that

we redefine um(y) as a one parameter family in y. When the sequence µ̂(Mm ≤ um) =

µ̂(am(Mn − bm) ≤ y) converges to a non-degenerate distribution function G(y), in the

point of continuity of the latter, then we have an EVL. It is a beautiful result of EVT,

just related to the affine choice for the sequence un
11, that such a G(y) could be only of

three types, called Gumbel, Fréchet and Weibull, see [24], and what determines it in a

particular situation is just the common distribution given by the function F.

For instance and in our case, if we suppose that the invariant measure behaves like

Lebesgue, µ̂(U
(n)
m ) = O(νnm)12, then e−um ∼

(
τ
m

) 1
n , or equivalently um ∼ 1

n
logm− 1

n
log τ

11For other choices of the sequence un, see [24].
12 Actually we have µ̂(U

(n)
m ) = O(2nνnm), but the factor 2n will become negligeable by taking large m.

12



and therefore the probability of the first localization after m iterations with m large and

with accuracy ac of order
(
τ
m

) 1
n , is e−τ , or equivalently e−e

−y
, having set τ = e−y. The

distribution function e−e
−y
, y ∈ R is just the Gumbel law. In this easy example am =

n, bm = 1
n

logm, but we used very crude approximation in estimating the µ̂-measure

of the parallelepiped U
(n)
m since we simply forgot the local density of the measure at

the point z. Very often it is a difficult task to get an explicit expression for the scaling

coefficients am, bm. In a few cases one succeeds, see the results in [25], Propositions 7.2.4,

7.4.1, 7.5.1. Otherwise and for practical purposes, the distribution function µ̂(Mm ≤ y)

is modeled, for m sufficiently large, by the so-called generalized extreme value (GEV)

distribution which is a function depending upon three parameters ξ ∈ R, µ ∈ R, σ > 0 :

GEV(y;µ, σ, ξ) = exp
{
−
[
1 + ξ

(
y−µ
σ

)]−1/ξ
}
.

The parameter ξ is called the tail index. When it is 0, the GEV corresponds to the

Gumbel type, when the index is positive, it corresponds to a Fréchet and finally when it

is negative, it corresponds to a Weibull. The parameter µ is called the location parameter

and σ is the scale parameter: for m large the scaling constant am is close to σ−1 and bm

is close to µ.

The proof of Proposition (3.1) can be done with the SA or the PPA approaches and the

latter uses the approximation of our process with an i.i.d. process, this being guaranteed

by the exponential rate of mixing of the measure µ̂ on functions in B. It is interesting to

point out the dichotomy in the choice of the target point z : there is only two functional

expressions for the distribution H(τ) and what determines such a difference is the possible

periodicity of z. We now focus on the EI θ. Suppose we have successive entrances in

the neighborhood of z, namely consecutive occurrences of an exceedance of our threshold

un. We interpret it as a memory of the underlying random process, and we quantify it

with the parameter θ. In particular, see [25], p. 34, when θ > 0 and for most of the

times, the inverse of the EI defines the mean number of exceedances in a cluster of large

observations, i.e., is the mean size of the clusters. We now show that in our model and

whenever the number of components of the lattice goes to infinity, the EI of periodic

points goes to 1, so there are no clusters in the limit of an infinitely large lattice.

We now have (from now on we write the EI as θn to signify the dependence on n)

Proposition 3.2. Let T̂ be the CML with n sites given by (2.2) and take γ < 1− λ. Fix

p ≥ 1, if z(p)
n ∈ In is a periodic point of prime period p, the EI θn(z(p)

n ) satisfies

lim
n→∞

θn(z(p)
n ) = 1.

Proof. Recall the definition of the uncoupled dynamics

T̂0(x) =
(
T (x1), T (x2), . . . , T (xn)

)
∀x = (x1, x2, . . . , xn) ∈ In,

13



and let Cγ be the real n×n matrix, whose coefficients (Cγ)ij are defined by (Cγ)ij = γ/n

if i 6= j and (Cγ)ij = (1− γ) + γ/n if i = j. It is easy to check that T̂ = Φγ ◦ T̂0, where

the coupling operator Φγ : In → In is the linear map associated to the matrix Cγ (i.e

Φγ(x) := Cγx).

Let p ≥ 1, z ∈ In and let us compute the determinant of the Jacobian matrix of T̂ p

evaluated in the point z. We have,

det(DzT̂
p) =

p−1∏
t=0

det(DT̂ t(z)T̂ ) =

p−1∏
t=0

det(DT̂0(T̂ t(z))ΦγDT̂ t(z)T̂0)

=

p−1∏
t=0

det(CγDT̂ t(z)T̂0) = det(Cγ)
p

p−1∏
t=0

det(DT̂ t(z)T̂0).

It is an easy exercise in linear algebra to show that the determinant of the symmetric

matrix Cγ is det(Cγ) = (1− γ)n−1.

On the other hand DzT̂0 is a diagonal matrix with diagonal entries T ′(z1), · · · , T ′(zn)

and corresponding Jacobian determinant in z given by det
(
DzT̂0

)
=
∏n

k=1 T
′(zk). It

follows that

| det
(
DzT̂

p
)
| = (1− γ)p(n−1)

p−1∏
t=0

n∏
k=1

|T ′((T̂ t(z))k)| = (1− γ)p(n−1)

p−1∏
t=0

n∏
k=1

|T ′(ztk)|.

According to [1], if z(p)
n is a periodic point of period p, the EI satisfies

θn(z(p)
n ) = 1− 1

| det
(
D
z

(p)
n
T̂ p
)
|
.

Since

| det
(
D
z

(p)
n
T̂ p
)
| ≥ (1− γ)p(n−1)(

1

λ
)np =

(
(1− γ)n( 1

λ
)n

(1− γ)

)p
,

and as γ < 1− λ, we have that lim
n→∞

θn(z(p)
n ) = 1. �

3.1. Random perturbations. There is another situation which produces an extremal

index equal to 1. We can perturb the map T̂ with additive noise, see [1], by defining a

family of maps T̂ω = T̂ +ω, with each vector ω belonging to the set Ω and chosen in such

a way that each T̂ω sends In into itself. The iteration of T̂ will be now replaced by the

concatenation

T̂ nω := T̂ωn ◦ · · · ◦ T̂ω1
, with ω := (ω1, · · · , ωn, · · · ) ∈ ΩN,

and the ωk chosen in an i.i.d. way in Ω according to some (common) distribution P. If we

now take any measurable real observable ϕ, the process {ϕ ◦ T̂ nω }n≥1 will be stationary

with respect to the product measure µ̂s×PN, where µ̂s is the so-called stationary measure,

verifying, for any real measurable bounded function f :
∫
fdµ̂s =

∫
f ◦ T̂ωdµ̂s : see [25]

Chapter 7 for a general introduction to the matter. We call the couple {T̂ω, µ̂s × PN}
a random dynamical system. In the framework of EVT we could therefore consider the
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process {Xm,ω(·)}n≥1 = {ϕ ◦ T̂mω (·)}n≥1, where ϕ is the observable introduced in (3.13),

and consider accordingly the distribution of the maximum (3.14) with respect to the

probability measure µ̂s × PN. By adopting for T̂ the same assumptions as in Proposition

3.1, it is not difficult to show that µ̂ is equivalent to Lebesgue and we finally proved in

[1], Corollary 4.4, that for any choice of the target point z, an extreme value distribution

holds with H(τ) = 1− e−τ .

