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1 Correlation dimension and phase space contraction via extreme value theory

2AQ1 Davide Faranda1,a) and Sandro Vaienti2,b)

3 1LSCE-IPSL, CEA Saclay l’Orme des Merisiers, CNRS UMR 8212 CEA-CNRS-UVSQ,
4 Universit�e Paris-Saclay, 91191 Gif-sur-Yvette, France
5 2Aix Marseille Univ., Universit�e de Toulon, CNRS, CPT, 13009 Marseille, France

6 (Received 1 March 2018; accepted 10 April 2018; published online xx xx xxxx)

7 We show how to obtain theoretical and numerical estimates of correlation dimension and phase
8 space contraction by using the extreme value theory. The maxima of suitable observables sampled
9 along the trajectory of a chaotic dynamical system converge asymptotically to classical extreme

10 value laws where: (i) the inverse of the scale parameter gives the correlation dimension and (ii) the
11 extremal index is associated with the rate of phase space contraction for backward iteration, which
12 in dimension 1 and 2, is closely related to the positive Lyapunov exponent and in higher
13 dimensions is related to the metric entropy. We call it the Dynamical Extremal Index. Numerical
14 estimates are straightforward to obtain as they imply just a simple fit to a univariate distribution.
15 Numerical tests range from low dimensional maps, to generalized Henon maps and climate data.
16 The estimates of the indicators are particularly robust even with relatively short time series.

Published by AIP Publishing. https://doi.org/10.1063/1.5027386

17 This study uses the link between extreme value laws and

18 dynamical systems theory to show that important dynam-

19 ical quantities as the correlation dimension, the entropy,

20 and the Lyapunov exponents can be obtained by fitting

21 observables computed along a trajectory of chaotic sys-

22 tems. All this information is contained in a newly defined

23 Dynamical Extreme Index. Besides being mathematically

24 well defined, it is almost numerically effortless to get as

25 (i) it does not require the specification of any additional

26 parameter (e.g., embedding dimension, decorrelation

27 time); (ii) it does not suffer from the so-called curse of

28 dimensionality. A numerical code for its computation is
29 provided.

30

31 I. INTRODUCTIONAQ2

32 Since its introduction by Grassberger and Procaccia,1,2

33 the correlation dimension (CD) has been used as a powerful

34 indicator for the description of the fractal structure of invari-

35 ant sets in dynamical systems. Similarly, the Lyapunov

36 exponents and the entropy3,4 provide an indication of the rel-

37 evant time scales associated with the dynamics and the pre-

38 dictability horizon of the system. Given the importance of

39 these quantities, there exists an increasing body of literature

40 on how to estimate CD, Lyapunov exponents, and entropy. It

41 has been shown that reliable estimates of CD can be obtained

42 with a relatively short time series.5 Instead, the computations

43 of Lyapunov exponents and entropy are still challenging

44 because the existing methodologies require as input addi-

45 tional parameters as the dimension of the phase space and

46 the relevant time scale of the dynamics (e.g., the decorrela-

47 tion time). Calculations are then limited to the top Lyapunov

48exponent and the reliability of estimates from the time series

49of experimental phenomena is often questioned.6 We defer

50the reader to the monographs7,8 and to the articles9,10 for

51recent advancements on the various statistical tools to inves-

52tigate the nonlinear time series.

53The extreme value theory (EVT) has been used to char-

54acterize the evolution of chaotic systems.11,12 It is possible

55to obtain dynamical properties in phase space (fractal dimen-

56sion or stability) by exploiting the limiting theorems of the

57extreme value theory. The main idea is: (i) to replace the sto-

58chastic processes used in the statistical framework with a tra-

59jectory of a chaotic dynamical system and (ii) to study the

60convergence of maxima of suitable observables to the classi-

61cal extreme value laws. The parameters of the EVT provide

62estimates of dynamical properties of the system. This con-

63nection between EVT and the dynamical properties of cha-

64otic systems is rich not only from a theoretical but also from

65a numerical perspective. Indeed, the estimates of local prop-

66erties obtained with EVT do not require the introduction of

67additional parameters and they are easy to implement numer-

68ically. They have been used to get insights into the dynami-

69cal behavior of atmospheric flows in Refs. 13–15. In Ref. 16,

70it has been shown that the numerical algorithm based on

71EVT provide reliable estimates of the dimension of high

72dimensional systems up to phase spaces with thousands of

73dimensions. It is therefore desirable to estimate other key

74dynamical quantities in the EVT framework.

75The purpose of this communication is to show that the

76correlation dimension and the EVT are intimately related:

77the CD arises by studying the distribution of the maxima of a

78new suitable observable evaluated along the orbit of a

79chaotic system. Moreover, an exponent of the limit law, the

80extremal index, is related, for hyperbolic attractors, to

81the positive Lyapunov exponent in dimension two and to the

82metric entropy in higher dimensions. The idea of the rela-

83tionship between EVT and CD comes from a previous
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84 work17 where we used the extreme value theory to detect

85 and quantify the onset of synchronization in coupled map lat-

86 tices. The relationship between the extremal index and the

87 Lyapunov exponent and the entropy is new and is particu-

88 larly striking for maps with piecewise constant jacobian. In

89 the general case, we derive a formula whose validity is con-

90 firmed by numerical experiments. We also explain the rela-

91 tion between our extremal index, the local dimensions, and

92 the phase space contraction. In the rest of the paper, we will

93 name it as the DEI, the dynamical extremal index. We want

94 to point out that our DEI is a well defined quantity that can

95 be used as a new indicator for the sensitivity associated with

96 local hyperbolicity. We will present the theoretical results in

97 Sec. II:AQ3 some of those results can be obtained by generalizing

98 the techniques introduced in Ref. 17; we will also address

99 the need to develop a more appropriate theory of EVT for

100 diffeomorphisms in higher dimensions. We will then provide

101 several examples of classical conceptual low-dimensional

102 dynamical systems. We will discuss the implications of our

103 results on higher dimensional systems and the possibility to

104 apply them to more a general time series. As an example, we

105 will compute the indicators on climate data and explain how

106 they provide relevant physical information on the atmo-
107 spheric circulation over the North Atlantic.