4. Extreme values and synchronization

We now introduce a new observable which allows us to consider synchronization of the

n components of an initial state iterated by T̂ . Let us therefore define

ψ(x) := − log{max |xi − xj|, i 6= j : i, j = 1, . . . , n} (4.20)

and consider the maximum

Mm(x) := max{ψ(x), ψ(T̂ x), . . . ψ(T̂m−1x)}.

By adopting the point of view of EVT, we fix again a positive number τ and we ask

for a sequence um for which the following limit exists m µ̂(ψ > um) → τ, m → ∞.
We say again that the sequence Mn has an Extreme Value Law, if there exists a non-

degenerate distribution function H : R → [0, 1], with H(0) = 0 such that µ̂(Mm ≤
um)→ 1−H(τ), m→∞. By using the expression of ψ we can rewrite (3.15) as

m µ̂(S(n)
m )→ τ (4.21)

S(n)
m := {x ∈ In : max

i 6=j
|xi − xj| ≤ νm}, where νm := e−um (4.22)

and consequently (3.16) can be restated as

µ̂(x ∈ In : T̂ k(x) /∈ S(n)
m , k = 0, . . . ,m− 1)→ 1−H(τ). (4.23)

The limit (4.23) could also be interpreted as the probability that the n components have

synchronized for the first time after m iterations with accuracy ac of order e−um .

We cannot use the PPA to prove the existence of the limit (4.23). The reason is that

our new observable becomes infinite on a line (the diagonal), and for the moment rigorous

results are avalaible when the set of points where the observable is maximised is at most

countable, see [7] for a discussion of these problems.

The SA will bypass that issue by using the Banach space B given by quasi-Höder

functions, since for such a space we can check properties P1-P5. Nevertheless there is

still a problem remaining, namely prove the existence of the limits (2.6). We will return

to that in the next section.
15



We now show how to get the asymptotic distribution functions of the extreme value

theory by using the SA. Let us begin by rewriting the maximum given in (4.23) using

the density ĥ of the measure µ̂:

µ̂(Mn ≤ um) =

∫
ĥ(x)1

(S
(n)
m )c

(x)1
(S

(n)
m )c

(T̂ (x)) . . .1
(S

(n)
m )c

(T̂m−1(x))dLeb =

∫
P̃m
m (ĥ)dLeb,

(4.24)

where, from now on,

P̃m(·) := P̂ (1
(S

(n)
m )c
·).

Notice that (S
(n)
m )c plays the role of the set Dl in Section 2. By invoking the spectral

representation (2.9) we have with obvious interpretation of the symbols∫
P̃m
m (ĥ)dLeb = ρmm

∫
ĥdµ̂m +

∫
Qm
mĥdLeb,

where
∫
ĥdµ̂m →

∫
ĥdLeb = 1, as m→∞, and the spectral radius of Qm is strictly less

than ρm. We now need to bound ρm, the largest eigenvalue of P̃m, for increasing m and

it is given by (2.8). Let us now denote the exponent θ∆ the EI along the diagonal set

∆ := {x ∈ Rn;x1 = x2, · · · = xn} and its existence will follow if we prove limit (2.6). We

then write:

1− ρm = µ̂(S(n)
m )θ∆(1 + o(1)), in the limit m→∞,

then ∫
P̃m
m (ĥ)dLeb = e−(θ∆mµ̂(S

(n)
m )+mo(µ̂(S

(n)
m ))

∫
ĥdµ̂m +O(ρ−mm ||Qm

m||B) (4.25)

which converges to e−τθ∆ under the assumptions on µ̂m, the spectral radius of Qm and

the condition (4.21). From now on we will simply write θn for the EI along the diagonal

set for lattices with n components.

We now return to (4.23) since we now know that 1 − H(τ) = e−θnτ . If we suppose

that µ̂(S
(n)
m ) = O(νn−1

m )13, then e−um ∼
(
τ
m

) 1
n−1 and therefore the probability of the first

synchronization after m iterations with accuracy ac ∼
(
τ
m

) 1
n−1 , is e−θnτ .14 If the compo-

nents of the vector T̂ k(x) are seen as the positions of different particles on a lattice, we

have a quantitative estimate of the probability of synchronization of the lattice after a

prescribed time and with a given accuracy.

13 Actually this is a very crude approximation. In fact what is possible to prove easily is an up-

per bound on the Lebesgue measure of the domain {x ∈ In, |xi − xj | < νm : i 6= j} which is

simply (2νm)n−1. We sketch the argument for n = 3. In this case, the measure we are looking for

is
∫
dx1

∫
dx21{|x1−x2|≤νm}(x)

∫
dx31{|x1−x3|≤νm}(x)1{|x2−x3|≤νm}(x). The last integral will contribute

with 2νm and so the second one.
14We defer to the discussion after Proposition 3.1 for the validity of this argument and its

approximations.
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Example 4.1. • Ex. 1. Suppose we use the data in Section 7, with an EI θ3 ∼
1 − (10

27
)2 ∼ 0.86, having chosen λ = 1/3 and γ = 0.1, and take 3 particles each

living on the unit interval. If we want to synchronize them with a probability larger

than 1/2 and an accuracy ac = 0.01 before m iterations, then we have to iterate

the lattice around m = 8 100 times.

• Ex. 2. Analogously, if we want to observe with a probability larger than 1/2 the

synchronization of 100 particles each living on the unit interval with an accuracy

ac = 0, 01 and before m iterations of the CML, then m has to be larger than 100100.

5. Computation of the extremal index

The extremal index is given by formula (2.7). Keller showed in [12] that it coincides

with that given in Proposition 3.1 for the process Xm = ϕ ◦ T̂m and the proof is exactly

the computation we performed in the previous section. As we said in the introduction,

the rigorous computation of the EI for two coupled maps was given in [13]. Their map

was slightly different from ours in the sense that for the i-th component the averaged

term γ
n

∑n
j=1 T (xj) does not contain the contribution of T (xi). They first observed that

in (2.6), all the qk but q0, are zero due to the fact that the diagonal is invariant and q0

reads:

q0 = lim
m→∞

µ̂(S
(2)
m ∩ T̂−1S

(2)
m )

µ̂(S
(2)
m )

(5.26)

This quantity was explicitly computed giving the formula [13]:

θ2 = 1− 1

1− 2δ

1∫
ĥ(x, x)dx

∫
ĥ(x, x)

|DT (x)|
dx,

where the density ĥ has bounded variation and for almost every x ∈ I the value ĥ(x, x)

is the average of the limits of ĥ(x− u, x+ u) and ĥ(x+ u, x− u) as u→ 0.

We get a similar result and still for n = 2, with a modification due to the fact that our

map is different, see formula (5.35) in the remark below. Instead the density along the

diagonal is defined again as a bounded variation function. It seems difficult to extend

such a result in higher dimensions without much stronger assumptions. Before doing

that, we will explore how the EI θn behaves for large n in a quite general setting with the

objective to show that for large n such an index approaches 1 and therefore the Gumbel’s

law will emerge as the extreme value distribution.

We will index with n the invariant densities ĥn, while we continue to use the symbol µ̂

for the invariant measure, despite the fact that µ̂ depend on n too, via the density ĥn.

Our next objective is to show that all the qk but q0 are zero. Such a result is claimed in

[13] in dimension 2 and without proof; we sketch it below for the reader’s convenience in

any dimension and asking for a few assumptions.
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We first notice that the quantities qk,l introduced in (2.6), read:

qk,l :=

∫
(P̂ − P̃l)P̃ k

l (P̂ − P̃l)(ĥ)dLeb

µ̂(Dc
l )

= µ̂Dcl {x ∈ D
c
l : tDci (x) = k + 1} (5.27)

where µ̂Dcl is the conditional measure to Dc
l , and tDci (x) denotes the first return time of the

point x ∈ Dc
l to Dc

l (we will come back on this equality in the next section). Additional

properties are necessary; for that let us first denote with Vε(∆) an ε-neighborhood of the

diagonal ∆.

• P01: The boundaries of the domains of local injectivity U1, · · · , Uq (see Section

2) are union of finitely many discontinuity surfaces Dj, j = 1, · · · , p15, which are

co-dimension 1 embedded submanifolds. We denote by D the union of those dis-

continuity sets. Moreover ∀ε > 0 and k ∈ N, let us denote with Fd,ε,k the set of

points x ∈ Vε(∆) for which there is a neighborhood O(x) such that O(x)∪Λ 6= ∅,
and O(x)∩ (D∪ T̂−1(D)∪· · · T̂−k(D)) = ∅. We require the existence of a constant

Ck independent on ε such that µ̂(F c
d,ε,k) ≤ Ckσ(ε)µ̂(Vε(∆)), where σ(ε) goes to

zero when ε→ 0.

• P02: Let us denote with Gd,ε the set of points in Vε(∆) for which the segment

of minimal lenght connecting one of this point to the diagonal intersects one

component of T̂Dj. For ε small enough, we will assume that there is a constant

Cd independent of ε such that µ̂(Gd,ε) ≤ Cd κ(ε) µ̂(Vε(∆)), where κ(ε) goes to

zero when ε→ 0.

Remark 5.1. The condition P01 means that for a large portion of points in the vicinity

of the diagonal, we can find a neighborhood which intersects the diagonal but does not

cross the discontinuity lines up to a certain order. The condition P02 means that the

piece of Vε(∆) which is crossed by an element of T̂Dj has a length along the direction

of ∆ of order κ(ε). Both situations happen when the crossing of the discontinuities are

“transversal”: it is easy to produces pictures in dimension n = 2 and n = 3. See Figure

3 for P01 and Figure 4 for P02. In both cases we took ε small enough in such a way

that the discontinuity behaves locally, when it intersects Vε(∆), as a line for n = 2 and

as a plane for n = 3; moreover κ(ε) = O(ε). We notice that condition P02 requires the

control only of the first images of D and also it is not necessary if the map T̂ is onto on

each Ul.

We sketch the argument for k = 1, the others being similar. By replacing l with m in

(5.27) we show that:

15We observe that the map could be continuous on such boundaries, but the first derivative surely is

not.
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Lemma 5.2. The quantity∫
(P̂ − P̃m)P̃m(P̂ − P̃m)(ĥ)fdLeb

µ̂(S
(n)
m )

=
µ̂(S

(n)
m ∩ T̂−1(S

(n)
m )c ∩ T̂−2S

(n)
m )

µ̂(S
(n)
m )

(5.28)

goes to zero when m→∞.

Proof. Let us take a point x ∈ Fd,ε,2. With these assumptions T̂ and T̂ 2 are open maps

on O(x). In particular, T̂ 2(O(x)) will be included in the interior of one of the Ul and it

will intersect ∆ by the forward invariance of the latter. We now suppose that T̂ 2(x) is in

Vε(∆) and we try to prove that T̂ (x) must be in Vε(∆) too. Let us call D∗ the domain

of the function T̂−1
∗ , namely the inverse branch of the map sending T̂ (x) to T̂ 2(x). If

the distance between T̂ 2(x) and any point z ∈ T̂ 2(O(x)) ∩ ∆, such that the segment

[T̂ 2(x), z] is included in D∗, is less than ε, we have done since dist(T̂−1
∗ (z), T̂−1

∗ (T̂ 2(x)) =

dist(z̃, T̂ (x)) ≤ λε, where z̃ = T̂−1
∗ (z) ∈ ∆. Notice that such a point z ∈ ∆ should not

be necessarily in T̂ 2(O(x)), provided the segment [T̂ 2(x), z] ∈ D∗ and dist(z, T̂ 2(x)) ≤ ε.

What could prevent the latter conditions to happen is the presence of the boundaries of

the domains of definition of the preimages of T̂ , which are the images of D. We should

therefore avoid that T̂ 2(x) lands in the set Gd,ε, which means we have to discard those

points x ∈ Vε(∆) which are in T̂−2Gd,ε, and, by invariance, the measure of those point is

bounded from above by Cd κ(ε)µ̂(Vε(∆)). We now choose νm < ε and work directly with

the sets S
(n)
m . The points which are not in T̂−2Gd,νm∩S

(n)
m ∩F c

d,νm,2
gives zero contribution

to the quantity µ̂(S
(n)
m ∩ T̂−1(S

(n)
m )c∩ T̂−2S

(n)
m ), while the measure of the remaining points

divided by µ̂(S
(n)
m ) goes to zero for m tending to infinity.