108 II. THEORETICAL RESULTS

109 A. A brief presentation of the extreme value theory and
110 a new observable

111 Let (M, l, T) be dynamical systems given by a map T
112 acting on the metric compact space M with distance d(�,�)
113 and preserving the Borel measure l. Usually, M will be a

114 compact subset of some Rn and d a distance equivalent to

115 the standard one. Let us take the direct product ðM �M;
116 l� l; T � TÞ; and denote with ðx; yÞ 2 M �M, a couple of

117 point in the Cartesian product (M�M). We then introduce

118 the observable wðx; yÞ ¼ �log dðx; yÞ; and consider the pro-

119 cess fw � ðTj � TjÞgj�0, and the maximum of the sequence

120 Mnðx;yÞ¼maxfwðx;yÞ;wðTx;TyÞ;…;wðTn�1x;Tn�1yÞg and

121 finally its distribution PðMn� unÞ, where P¼l�l is the

122 underlying probability and un is a suitable scaling function

123 tending to infinity and which we are going to define.

124 Suppose that for a given positive number s we can find a

125 sequence of numbers un such that nPðw� unÞ! s; n!1:
126 We say, that the process fw�ðTj�TjÞgj�0 satisfies an

127 extreme value law of Gumbel’s type if there is a number

128 h2(0, 1], the extremal index, such that PðMn� unÞ! e�hs;
129 n!1: We now introduce the diagonal neighborhood Sn in

130 the product space: Sn¼fðx;yÞ;dðx;yÞ� e�ung. By substitut-
131 ing the expression of w in Pðw� unÞ, we haveAQ4

Pðw � unÞ ¼ Pððx; yÞ 2 SnÞ ¼
ð

M

lðBðx; e�unÞÞdlðxÞ;

(2.1)

132 where B(x, a) denotes the ball of radius a centered on x.
133 (Actually, we got the equality of the right hand side in the

134 limit of large n when the two small corners of Sn become
135 negligible.) The quantity

Ð
MlðBðx; rÞÞdlðxÞ scales like rD2

136and the exponent D2 is called the correlation dimension and
137it characterizes the fractal structure of the support of l; a
138more formal, from the mathematical point of view, definition
139of this fact is given in Ref. 18, Sec. 17, and references
140therein. (A precise definition consists in taking the limsup
141and liminf of the ratio of the logarithm with log ð1=rÞ.) AQ5By
142injecting successively into (2.1), we have therefore that for
143large n

un �
�log s

D2

þ log n

D2

:¼ z

an
þ bn; (2.2)

144where s ¼ e�z; an ¼ D2 and bn ¼ log n
D2

: For numerical pur-

145poses, distribution functions like PðMn � zÞ are modelled,
146for n sufficiently large, by the so-called generalized extreme
147value (GEV) distribution which is a function depending upon
148three parameters n 2 R; j 2 R; r > 0 and such that:

149FGEVðz; j; r; nÞ ¼ exp �½1þ nðz�j
r Þ�

�1=n
n o

.

150The parameter n is called the tail index; when its value
151is 0, the GEV corresponds to the Gumbel type. The parame-
152ter j is called the location parameter and r is the scale
153parameter: for n large, the scaling constant an is close to r�1

154and bn is close to j. Therefore, if we could fit a limit law of
155Gumbel’s type with suitable normalizing parameters an and
156bn, we immediately get the correlation dimension. Such a
157technique was previously used with a different observable,
158and it allowed to get the so-called information dimension
159D1(x), another fractal dimension which provides the scaling
160of the measure of a ball around a given point x, see Ref. 19
161and references therein. Although the information dimension
162depends on the point x, its value is the same for almost all
163the choices of x with respect to the invariant measure and
164such an averaged valued, simply D1, is larger or equal to D2,
165see Ref. 20 for an account on the different fractal dimen-
166sions. In particular, if we denote with dH the Hausdorff
167dimension, we have D2�D1� dH.