�

Proposition 5.3. Let us suppose our CML satisfies properties P1-P5 on a Banach space

B with λ = inf |DT |−1 < 1− γ, the density ĥn ∈ L∞ and ĥ
(inf)
n := infIn ĥn > 0. Then

lim sup
m→∞

µ̂(S
(n)
m ∩ T̂−1S

(n)
m )

µ̂(S
(n)
m )

≤ λn−1||ĥn||∞
(1− γ)n−1ĥ

(inf)
n

Remark 5.4. The upper bound makes sense of course when the right hand side of the

above inequality is less or equal to 1. Moreover the EI θn will converge to 1, under the

additional P0 assumptions, when n → ∞ if the ratio ||ĥn||∞
ĥ

(inf)
n

does not grow faster than

υn−1 with υ > (λ/(1− γ))−1.

Proof. We start by writing

µ̂
(
S(n)
m ∩ T̂−1S(n)

m

)
=

∫
In
dxĥn(x)1S(n)

m
(x)1S(n)

m
(T̂ x)

=

∫
I

dx1

∫
In−1

dx2 . . . dxnĥn(x1, . . . , xn)1S(n)
m

(x)·
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1S(n)
m

(
(1− γ)T (x1) +

γ

n

n∑
i=1

T (xi), . . . , (1− γ)T (xn) +
γ

n

n∑
i=1

T (xi)
)
.

W now have to reduce the domain of integration of I 3 x1 in two steps: the first, changing

I into I ′m, consists in removing intervals of length 2νm on the left and on the right on each

boundary point of the Al, l = 1, · · · , q. Clearly the difference between the integrals over

I and I ′m will converge to zero when m→∞ since the integrand functions are bounded

(remember the density is in L∞); this argument is made more precise in Appendix 2

together with the reason of that reduction. For the moment we simply write I(I \ I ′m) for

the integral over I \ I ′m. By introducing the operator Pl acting on the variable xl, l ≥ 2,

we could continue as:

µ̂
(
S(n)
m ∩T̂−1S(n)

m

)
= I(I\I ′m)+

∫
I′m

dx1

∫
In−1

dx2 . . . dxnP2◦· · ·◦Pn
[
ĥn(x1, . . . , xn)1S(n)

m
(x)
]
·

1S(n)
m

(
(1− γ)T (x1) +

γ

n

(
T (x1) + x2 + · · ·+ xn

)
, . . . , (1− γ)xn +

γ

n

(
T (x1) + x2 + · · ·+ xn

))
.

If we now introduce the sets

S(n)
m,γ(Tx1) = {(x2, x3, · · · , xn) ∈ In :| T (x1)−xj |≤

νm
1− γ

, j = 2, . . . , n, | xi−xj |≤
νm

1− γ
i 6= j 6= 1},

and

S(n)
m (x1) = {(x2, x3, · · · , xn) ∈ In : |x1−xj| ≤ νm, j = 2, · · · , n, | xi−xj |≤ νm i 6= j 6= 1},

we have
µ̂(S

(n)
m ∩ T̂−1S

(n)
m )

µ̂(S
(n)
m )

≤

∫
I′m
dx1

∫
S

(n)
m,γ(Tx1)

dx2 . . . dxnP2 ◦ · · · ◦ Pn
[
ĥn(x1, . . . , xn)1S(n)

m
(x)
]

+ I(I \ I ′m)∫
I′′′m
dx1

∫
S

(n)
m (x1)

dx2 · dxnĥ(x1, · · · , xn)

We reduced the domain of integration in the integral in the denominator from I to I ′′′m :

this kind of reduction will also affect I ′m and it will be explained in the Appendix 2. Let

us now consider for simplicity the structure of the operators when n = 3:

P2 ◦ P3

[
ĥ3(x1, x2, x3)1S(3)

m
(x1, x2, x3)

]
=

∑
j

∑
k

ĥ3(x1, T
−1
j x2, T

−1
k x3)1S(3)

m
(x1, T

−1
j x2, T

−1
k x3)

| DT (T−1
j x2) || DT (T−1

k x3) |
1TAj(x2)1TAk(x3), (5.29)

where {Ak} denotes the intervals of monotonicity of the map T . The preceding constraints

and the assumption γ < 1− λ imply that: | T−1
j x2− x1 |< νm, | T−1

k x3− x1 |< νm. Since

the original partition is finite, if we take first m large enough and having removed the

intervals of length 2νm around the boundary point of the domain of monotonicity of T ,

for any x1 ∈ I ′m there will be only one preimage which can contribute in each sum. By

generalizing to n components we could therefore bound the term (5.29) by λn−1||h||∞.

Moreover a simple geometrical inspection shows that the Lebesgue measures of the sets
20



S
(n)
m,γ(Tx1) and S

(n)
m (x1) are independent of the point x1 and also the ratio of the two

measures is independent of m and gives

Leb(S
(n)
m,γ)

Leb(S
(n)
m )

=
1

(1− γ)n−1
, (5.30)

see Appendix 2. We therefore get

µ̂
(
S(n)
m ∩ T̂−1S(n)

m

)
µ̂(S(n)

m )
≤ Leb(S

(n)
m,γ)λn−1||ĥn||∞ + I(I \ I ′′m)

Leb(S
(n)
m )ĥ

(inf)
n

. (5.31)

We now notice that I(I \I ′′m) can be immediately bounded by ||ĥ||∞Leb(S
(n)
m,γ)Leb(I \I ′′m).

This allows us to factorize the term Leb(S
(n)
m,γ) in the denominator and divide it by

Leb(S
(n)
m ). By taking the lim sup we finally get our result. �

We can now strengthen the previous result by adding further assumptions. We start

first with a stronger hypothesis on the invariant density which we will relax later on.

• P7 The density ĥ is continuous on In.

This condition is for instance satisfied in the uncoupled case for smooth and locally onto

maps T of the unit circle.

Proposition 5.5. Let us suppose that our CML satisfies properties P1-P5 and P7 on

a Banach space B with λ = inf |DT |−1 < 1− γ, then

lim
m→∞

µ̂(S
(n)
m ∩ T̂−1S

(n)
m )

µ̂(S
(n)
m )

=
1

(1− γ)n−1

∫
I
ĥn(x,··· ,x)
|DT (x)|n−1dx∫

I
ĥn(x, · · · , x)dx

.