168B. The spectral approach with the new observable for
169conformal repellers

170Before showing our numerical simulations for the com-
171putation of the CD, let us argue how we get a Gumbel’s type
172asymptotic distribution with an extremal index h of dynami-
173cal meaning. First, we consider one-dimensional dynamical
174systems generated by uniformly expanding maps with an
175invariant set which could be a Cantor set and equipped with
176mixing Gibbs measures. These systems are better known as
177conformal repellers,—see for instance21 for a recent contri-
178bution—whose measures are characterized by a potential u
179of type uðxÞ ¼ �b log jT0ðxÞj, where T0 denotes the deriva-
180tive of T and b 2 R. If we denote them as lb, they are given
181by hb�b, where the density hb and the conformal measure �b

182are, respectively, the eigenfunctions of the transfer operator
183(Perron-Fr€obenius) and of its dual, both with eigenvalue
184kb ¼ eQðbÞ, being Q(b) the topological pressure. We remind
185that the transfer operator PT for the map T is defined, for an
186observable f in some suitable Banach space B—for instance
187the space of Lipschitz continuous functions—by the duality
188relation:

Ð
PTfd�b ¼ kb

Ð
fd�b. We defer to the monograph22
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189 for an introduction to thermodynamic formalism. The con-

190 formal measure verifies the property �bðTAÞ ¼ kb
Ð

Ae�ud�b;
191 where T is one-to-one over the measurable set A. A powerful

192 method to investigate the distribution of our process

193 fw � ðTj � TjÞgj�0 consists in perturbing the transfer opera-

194 tor P of the direct product T� T. The key observation is that

195 by repeatedly using the duality relation, we can write

196 PðMn � unÞ ¼ k�2n
b

Ð Ð
~Pn

nðhbðxÞhbðyÞÞd�bðxÞd�bðyÞ, where

197 the perturbed operator ~Pn is defined by acting on observables

198 f 2 B, as ~Pnðf Þ ¼ Pðf 1Sc
n
Þ; and Sn ¼ fðx; yÞ; dðx; yÞ

199 � e�ung. When n tends to infinity, the characteristic function

200 of the complement of Sn, 1Sc
n
, goes to the identity and the

201 operators P and ~Pn converge to each other in B. If the

202 unperturbed operator P has a spectral gap, it allows expo-

203 nential mixing for the observables in B. This compensate the

204 lack of independence of the process fw � ðTj � TjÞgj�0: The

205 same is true for the operator ~Pn and the maximal, isolated,

206 eigenvalue of P; k2
b; is close to that of ~Pn; ~k

ð2Þ
b;n. More pre-

207 cisely: ~k
ð2Þ
b;n � k2

b � ð1� k2
bq0ÞPðSnÞ, where now P ¼ lb

208 �lb. We will define the factor q0 in a moment. The operator

209 ~Pn now decomposes as the sum of a projection along the one

210 dimensional eigenspace associated with the eigenvalue ~k
ð2Þ
b;n

211 and an operator with a spectral radius exponentially decreas-

212 ing to zero and which can be neglected in the limit of large

213 n. This allows us to write PðMn � unÞ � k�2n
b

~k
ð2Þn
b;n

Ð Ð
hbðxÞ

214 hbðyÞÞd�b;nðxÞd�b;nðyÞ, where �b,n is the conformal measure

215 for the perturbed operator and the double integral on

216 the right hand side converges to 1 for n ! 1. Finally, we

217 get by approximating ~k
ð2Þ
b;n as above: PðMn � unÞ

218
� 1� ð1�k2

bq0ÞPðSnÞ
k2

b

� �n

� exp � ð1�k2
bq0ÞPðSnÞ
k2

b
n

� �
. We now

219 remind that we are under the assumption that nPðw � unÞ
220 ¼ nPðSnÞ ! s; n!1. This lead to the Gumbel law e–hs

221 provided that the dynamical extremal index h is defined as

h ¼
1� k�2

b q0

k2
b

: (2.3)

222 The term q0 is obtained by the previous perturbation theory

223 under the assumption that the diagonal in the product space

224 is left invariant by the direct product of the two maps. In par-

225 ticular, we have

q0 ¼ lim
n!1

PðSn \ �T
�1

SnÞ
PðSnÞ

; (2.4)

226 provided that the limit exists. The technique just described

227 was first proposed by Keller23 as an alternative way to get

228 EVT for systems with exponential mixing and it is based on

229 a perturbative result by Keller and Liverani.24 We defer to

230 Ref. 23 and to our paper17 for a detailed presentation of that

231 theory. It can be applied to conformal mixing repellers and it

232 provides the preceding estimates, namely the asymptotic

233 scaling for the maximal eigenvalue. We would like to point

234out that with our choice for the observable w, the perturba-

235tive approach just sketched gives the Gumbel’s law in a very
236direct and natural manner.
237The computation of q0 proceeds now as in Ref. 17 with

238a substantial difference: the nature of the conformal measure

239does not imply necessarily that the ratio
�bðBðTx;rÞÞ
�bðBðx;rÞÞ is constant,

240which happened when the conformal measure was Lebesgue.

241This difficulty could be partially overcome by supposing that

242the potential is constant, otherwise we could bound q0 from

243above and below with (close) approximations of the poten-

244tial. By assuming that the latter is constant and equal to �u
245and also that the density hb does not vary too much, we get

246that q0 is of order e�u and therefore

h �
1� k�2

b e�u

k2
b

: (2.5)

247It is worth mentioning that whenever the conformal measure

248is Lebesgue (b¼ 1), the above computation can be made rig-
249orous as in Proposition (5.3) in Ref. 17 and it gives

h ¼ 1�

ð
M

h2ðxÞ
jT0ðxÞj dx

ð
M

h2ðxÞdx
; (2.6)

250where h is the density of the invariant measure: we defer to

251our paper17 for the assumptions on the system which permit

252to get such a result. In particular, those systems contain con-

253formal repellers with finitely many branches and absolutely

254continuous conformal measures. Notice that by introducing

255the invariant measure l¼ hdm, we could identically write

h ¼ 1�

ð
M

hðxÞe�log jT0ðxÞjdlðxÞð
M

hðxÞdlðxÞ
: (2.7)

256If the derivative does not change too much, we get

257h � 1� e�Kl , where Kl is the positive Lyapunov exponent

258of the measure l. Alternatively, if the density h could be

259considered constant, we can bound (2.7) by Jensen’s inequal-
260ity as

h � 1�
ð

M

1

jT0ðxÞjdlðxÞ � 1� e
�
Ð

M
log jT0ðxÞjdlðxÞ ¼ 1� e�Kl :

261In both cases, the DEI h is related to the positive Lyapunov

262exponent: this analogy will be pursued in Sec. II C. AQ6

263C. Attractors and high dimensional systems

264For invertible maps generating attractors endowed with

265the SRB measure, the computation of the dynamical

266extremal index is less straightforward; we should stress that

267a spectral theory of extreme value for (invertible) uniformly

268hyperbolic maps is still missing. Suppose we take an hyper-

269bolic diffeomorphisms T preserving the ergodic SRB mea-
270sure L. Then, the quantity q0 in (2.4) becomes
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q0 ¼ lim
n!1

ð
dLðxÞ

ð
1Sn
ðx; T�1yÞ1Sn

ðTx; yÞdLðyÞð
dLðxÞ

ð
1Sn
ðx; yÞdLðyÞ

: (2.8)

271 When we iterate backward the points y 2 BðTx; e�unÞ, we
272 should keep only those points whose preimage is at a dis-
273 tance at most e�un from x. Those preimages form a set Q(x)
274 which is obtained by squeezing the ball BðTx; e�unÞ along the
275 unstable manifolds. Let us suppose that the tangent expand-
276 ing subspace Ru(Tx) at x has dimension d. Then the measure
277 of Q(x), and therefore, by the forward invariance of the
278 measure, of its image in BðTx; e�unÞ will be of order
279 jdetðDTðxÞjuÞj

�1 LðBðTx; e�unÞÞ, where DTðxÞju is the deriv-
280 ative of T restricted to Ru(x). We remember in fact that the
281 conditional SRB measure on the unstable manifolds is
282 smooth. This immediately gives q0 of order

q0 �

ð
dLðxÞjdetðDTðxÞjuÞj

�1 LðBðTðxÞ; e�unÞÞð
dLðxÞ LðBðx; e�unÞÞ

: (2.9)

283 We see that q0 contains information about the dimension
284 through the scaling of the denominator; we are now inter-
285 ested in the contribution of the other term in the numerator.
286 In this regard, we first remind that, for SRB measures, we
287 can use the Pesin’s formula25

ð
dLðxÞjdetðDTðxÞjuÞj ¼

Xd

j¼1

Kþj ¼ hL;

288 where Kþj is the positive Lyapunov exponents with multi-
289 plicity one, and hL is the metricentropy of the SRB measure.
290 We now proceed under two assumptions as we did at the end
291 of Sec. II B.AQ7 Let us first assume that the derivative along the
292 unstable subspaces does not vary too much. Then, we could
293 estimate the DEI as

h � 1� e�hL : (2.10)

294 For d¼ 1, we can replace the entropy with the (unique) posi-
295 tive Lyapunov exponent KL; in the following, we will simply
296 write it as Kþ.
297 The other assumption exploits the fact that for these
298 system, and for L-almost all points x we have, by Young’s

299 theorem,26 that limr!0
logLðBðx;rÞÞ

log r ¼ D1, where D1 is the

300 information dimension. Hence, we could guess that

301 LðBðx; e�unÞÞ � e�unD1 and therefore forget about the depen-
302 dence on the variable x. This is generally false since the mul-
303 tiplicative factor in the previous scaling could depend on x.
304 Indeed, when we integrate LðBðx; e�unÞÞ, we get D2 which
305 could be different from D1. If we suppose that the depen-
306 dence on x of the prefactors is negligible, which means that
307 we are considering a homogenous fractal invariant set with
308 D1 � D2, then we have for the DEI

h� 1�
ð

dLjdetðDTðxÞjuÞj
�1� 1� e�

Ð
dLðxÞjdetðDTðxÞjuÞj

¼ 1� e�hL ; ð2:11Þ

309where the derivative is not supposed to be constant and

310where we have used again the Jensen’s inequality to estab-
311lish the upper bound.
312Those two approximations are very crude; we are in fact

313either neglecting the contributions of the prefactors in the

314local scaling of the balls in (2.9), or not taking into account

315the geometric factors when the ball BðTx; e�unÞ is squeezed

316at a distance e�un from x. Moreover, the variation of the

317derivative, especially sensible in the non-uniformly hyper-

318bolic setting, could give large differences in the determina-

319tion of the DEI, as we experience for instance for the H�enon

320map, see below. The preceding relation is pretty well satis-

321fied for maps with one-dimensional unstable subspace and

322(piecewise) constant jacobian, like the Baker transformation,

323the Lozi map, and the solenoid. For the algebraic automor-

324phism of the torus (cat’s map), a simple argument allows us

325to improve the previous rate just by taking into account the

326geometric factors. Surprisingly, relation (2.11) is pretty well

327satisfied in the example below of the generalized H�enon

328maps, where the unstable subspace has dimension larger

329than one, i.e., we have more than one positive Lyapunov

330exponent. In conclusion, our index h traces in a satisfactory

331way the entropy. The eventual deviations are due to the vari-

332ation of the derivative and the local scaling of balls in (2.9).