Proof. We will write the proof for n = 3, the generalization being immediate, and this

will allows us to use the simple formulas in the previous demonstration. By the same

arguments in the latter and by denoting with T−1
x1

the inverse branch of T such that

T−1
x1

(T (x1)) = x1, we have

µ̂
(
S(3)
m ∩T̂−1S(3)

m

)
=

∫
I′′m

dx1

∫
S

(3)
m,γ(Tx1)

ĥ3(x1, T
−1
x1
x2, T

−1
x1
x3)

|DT (T−1
x1
x2)||DT (T−1

x1
x3)|

dx2dx3+I(I\I ′′m) (5.32)

and we have a lower bound for µ̂
(
S(3)
m ∩ T̂−1S(3)

m

)
without the I(I \ I ′′m) term. We call

I(I ′′m) the first integral on the right hand side.

Since ĥ3 is continuous on I3 and therefore uniformly continuous, having fixed ε̃ >

0, it will be enough to choose νm small enough (remember that |T−1
x1
x2 − x1| ≤ νm,

|T−1
x1
x3 − x1| ≤ νm), to have ĥ3(x1, T

−1
x1
x2, T

−1
x1
x3) = ĥ3(x1, x1, x1) +O(ε̃).

For the derivative we can use the fact that our map is C2 on the interior of the

Al, l = 1, · · · , q and extendable with continuity on the boundaries to get by the mean

value theorem

DT (T−1
x1
x2) = DT (x1)+D2T (x̂2)|T−1

x1
x2−x1|, DT (T−1

x1
x3) = DT (x1)+D2T (x̂3)|T−1

x1
x3−x1|
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where x̂2 belongs to the interval with endpoints T−1
x1
x2 and x1, and x̂3 belongs to the

interval with endpoints T−1
x1
x3 and x1 and these two intervals are in the domains where

T is locally injective. By inserting these formulas in the definition of I(I ′′m) we have:

I(I ′′m) =

∫
I′′m

dx1
ĥ3(x1, x1, x1)

|DT (x1)|2

∫
S

(3)
m,γ(Tx1)

dx2dx3

[1 + D2T (x̂2)
DT (x1)

|T−1
x1
x2 − x1|][1 + D2T (x̂3)

DT (x1)
|T−1
x1
x3 − x1|]

+

∫
I′′m

dx1
1

|DT (x1)|2

∫
S

(3)
m,γ(Tx1)

O(ε̃)

[1 + D2T (x̂2)
DT (x1)

|T−1
x1
x2 − x1|][1 + D2T (x̂3)

DT (x1)
|T−1
x1
x3 − x1|]

dx2dx3

We now rewrite the first summand as

I1,m := Leb(S(3)
m,γ)

∫
I′′m

dx1
ĥ3(x1, x1, x1)

|DT (x1)|2
1

Leb(S
(3)
m,γ)∫

S
(3)
m,γ(Tx1)

dx2dx3

[1 + D2T (x̂2)
DT (x1)

|T−1
x1
x2 − x1|][1 + D2T (x̂3)

DT (x1)
|T−1
x1
x3 − x1|]

(5.33)

where we have suppressed the dependence on Tx1 in the Lebesgue measure of the external

S
(3)
m,γ, which are independent of Tx1 when x1 ∈ I ′′m, and the second summand as

I2,m := Leb(S(3)
m,γ)

∫
I′′m

dx1
1

|DT (x1)|2
1

Leb(S
(3)
m,γ)∫

S
(3)
m,γ(Tx1)

O(ε̃) dx2dx3

[1 + D2T (x̂2)
DT (x1)

|T−1
x1
x2 − x1|][1 + D2T (x̂3)

DT (x1)
|T−1
x1
x3 − x1|]

Using same arguments we have:

µ̂
(
S(3)
m ) = Leb(S(3)

m )

∫
I′′′m

dx1ĥ3(x1, x1, x1)
1

Leb(S
(3)
m )

∫
S

(3)
m (x1)

dx2dx3+

Leb(S(3)
m )

∫
I′′′m

dx1
1

Leb(S
(3)
m )

∫
S

(3)
m (x1)

O(ε̃)dx2dx3+I(I\I ′′′m) = I3,m+I4,m+I(I\I ′′′m) (5.34)

and with a lower bound for µ̂
(
S(3)
m ) without the I(I \ I ′′′m) term. Hence we get

I1,m + I2,m

I3,m + I4,m + I(I \ I ′′′m)
≤ µ̂(S

(n)
m ∩ T̂−1S

(n)
m )

µ̂(S
(n)
m )

≤ I1,m + I2,m + I(I \ I ′′m)

I3,m + I4,m

As in the proof of Proposition 5.3, we have that I(I \ I ′′m) ≤ ||ĥ||∞Leb(S
(3)
m,γ)Leb(I \ I ′′m)

and I(I \ I ′′′m) ≤ ||ĥ||∞Leb(S
(3)
m )Leb(I \ I ′′′m). We can then factorize in the numerator and

in the denominator the Lebesgue measures of the sets S
(3)
m,γ and S

(3)
m and remember that

Leb(S
(3)
m,γ)

Leb(S
(3)
m )

= 1
(1−γ)2 . After this factorization and when m goes to infinity, the remaining

part of I1,m converges to
∫
I
dx1

ĥ3(x1,x1,x1)
|DT (x1)|2 by the dominated convergence theorem and

the fact that |T−1
x1
xj − x1| ≤ νm, j = 2, 3, while the remaining part of I2,m converges to

an O(ε̃) term. Still after the previous factorization, the remaining part of I3,m goes to∫
I
dx1ĥ3(x1, x1, x1), while the remaining part of I4,m goes to an O(ε̃) term. The result

then follows sending ε̃ to zero. �
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It is possible to relax the continuity assumption P7 on the density by asking a much

weaker property. It seems to us that this condition is natural, and probably unavoidable,

in the sense that it controls the oscillations of the density in the neighborhood of the

diagonal.

• P8 Let us suppose the density ĥ is in V1(In) and moreover

ĥD := sup
0<ε≤ε0

1

ε

∫
osc(ĥ, Bε(x, · · · , x)))dx <∞.

Proposition 5.6. Let us suppose that our CML satisfies properties P1-P5 and P8 on the

Banach space B = V1(In) with λ = inf |DT |−1 < 1− γ, then the statement in Proposition

5.5 holds.

Proof. The proof follows the line of Proposition 5.5, with an essential change when we

compare the density in the neighborhood of the point (x1, x1, x1). In fact, we can now

write

|ĥ3(x1, T
−1
x1
x2, T

−1
x1
x3)− ĥ3(x1, x1, x1)| ≤ osc(ĥ3, Bνm(x1, · · · , x1)).