333Although these effects are difficult to compute analytically,

334the DEI h is relatively easy to compute numerically and it

335furnishes a new indicator for the local instability in chaotic
336systems.

337III. NUMERICAL COMPUTATIONS

338The numerical computations presented in the remaining

339of this work are performed by using the numerical algo-

340rithms and codes detailed in the supplementary material. The

341stability of the results is checked against different l,n,m,s. In

342particular, we perform two sets of simulations. The first set

343of accurate simulations consist of l¼ 100 trajectories, with

344n¼ 106 iterations, m¼ 103 blocks of s¼ 103 length each.

345The second set of l¼ 100 simulations consists of short series

346of n¼ 104 iterations, with s¼m¼ 102. This second set is

347useful to check whether the technique is reliable also for

348short time series. Except where specified, we use ~s ¼ 0:99

349for the following computations. However, results are stable

350when considering different quantiles ranging from 0:97
351< ~s < 0:999.

352A. Low dimensional maps

353We begin the numerical computations with several

354examples on low dimensional maps. A summary of the

355results for all maps analysed is reported in Table I. For a few

356maps, we report the model equations in the supplementary
357material to streamline the exposition.

358• Let us begin with the Bernoulli Shift map T(x) ¼ 3x-mod

3591. For this system, D2 ¼ 1 and h ¼ 1 –1/3 ¼ 2/3. The

360numerical estimates (Table I) are coherent with the theo-
361retical values for both accurate and short simulations.
362• We now consider the Gauss map TðxÞ ¼ 1

x-mod1 defined
363on the unit interval. Although, strictly speaking, this map
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364 does not fit the assumptions in Ref. 17 since in the latter
365 paper, we consider maps with finitely many branches, we
366 still try formula (2.6). For the Gauss map, the density is
367 explicit and reads hðxÞ ¼ 1

log 2
1

1þx. The integral in (2.6) can
368 be easily computed and gives h ¼ 4 log ð2Þ � 2 � 0:77,
369 whereas D2 is expected to be 1. The numerical estimates
370 are coherent with the theoretical values (Table I).
371 • Returning to a map with constant slope 3, we now look at
372 the transformation generating the classical ternary Cantor
373 set. In order to compute numerically the GEV function,
374 one should access the invariant Cantor set, which is of
375 zero Lebesgue measure. We need therefore to use the
376 backward iterates of the map (otherwise almost all the for-
377 ward orbits will fall into the holes), and the measures
378 allowing us to compute the time averages are the so-called
379 balanced measures, given suitable weights to the prei-
380 mages of the map: see our article, Ref. 27 Sec. 3.2.2 for a
381 description of such measures. For the ternary Cantor set
382 and choosing equal weights 1/2 for the two preimages, it
383 is easy to check that such a balanced measure coincides
384 with the Gibbs measure with b ¼ log 2= log 3 which is the
385 Hausdorff dimension of the invariant set. The measure ldH

386 is called uniform, see Ref. 20, Sec. 3. The potential u will
387 be equal to �log 2 and k ¼ 1, since by Bowen’s formula
388 Q(dH) ¼ 0. Therefore, for the ternary Cantor set, we get a
389 DEI equal to 0.5 which is perfectly confirmed by the
390 numerical simulations (Table I).
391 • For the Lozi map: xnþ1 ¼ ajxnj þ yn þ 1; ynþ1 ¼ bxn;
392 a ¼ 1:7; b ¼ 0:5, Kþ is of order 0, 47,28 which gives, with
393 our approximation, a DEI of order h ¼ 0.37. Previous
394 numerical computations for D2 gave D2 � 1.38.29 Our
395 computations (Table I) are coherent with the theoretical
396 values.
397 • For the H�enon map xnþ1 ¼ ax2

n þ yn þ 1; ynþ1 ¼ bxn;
398 a ¼ 1:4; b ¼ 0:3, Kþ is of order 0, 42,28 which gives, with
399 our approximation, a DEI of order h ¼ 0.34. Previous
400 numerical computations for D2 gave D2 � 1.22.29 The
401 GEV computations give D2 ¼ 1.24 6 0.11 but h ¼ 0.43
402 6 0.01 for n ¼ 106 (See Table I for the results with
403 n¼ 104 iterations). The discrepancy of the DEI estimate
404 does not get any better with the increase of ~s or n. As said
405 before, we do not expect h to coincide with the estimate
406 0.34 due to the variation of the derivative and the non-
407 uniform hyperbolicity of the map.

408• Let us consider the cat’s map with the associated matrix

409

1 1

1 2

� �
: The stable and unstable manifolds for such a

410map are orthogonal, so we could suppose that the pre-
411image of the ball BðTx; e�unÞ will intersect the ball
412Bðx; e�unÞ in a rectangle R(x) centered at x and with the

413shortest side of length ðkþÞ�1e�un ; where kþ ¼ 3þ
ffiffi
5
p

2
is the

414eigenvalue larger than 1 corresponding to the unstable
415direction. An elementary calculation shows immediately
416that q0 � LðRðxÞÞ=LðBðx; e�unÞ is approximately given by