An quick inspection of the previous proof shows immediately that the integral
∫
I
dx1 O(ε̃)

will be now replaced with
∫
I
dx1 osc(ĥ3, Bνm(x1, · · · , x1)), and this last integral is bounded

by ĥDνm, which goes to zero when m tends to infinity. �

Corollary 5.7. As a consequence of Propositions 5.5 and 5.6, the extremal index θn for

maps satisfying P0 too, is given by

θn = 1− 1

(1− γ)n−1

∫
I
ĥn(x,··· ,x)
|DT (x)|n−1dx∫

I
ĥn(x, · · · , x)dx

. (5.35)

and it will converge to 1 when n→∞.

5.1. Random perturbations. As for localization, we expect that the extremal index be

one when we keep n fixed and we add noise to the system. In the paper [1] we extended

the SA to randomly perturbed dynamical systems, mostly with additive noise. Even if

we assume properties (P1)-(P6) on some Banach space B, there will be a new difficulty

related to the computation of the quantities qk in (2.6) in the random setting. Such a

computation as it was done in Proposition 5.3 in [1] strongly relies on the fact that the

observable becomes infinite in a single point, the center of a ball: we do not know how to

adapt it in the neighborhood of the diagonal ∆. We will present nevertheless numerical

evidences in Section 7 that in presence of noise the EI is 1.

6. Distribution of the number of successive visits

We anticipated in the introduction that once the synchronization is turned on for the

first time, it cannot last since almost every orbit is recurrent. However the orbit T̂ n(x0)

will visit for almost every point x0 infinitely often the neighborhood of the diagonal.
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We could therefore expect that the exponential law e−τ given by the EVT describes the

time between successive events in a Poisson process. To formalize this, let us take a

neighborhood S
(n)
ς of the diagonal ∆ with accuracy ac = ς and introduce the following

quantity (remember that the map T̂ and the measure µ̂ depend on n too):

N (n)
ς (t) =

⌊
t

µ̂(S
(n)
ς )

⌋
∑
l=1

1
S

(n)
ς

(T̂ l(x)),

where b·c is the floor function, and consider the following distribution

N (n, ς, t, k) := µ̂(N (n)
ς (t) = k)

If the target set was a ball of radius ς around a generic point z or a dynamical cylinder set

converging to this point, one can prove under the mixing assumptions of our paper, that

in the limit of vanishing radius or infinite length for the cylinder, N (n, ς, t, k) converges to

the Poisson distribution tke−t

k!
, see for instance [17],[18]. Instead if we take the target point

z periodic of minimal period q, one get the so-called compound Poisson distribution, see

[22] and [9], which in our situation reads, for k ≥ 1 :

N (n, ς, t, k) = e−t(1−p)
k∑
j=0

pk−j(1− p)j+1 t
j(1− p)j

j!

(
k − 1

j − 1

)
(6.36)

where

p =
1

| det(DzT̂ q)|
(6.37)

Remark 6.1. We do not dispose for the moment of analogous formulas when a ball

is replaced by a strip along our diagonal set ∆. To the best of our knowledge the only

known result is in dimension 2 for the uncoupled systems given by the direct product of

two piece-wise expanding and smooth maps of the circle, see [5], and it is consistent with

our results. Nevertheless a few preliminary considerations16 seem to indicate that the

compound distribution (6.36) still holds with p in (6.37) replaced by 1− θn in (5.35), and

more generally with the EI given by formulas (2.7), (2.6), with the quantities qk,l given by

the right hand side of (5.27) when the transfer operator is not available. In particular one

should recover a pure Poisson distribution when the size n of the lattice tends to infinity.

Example 6.2. (Ex. (4.1) revisited)

• Suppose we consider as in the example (4.1), Ex. 2, n = 100 particles living in

the unit interval and take the accuracy ς = 0.01. With that value of n and taking

the coupling γ sufficiently small, we could consider that the previous number of

visits N
(n)
ς (t) follows a Poisson distribution. Since the probability of entering

the neighborhood of the diagonal is of order 100−100, the probability to observe

16At this regard see also the discussion in the last part of Section 7.
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exactly 5 synchronization events during m iterations of the lattice is maximal for

m = 5 100100 and is of order 18%.

• If instead we consider Ex. 1 with 3 particles and the same accuracy, the probability

to observe 5 synchronizations is maximal after 50 000 iterations and it is again

of order 18%.

Comment 6.3. In the case of large n the extremely high number of iterations needed

to get synchronization or a given number of successive synchronizations could surprise.

One reason is surely due to the fact that we considered lattices which are globally coupled

and we looked at global synchronization. It would be interesting, and it will be the objects

of future investigations, to explore CML where only the nearest-neighbors of a given site

contribute to the coupling term (diffusive coupling), and also synchronization of the closest

neighbors. About the latter we will give a few preliminary numerical results in the next

section.

7. Extensions and Numerical computations

The goal of numerical computations will be to show that in the situations consid-

ered above we have effective convergence toward an extreme value law and moreover the

extremal index satisfies the behavior we predicted theoretically. We will be mostly in-

terested in synchronization, since for localization we have plenty of analytic results. But

there is one aspect where the comparison with localization is particularly useful. In order

to explain that, we first have to introduce a new observable to depict a different kind of

synchronization.

7.1. Local synchronization. Up to now synchronization was defined by asking that

all the components of the evolutionary state become close to each other with a given

accuracy ac. We could ask instead that each component synchronize only with the close

neighbors. This is done by introducing the following observable

Θ(x) := − log{max |xi − xj|, i 6= j : j = i± 1} (7.38)

(of course on the extreme points of the period of the lattice, j will take only one value).

We could generalize to more than one neighbor j = i± 2,±3, etc., but we limit ourselves

here to the case ±1. It is not immediately obvious to have a geometrical description of

the set that the orbit will visit for the first time (and therefore to give analytic results

in terms of the EI), although the “physical” interpretation will be the same, namely we

get the probability that the lattice will have for the first time and after a given number

of iterations m, all the components synchronized with the close neighbors and with a

given accuracy ac. We call this local synchronization, to distinguish from the global

synchronization described in the preceding sections. It seems intuitive from a physical
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point of view, that for m large enough and for a given accuracy ac, the probability to get

local synchronization for the first time (from now on we write it as P1(·) for the different

cases), is larger than that to get global synchronization, P1(glob. sync.) ≤ P1(loc. sync.),

and this will be confirmed by the numerical simulation as we will see in a moment.

On the other hand as soon as the global synchronization occurs, all the components

of the lattice will be aligned in a narrow strip around all of them, and this is close to

localization. Therefore we will expect that the probability to get localization is larger than

the probability of global synchronization. This is also confirmed by an easy application

of the theory. Suppose we fix m and the accuracy ac; we have also fixed n. By supposing

a pure exponential law for the asymptotic distribution of the maximum, we have

• For localization: ac ∼ ( τ
m

)
1
n , which gives P1(local.) ∼ e−τ ∼ e−ma

n
c .

• For global synchronization: ac ∼ ( τ
m

)
1

n−1 , which gives P1(glob. sync.) ∼ e−τ ∼
e−ma

n−1
c .

We see that P1(glob. sync.) ≤ P1(local.).

7.2. Blocks of synchronization. The observable (7.38) could be modified further by

introducing a new one which we are going to define. Let us first construct N blocks of

L successive integer indices: Bq := {iq, · · · , iq + L} and take these blocks disjoint and

possibly scattered along the lattice. Then we define:

Υ(x) := − log{max |xi − xj|, i 6= j : (i, j) ∈ Bq, q = 1, · · · , N}.

The distribution of the maximum of this observable will give us the probability that the

particles in the N blocks will synchronise for the first time with a given accuracy. On the

other hand we do not require any synchronization of the particles outside those blocks.

If such a limiting distribution would exist, it could be consistent with the appearance

of chimeras in chains of coupled particles, namely patterns of synchronized sets which

emerge as a consequence of the self-organization of the entire lattice, see e.g. [26]. If our

claim would be confirmed, such a self-organization would be another statistical property

of chaotic systems with several degrees of freedom.

7.3. Simulations. Let us now analyze the results of numerical procedure. The experi-

ment performed is the following: we consider the one-dimensional map T in (2.2) as

T (x) = 3x mod 1.

Once we have constructed the CML T̂ we will perturb it with additive noise:

T̂ω(x)i = T̂ (x)i + εωi mod 1
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where ε is here the noise intensity and ω with components ωi is a random variable drawn

from a uniform distribution between -0.5 and +0.5. The stationary measure for such a

map will be L1 close to that for γ = 0 which is the direct product of the uniform Lebesgue

measures on the unit circle for each component and this independently of the value of

ε. Let us notice that we are considering now a one-dimensional map on the circle. This

is not a restriction to our previous considerations and moreover it allows us to define

correctly the additive noise. Numerically we produce trajectories of 104 iterations for

γ < 2/3 and 0.02 increments. The range 3 < n < 53 is analyzed. We consider the two

observables ψ, see (4.20) and Θ, see (7.38), corresponding to global and local synchro-

nization cases respectively and in the following we will refer to them as the global and

local cases. We analyze also the role of small noise ε = 10−4 and moderate noise ε = 10−2.

We first assess the convergence of the maxima of ψ and Θ to the Gumbel law by

analyzing the tail index ξ, see Section 3. Here we chose to consider the complementary

approach to the block-maxima selection, i.e. the peak over threshold. The two approaches

are equivalent in chaotic systems as shown in [25]. The maxima of the observable are

defined as the exceedances over the 0.98 quantile of ψ and Θ distributions. If a good

convergence towards the Gumbel law is reached, then ξ ' 0. The values of ξ as a

function of γ and n are reported in Figure 5. A maximum likelihood estimator has

been used for computation. The left panels show the global case ψ while the local case

Θ is reported on the right. From top to bottom we switch on the noise. In general,

the convergence towards the Gumbel law is satisfactory although some differences exist

between global and local cases. For the global case the convergence is slower as the global

synchronization event is more rare then the local one.

Moreover, the quality of the fits is lower when n and γ are larger. The addition of

noise helps the convergence to the Gumbel law as for the systems analyzed in [25].

We now study the implications of global and local synchronization on the extremal

index θ. For the analysis presented in this paper, we adopt the estimator by Süveges (see

the book [25] for explanation and to retrieve the codes for the computation). For fixed

quantile q, Süveges’ estimator reads:

θ =

∑Nc
i (1− q)Si +N +Nc −

√(∑Nc
i (1− q)Si +N +Nc

)2

− 8Nc
∑Nc

i (1− q)Si

2
∑Nc

i (1− q)Si
,

where N is the number of recurrences above the chosen quantile, Nc is the number

of observations which form a cluster of at least two consecutive recurrences, and Si the

length of each cluster i. From the numerical point of view, this estimator is the expected
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value of the compound distribution N (n, ς, t, k) with Si being the empirical equivalent of

the quantity N
(n)
ς (x).

We begin by checking the theoretical results predicted in Remark 5.4: for the 3x mod

1 map, θn can now be estimated by taking the trace of the density on the diagonal

reasonably of order 1 in (5.35), so that in dimension 2: θ2 ∼ 1− 1
(1−γ)

1
3

and in dimension

3: θ3 ∼ 1− 1
(1−γ)2

1
9
.

The comparison between the theoretical curves and the numerical computations are

shown in Figure 6. For each case n = 2, 3 and γ < 2/3 we produce 10 simulations of the

map consisting of 104 iterations and we estimate the extremal index as a function of γ.

The numerical estimates indeed match the theoretical curves (bold magenta lines).

We now check the asymptotic formula for large n and still with the same assumption

on the trace of the density, namely θn ∼ 1− ( λ
1−γ )n−1, with λ = 1/3. For each 3 < n < 53

and γ < 2/3 we perform one simulation of the deterministic 3x mod 1 map and compare

the obtained extremal index θn with the previous asymptotic formula. Results are shown

in Figure 7. There is indeed very good agreement between our asymptotic and numerical

results. The largest divergence is obtained for γ ' 2/3 which correspond to the limit

value for the map.

We then perform a numerical analysis of the extremal index in the cases not covered

by the theory, namely for the observable Θ. The results are presented in Figure 8. The

top-left panel is repeated for convenience and show the global case results. The latter

show that global and local cases are substantially different. For the global, the synchro-

nization depends on both n and γ: in particular, it is easier to synchronize systems with

n small because the probability of finding all the particles in the same state decreases

quickly with n. On the other hand, in the local case the extremal index θn is substantially

independent of n. In fact, whether n is small or large, the particle sees only the nearest

neighbors for synchronization so that it is insensitive to the size of the lattice. The only

dependence left is in γ: in particular, for all n, we see the dependence is compatible with

the case n = 2 of the global coupling case: θ2 ∼ 1 − 1
(1−γ)

1
3
. The addition of the noise

destroys clusters as observed in [1]. Qualitatively, the structure of the extremal index

is quite robust with respect to small perturbations. To fully destroy the clusters, large

intensity of the noise are needed. The results for ε = 10−4 also demonstrate that our

results are stochastically stable because one recovers the deterministic structure of the

extremal index for low noise values.