417
4
p ðkþÞ

�1
which gives an extremal index as 0.51. Previous

418numerical computations for D2 gave D2 � 1.987.29 The
419numerical computation with the GEV fitting gives
420D2¼ 2.00 6 0.06 and h ¼ 0.552 6 0.005 for n¼ 106.
421In order to investigate the discrepancy with our theoretical
422estimate, we raised the quantile from ~s ¼ 0:99 to
423~s ¼ 0:999, i.e., we select more extreme clusters. The esti-
424mates for this case are h¼ 0.54 6 0.02, more compatible
425with the theoretical one. Finally, if we consider longer tra-
426jectories (n¼ 107 iterates) with an even higher quantile
427(~s ¼ 0:9999), we get h¼ 0.53 6 0.06, which is even closer
428to the theoretical guess.
429• We now consider the baker’s map (see supplementary
430material); it depends on three parameters a, ca, and cb. The
431positive Lyapunov exponent is given by Ref. 20, Eq.
432(5.14)

Kþ ¼ a log
1

a
þ ð1� aÞ log

1

1� a
:

433With the value a¼ 1/3, ca¼ 1/5, cb¼ 1/4, we get Kþ � 0,
43464 which gives, with our approximation, an extremal
435index of order 0, 47. In the paper, Ref. 20 Eq. (5.18), we
436gave an implicit formula expressing D2 as a function of a
437and with respect to the SRB measure. For a¼ 1/3, this
438estimate reads D2 ’ 1.41. The GEV estimates are given in
439Table I and are consistent with the theory.
440• We next consider an attractor embedded in R3, the so-
441called solenoid, see supplementary material; it depends
442upon the parameter a 2 (0, 0.5). The attractor is foliated
443by one-dimensional unstable manifolds, while each merid-
444ional disk is a two-dimensional stable manifold each of
445which intersecting the attractor over a Cantor set. The
446Lyapunov exponents are

TABLE I. Estimates of correlation dimension D2 and dynamical extremal index (DEI) h obtained with l¼ 100 trajectories, consisting of n¼ 106 iterations or n¼ 104

iterations. The maxima of w(x, y) are extracted in the block of s¼ 103 and s¼ 102 length, for a total of m¼ 103 or m¼ 102 blocks. The quantile for the estimate of

the DEI is ~s ¼ 0:99. For the Arnold Cat’s map, the convergence to theoretical value is lower and the estimates are provided only for ~s ¼ 0:99999 and n¼ 107.

Map D2 (classical) D2 (n¼ 106) D2 (n¼ 104) h (from Lyapunov) h (n¼ 106) h (n¼ 104)

Bernoulli’s shifts 1 1.00 6 0.02 1.01 6 0.14 0.667 0.668 6 0.004 0.69 6 0.04

Gauss map 1 1.00 6 0.03 0.96 6 0.16 0.773 0.773 6 0.005 0.78 6 0.04

Cantor IFS 0.667 0.64 6 0.01 0.59 6 0.13 0.5 0.502 6 0.005 0.50 6 0.05

Baker map 1.41 1.46 6 0.02 1.42 6 0.25 0.47 0.49 6 0.02 0.50 6 0.04

Lozi map 1.38 1.39 6 0.11 1.29 6 0.25 0.37 0.37 6 0.01 0.37 6 0.05

Henon map 1.22 1.24 6 0.03 1.13 6 0.25 0.34 0.43 6 0.01 0.43 6 0.06

Solenoid a ¼ 1/3 1.6309 1.64 6 0.04 1.55 6 0.17 0.5 0.51 6 0.01 0.59 6 0.03

Solenoid a ¼ 1/4 1.5 1.52 6 0.03 1.57 6 0.20 0.5 0.51 6 0.01 0.53 6 0.03

Arnold Cat’s map 1.987 2.00 6 0.06 … 0.51 0.53 6 0.06 …
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K� ¼ log a < 0; Kþ ¼ log 2;

447 while the Hausdorff dimension dH is given by the formula30

dH ¼ 1þ log 2

�log a
:

448 The numerical computations for the solenoid provide a fur-

449 ther test of the validity of the numerical algorithm and are

450 provided in Table I.

451 B. High dimensional generalized H�enon maps

452 We now analyze the generalized H�enon maps defined in

453 Ref. 31 and further analyzed in Ref. 32. They are defined as

xnþ1ð1Þ¼axnðd�1Þ2�bxnðdÞ xnþ1ðiÞ¼ xnði�1Þ: (3.1)

454 When the parameter a¼ 1.76, the number of positive

455 Lyapunov exponents is d – 1; we could therefore test our

456 relation (2.11) by computing the entropy hL as the sum of

457 positive Lyapunov exponents (see Table II in Ref. 32) for a

458 given d. We also perform the computation of the dimension

459 D2 and compare it to the Kaplan-Yorke dimension DKY given

460 in Ref. 32; we used such a dimension because we did not

461 find an explicit computation of D2 in the literature. The good

462 agreement between our numerical results (Fig. 1) confirm

463 the validity of Eq. (2.10) with the caveat that an exact corre-

464 spondence cannot be derived for the geometric factor that

465 stretch balls in phase space in different dimensions: the ori-

466 gin of this discrepancy has been discussed in detail at the

467 end of Sec. II C.

468 C. Application to atmospheric data

469 We now consider an application to atmospheric data.

470 The purpose of this application is to show that the applicabil-

471 ity of the technique on real data provides results that have a

472coherent interpretation in terms of the underlying physics of
473the systems. In order to provide evidence of the robustness
474of our results, we will study several trajectories of a climate
475models which incorporate observations of the past 110 years,
476and compute h and D2 for several sub-periods showing that
477the results are numerically stable. We study the atmospheric
478circulation over the North Atlantic and focus on a single field
479that represents its major features: the sea-level pressure
480(SLP).33,34 Indeed, it has been shown that SLP fields can be
481used to study teleconnection patterns as well as storm track
482activity and atmospheric blocking.35,36 The trajectories of
483our dynamical systems are successions of SLP fields
484extracted with daily frequency from the ERA-20 CM reanal-
485ysis project over the period 1900–2010.37 The ERA-20 CM
486consists of 10 members ensemble of a (climate) model
487whose task is to reconstruct at best the 1900–2010 atmo-
488spheric dynamics by constraining the model to include the
489information from available surface observations. Each mem-
490ber of the ERA 20 CM is therefore a slightly perturbed
491reconstruction of the atmospheric dynamics in the past
492110 years. The choice of the North Atlantic domain (80	 W
493�Long.� 50	 E, 22.5	 N�Lat.� 70	 N) is motivated by
494the better observational coverage over the region in the first
495part of the analysis period compared to other regions of the
496globe.38 Before presenting the results for D2 and h, we would
497like to stress that (i) our analysis will only be representative
498of the North-Atlantic domain and D2 will be a proxy of the
499active degrees of freedom of the atmospheric circulation in
500this area. Therefore, our results cannot be used to estimate
501the dimension of the full atmospheric climate attractor. (ii)
502Previous results15,39,40 have shown that the estimates
503obtained for the daily dimensions are robust with respect to
504the changes in the datasets, resolution of the climate models,
505and are linearly insensitive to the size of the domain. This
506gives us confidence on the applicability of the numerical
507algorithm described in this paper for climate data since it is
508largely based on those used in Refs. 15, 39, and 40.
509The results for D2 and h on the SLP fields of the ERA-
51020 CM ensemble are presented in Fig. 2. For each estimate,
511we fix the reference trajectory x as the first member (M1) of
512the ERA-20 CM ensemble because this is always considered
513as the reference simulation, while y is alternatively set as the
514Mith member with i¼ 2, 3,…,10. The dependence of the
515results on the reference member are tested in the supplemen-
516tary material Fig. S1. To test the robustness of the results, we
517provide four estimates of D2 and h: (i) using the full data in
518the period 1900–2010, (ii) using 1900–1955 data, (iii) using
5191900–1928 data, and (iv) considering only the first 14 years
520(1900–1914) of data. For each member, the results are
521reported in Fig. 2. The ensemble averages of D2 and h for
522the different periods are instead reported in Table II.
523Estimates are consistent for different periods and the value
524of D2 ’ 9 found on average, is slightly lower than the esti-
525mates of dH found in Ref. 15 (we remind that D2< dH). The
526value of D2 roughly corresponds to the number of spatial
527degrees of freedom active in a North-Atlantic SLP field as
528explained in Ref. 15. Indeed, the domain used for this analy-
529sis can host about 9 large spatial structures reparted between
5303 and 4 extratropical cyclones at time and the same number

FIG. 1. Estimates of the dynamical extremal index h and correlation dimen-

sion D2 (inset) obtained for the Generalized Henon maps [Eq. (3.1)] in dif-

ferent dimensions d. The values represent the estimates obtained taking 30

couples of trajectories, iterated for n¼ 106 iterations. Each couple is dis-

played using a single marker, but the uncertainty is so small that the differ-

ence between couples is hardly recognizable. The quantile used for the

estimation is ~s ¼ 0:98. The results are compared to those obtained using the

Kaplan-Yorke dimension DKY and the entropy hL. This map has d – 1 posi-

tive Lyapunov exponents.
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531 of anticyclones (see the textbook of Holton,41 for estimates
532 of the typical size of these objects). h is, in fact, the inverse
533 of the average time the two trajectories x and y cluster
534 together. The value of the DEI h¼ 0.5 corresponds therefore
535 to a contraction of the phase space associated with a time-
536 scale between 2 and 3 days. This is the typical decay rate of
537 baroclinic eddies associated with the low pressure systems
538 observed in SLP fields (see again the textbook by Holton41

539 for the decay rates). We finally notice that our formula (2.11)
540 gives for the entropy the value log 2. In Fig. S2, we show a
541 moving window computation of D2 and h. No clear trend
542 emerges that could be attributed to anthropogenic forcing.
543 This result is consistent with those found for dH in Ref. 39.
544 We remark however some differences in the variability of

545the indicators among the members. In particular, M9 and
546M10 have a minimum of h around 1960. This could be due
547to the different boundary conditions applied to the members
548and detailed in Ref. 37.

549D. Additive noise

550In our previous papers,17,42,43 we have analyzed the
551effect of additive noise on the parameters of the extreme
552value laws. It consists in defining a family of maps Tn¼T
553þ en with n a random variable sampled from some distribu-
554tion G (we will take here the uniform distribution on
555some small ball of radius e around 0). The iteration of the
556single map T will be now replaced by the concatenation
557Tnn

� Tnn�1
� � � � Tn1

and the evaluation of an observable
558computed along this orbit will be given by the probability
559measure P which is the product of G

N with the so-called
560stationary measure lS, verifying, for any real measurable
561bounded function f:

Ð
fdls ¼

Ð
f � Tndls: see Ref. 19

562Chap. 7, for a general introduction to the matter. In the afore-
563mentioned papers, Refs. 42 and 43, we have shown analyti-
564cally that for dynamical systems perturbed additively, the
565extremal index h¼ 1, no matter what the intensity of the
566noise is. The proof was supported by numerical experiments,
567using also different noise types. The extremal index is a
568parameter that quantifies the amount of clustering, the sticki-
569ness of the trajectory in phase space. In our setting, cluster-
570ing happens in the presence of invariant sets, which are
571periodic points in Ref. 42. By looking at formula (2.4), we
572see that we estimate the proportion of the neighborhood of
573the invariant set returning to itself; as we argued above, that
574estimate gives information on the rate of backward volume
575contraction in the unstable direction. Since the noise gener-
576ally destructs these invariants sets, we expect the extremal
577index be equal to 1 or quickly approaching 1 when the noise
578increases. This is confirmed by the numerical experiments
579reported in Fig. 3 where the value of h is plotted against the
580intensity of the noise e for three maps: 3x mod 1 map, the
581Baker map, and the Lozi map. In all cases, indeed h! 1 for
582large enough noise. However, with respect to the observables
583discussed in Ref. 42, we find some remarkable differences
584on the intensity of the noise needed to observe changes of
585the extremal index from the deterministic values: whereas in
586Ref. 42, we observed significant deviation from the deter-
587ministic behavior for very small noise intensities (e� 10�4),
588here we need e � 10�2, i.e., only large noise amplitudes per-
589turb the estimates of D2 and h. This difference can be easily
590explained: in Ref. 42, the extremal index was used to explore
591the local stability at periodic fixed points, where the dynam-
592ics is deeply affected even by a small noise. Here, instead,
593the extremal index tracks a global property that it is stable
594with respect to small stochastic perturbations. We underline
595that, for the Lozi map, we cannot obtain estimates of h for
596noise larger than 0.1 because the dynamics fall out the basin
597of attraction.

598IV. DISCUSSION AND CONCLUSIONS

599Using the extreme value theory, we have introduced a
600new and efficient way to compute the correlation dimension

FIG. 2. Estimates of correlation dimension D2 (a) and extremal index h (b)

obtained for daily sea-level pressure maps for four different periods in the

ERA-20 CM reanalysis. The values represent the estimates obtained taking

as reference trajectory x the member M1 and as y, the remaining 9 ensemble

members.

TABLE II. Estimates of correlation dimension D2 and extremal index h
obtained for daily sea-level pressure maps for four different periods of the

ERA-20 CM reanalysis. The values represent average over the 9 ensemble

members and uncertainty is expressed as the standard deviation of the

ensemble mean.

Period D2 h

1900-2010 8.9 6 0.8 0.48 6 0.05

1900-1955 8.8 6 0.7 0.50 6 0.03

1900-1928 9.4 6 0.8 0.50 6 0.02

1900-1914 9.0 6 1.0 0.50 6 0.03
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601 D2. Moreover, for higher dimensional maps, we introduced
602 the quantity q0, related to the expectation of the inverse of
603 the determinant of the derivative along the expanding sub-
604 space. Therefore, the extremal index h¼ 1 – q0 is a measure
605 of the average rate of phase space contraction for backward
606 iteration. Although this quantity slightly differs from the
607 entropy or from the positive Lyapunov exponent when the
608 expanding subspace has dimension one, it provides an
609 important piece of information on the dynamics of the sys-
610 tem. In fact it can be linked to the global predictability and
611 therefore considered as a new indicator of the local instabil-
612 ity in chaotic systems. We would like also to emphasize that
613 both h and D2 can be computed simultaneously just by look-
614 ing at the GEV function and this makes our method quite
615 rapid and economically efficient from a numerical point of
616 view. We have shown that even for a short time series of
617 only of 104 iterations, the estimates are robust and consistent
618 with the theoretical expectations. We have also presented a
619 first application of these indicators to climate data proving
620 that the indicators are useful to infer the spatial number of
621 degrees of freedom and the typical time scales of the atmo-
622 spheric dynamics on the North Atlantic region. Finally, we
623 have observed their sensitivity to the different boundary con-
624 ditions imposed for the climate simulations analyzed. This
625 implies that the indicators could be useful in characterizing
626 and comparing also different climate datasets as those ana-
627 lyzed in international campaigns.
628 Our interpretation of h together with that on the correla-
629 tion dimension D2 could be useful also to analyze the times
630 series arising from the evolution of chaotic systems. Indeed,
631 these quantities are particularly straightforward to obtain
632 from numerical computations. Moreover, the results obtained
633 can also be used to detect the embedding dimension, namely
634 by replacing the sample of data with delay vectors of vari-
635 able lengths; we stress that computing the GEV with those
636 delay vectors will allow us to get exactly the embedding
637 dimension. We mean to develop further this approach in a
638 future paper.
639 Finally, the computation of the DEI could be helpful to
640 distinguish purely stochastic sequences for which the
641 extremal index should approach 1, see Sec. III D, from
642 dynamical systems with an underlying chaotic behavior even

643in the presence of small stochastic perturbations. Again,

644these further applications of our approach with EVT will be

645the objects of forthcoming investigations.

646SUPPLEMENTARY MATERIAL

647See supplementary material for: (i) the algorithm for the

648estimation of the correlation dimension D2 and the

649Dynamical Extremal Index (DEI) h, (ii) a commented

650numerical MATLAB code for such estimation, (iii) the

651model equations for the maps used, and (iv) the supplemen-

652tary figures.
653
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