Although the numerical estimates of the extremal index are done by computing the

expected values of the compound Poisson distribution (Süveges’ estimator), we can also
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check that the waiting times qk,ς
17 defined in (5.27), between consecutive entrances in the

neighborhood of the diagonal with accuracy ς, provides the same information. Actually

this is what we get for recurrence in balls as we discussed above, see [22] and [9]. Therefore

we give some examples of time series of ψ and Θ in Figures 9 and 10 respectively. The

noise increases from top to bottom. The histograms of the waiting times in cluster are

normalized to sum-up to 1 (empirical probability density function EPDF) and are in y-log

scale. No clustering corresponds to an exponential law (sequence of linearly decreasing

boxes in log scale), whereas the clustering case is characterized by an higher EPDF for

lower waiting times. As one can see from the deterministic cases, the higher the EPDF

for short waiting times, the lower θ. Effectively the fraction of waiting times equals to

1 which exceed the standard exponential law is exactly the extremal index θ. We stress

again that although we cannot demonstrate this identity theoretically, the numerical ev-

idence suggests that one can use directly qk,ς as defined in (5.27), for the estimation of

the extremal index θ.

8. Appendices

8.1. Appendix 1: proof of (2.11). The argument is the following. The quantity we

are interested in is bounded by
∫
In
dx|
∏

i 6=j 1{|xi−xj |<νl+ε}(x)−
∏

i 6=j 1{|xi−xj |<νl−ε}(x)|. If

at least one factor in the first product is zero, the same is true for the second product,

so we will suppose that all the factors in the first product are 1. Therefore the difference

of the two products will be maximum if at least one factor in the second product is zero.

There will be at most
∑n

k=1

(
k
n

)
such possibilities. We now proceed with a very rough

bound. Each term in
(
k
n

)
, with 1 ≤ k ≤ (n − 1) contributes with k measures of values

4kεk and with (n − k) measures of values 4n−kν4−k
l , having chosen ε < νl. When k = n

we simply write εn < εn−1νl. In conclusion, we bound the quantity we are interested in

by ενlCn, with Cn = 4n
∑n

k=1

(
k
n

)
.

8.2. Appendix 2: proof of (5.30). Take for simplicity n = 2. There is in fact depen-

dence of the two sets on x1 since they intersect I2 3 (x2, x3) and as a consequence their

measure will depend on the location of x1. It will therefore be enough to evaluate the

external integrals in x1 on a even smaller domain I ′′m ⊂ I ′m and on I ′′′m in the denominator,

in such a way they will not contain a (disconnected) neighborhood U of 0 and 1 and

its preimages T−1U . As a consequence, we can keep the full amount of the area of the

two sets S
(2)
m,γ(Tx1) and S

(2)
m (x1), which from now on we simply write as Leb(S

(2)
m,γ) and

Leb(S
(2)
m ). Clearly the difference between the integrals over I and I ′′m, I

′′′
m will converge

again to zero when m → ∞. About the other issue: write S
(n)
m,γ(Tx1) as the integral

17We now index this quantity with the size ς → 0 of the neighborhood of the diagonal.
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of obvious characteristic functions in the variables x2, . . . , xn. Then make the change of

variables: x′k = xk(1− γ) + γT (x1), in this way we get the measure of S
(n)
m (x1) multiplied

by (1− γ)1−n.
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Figure 1. Invariant density for the map 2.2 with n = 2 for γ = 0.3 (a,b,c),

γ = 0.5 (d,e,f), γ = 0.6 (g,h,i). The plots show the density in colorscale

(a,d,g) with a view from the top and (b,e,h) for a three dimensional view.

The plots (c,f,i) show the behavior of the map on the diagonal. The figure

is obtained by averaging the density over 300 realizations each consisting

of 107 iterations of the trajectory.
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Figure 2. Invariant density for the map 2.2 with n = 3 for γ = 0.3

(a,b,c,d), γ = 0.5 (e,f,g,h), γ = 0.6 (i,j,k,l). The plots show the density in

colorscale (a-c,e-g,i-k). The plots (d,h,l) show the behavior of the map on

the diagonal x = y. The figure is obtained by averaging the density over

300 realizations each consisting of 106 iterations of the trajectory.

Figure 3. Crossing of the discontinuity line, n = 2 (left) and surface, n =

3 (right), of the neighborhood of the diagonal ∆, for Property P01. C1 and

C2: triangular (left) and pyramidal (right) regions belonging respectively

to F c
d,ε,2 and F c

d,ε,3. We remove the shaded regions on the left and the

pyramidal regions C1 and C2 on the right.
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Figure 4. Crossing of the discontinuity line, n = 2 (left) and surface,

n = 3 (right), of the neighborhood of the diagonal ∆, for Property P02.

We remove the shaded regions.
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Figure 5. Shape parameter ξ of the Generalized Pareto distribution as a

function of the number of variables n and the coupling parameter γ. Left:

global case ψ. Right: local case Θ. From top to bottom: Deterministic,

additive noise with intensity ε = 10−4, additive noise with intensity ε =

10−2.
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Figure 6. Extremal index θ of the Generalized Pareto distribution as a

function of the coupling parameter γ. Thin lines indicate estimates for 10

different realization of the maps 3x-mod1. Bold magenta lines indicate the

expected theoretical values. Left: n = 2, Right: n = 3.
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Figure 7. Extremal index θ as a function of the number of variables n

and the coupling parameter γ. Top: global case ψ. Bottom: theoretical

asymptotic formula.
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Figure 8. Extremal index θ as a function of the number of variables n

and the coupling parameter γ. Left: global case ψ. Right: local case Θ.

From top to bottom: Deterministic, additive noise with intensity ε = 10−4,

additive noise with intensity ε = 10−2.
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Figure 9. Example of global case. Right: ψ time series (red) and ex-

ceedances (black). Left: empirical probability distribution (EPDF) of wait-

ing time in the clusters. From top to bottom: Deterministic, additive noise

with intensity ε = 10−4, additive noise with intensity ε = 10−2.
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Figure 10. Example of local case. Right: Θ time series (red) and ex-

ceedances (black). Left: empirical probability distribution (EPDF) of wait-

ing time in the clusters. From top to bottom: Deterministic, additive noise

with intensity ε = 10−4, additive noise with intensity ε = 10−2.
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