

Empirical velocity profiles for galactic rotation curves E. Lopez Fune

▶ To cite this version:

E. Lopez Fune. Empirical velocity profiles for galactic rotation curves. Monthly Notices of the Royal Astronomical Society, 2018, 475 (2), pp.2132-2163. 10.1093/mnras/stx3245. hal-01768115

HAL Id: hal-01768115 https://hal.science/hal-01768115

Submitted on 18 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Empirical velocity profiles for galactic rotation curves

E. López Fune,¹ *

¹ LPNHE, 4 Place Jussieu, Tour 22, 1er étage, 75005 Paris, France.

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

A unified parametrization of the circular velocity, which accurately fits 850 galaxy rotation curves without needing in advance the knowledge of the luminous matter components, nor a fixed dark matter halo model, is proposed. A notable feature is that the associated gravitational potential increases with the distance from the galaxy center, giving rise to a length scale indicating a finite size of a galaxy, and after, the Keplerian fall-off of the parametrized circular velocity is recovered according to Newtonian gravity, making possible the estimation of the total mass enclosed by the galaxy.

Key words: dark matter - rotation curves - analytical

1 INTRODUCTION

In the innermost regions of the galaxy rotation curves (hereafter RCs), the luminous matter contribution dominates the dynamics as light traces the mass inferred from disk rotation (Athanassoula et. al. 1987; Persic et. al. 1988; Palunas et. al. 2000) out to a radius ranging between 1 and 3 disk exponential length scales (depending upon the galaxy luminosity (Salucci et. al. 1999)). Far distant from the galaxy centres, the circular velocities of stars and gas are found to be constant or even increasing with radius despite the sharp radial decrease of the stellar and gaseous surface brightnesses as the main effect of the dark matter (hereafter DM) halo hosting the galaxy. Both, the luminous and DM contributions to the RCs, can explain the observed flat circular velocities.

The RCs of spiral galaxies are one the main tracers of their mass distributions, as they represent observables of galaxy formation and provide relevant clues to unveil the nature of the DM (Bosma 1978; Bosma et. al. 1979; Rubin et. al. 1980). A detailed knowledge of the galaxy morphology and a high spatial resolution RC is clearly essential for numerical simulations on galactic structure formation (Cen Y. R. et. al. 1993; Navarro et. al. 1994; Evrard E. A., et. al. 1994), as well as for testing new DM models.

The dynamics of galaxy RCs considering a surrounding DM halo can be studied in the framework of the standard mass modelling or with the local density method (Salucci et. al. 2010), which are widely spread in the literature. The standard mass modelling consists in fitting directly the experimental RCs using a fixed stellar and gaseous disk model, such as a Freeman disk, and global halo mass model such as the Navarro-Frenkel-White density profile (hereafter NFW) (Navarro et. al. 1996, 1997) or the Burkert halo density profile (hereafter BRK) (Burkert 1995) respectively, knowing in advance the stellar and gaseous mass distributions from the galaxy's photometry. This method aims to globally fit the RCs with the total velocity given in quadrature by $V^2(r) = V_h^2(r) + V_D^2(r)$, where V(r) is the total circular velocity at a distance r from the galaxy centre, $V_h(r)$ is the DM circular velocity contribution extracted from a specific DM halo density profile and $V_D^2(r) = V_s^2(r) + V_g^2(r)$, the disk velocity, with $V_s(r), V_g(r)$ the stellar disk and gaseous velocity components. The radial dependence of $V_s(r)$ and $V_g(r)$ is derived from Newtonian gravity equations, using the corresponding surface mass densities, which are obtained from the photometric observations.

In the local density method, the RC and the DM mass model are analysed only in regions where the luminous matter contribution is not relevant compared to the DM effects (Salucci et. al. 2010). This method, discussed in details in (Salucci et. al. 2010), has been applied first to estimate the local DM density in the Milky Way at the Sun's location; later, in (Karukes et.

^{*} E-mail: elpezfun@lpnhe.in2p3.fr

al. 2015) to the spiral galaxy NGC 3198, and more recently in (Fune L. E., et. al. 2016) to determine the DM halo properties of the spiral galaxy M33. It allows to derive very precisely the DM density in the outskirts of a galaxy provided that the stellar and gas surface densities are well known and their circular velocities and their first derivatives are accurately determined, so that $\delta V/V < 0.05$, $\delta d \log V/d \log r < 0.1$. The idea is to resort the equation of centrifugal equilibrium, which holds the spiral galaxies:

$$\frac{V^2(r)}{r} = a_h(r) + a_s(r) + a_g(r),\tag{1}$$

where $a_h(r), a_s(r)$, and $a_g(r)$ are the radial accelerations, generated by the DM halo, stellar and gaseous disks respectively. Under the approximation of a spherical DM halo, the densities are

$$\rho_h(r) = \rho(r) - \rho_s(r) - \rho_g(r) = \frac{X_q}{4\pi G r^2} \frac{d}{dr} \left(rV^2 - rV_s^2 - rV_g^2 \right), \tag{2}$$

$$\rho(r) = \frac{1}{4\pi G r^2} \frac{d}{dr} \left(r V^2 \right),\tag{3}$$

$$\rho_s(r) = \frac{1}{4\pi G r^2} \frac{d}{dr} \left(r V_s^2 \right), \tag{4}$$

$$\rho_g(r) = \frac{1}{4\pi G r^2} \frac{u}{dr} \left(r V_g^2 \right), \tag{5}$$

where X_q is a factor correcting the spherical Gauss law used above in case of an oblate DM halo and it takes values between 1.05 and 1.00 (see details in Salucci et. al. (2010)), V(r) is the velocity given by the RC, $V_s(r)$ and $V_g(r)$ are the stellar and gas velocity contributions. The strength of this method lies in the fact that one has transformed the surface mass density of the stellar and gaseous disks in effective bulk densities with the aid of the spherical Gauss's law. Since the velocities induced by the stellar and gaseous disks decrease as $r^{-1/2}$ after certain length scale r_0 , one expects a sharp decrease for their effective densities $\rho_s(r)$ and $\rho_g(r)$, and one is left only with the DM contribution to the observed RC. From this fact, one can infer the DM halo properties directly from the experimental data and not relaying on the luminous matter contributions.

A very important issue left to treat in the local density method is to derive an analytical expression for the total circular velocity V(r) from the available discreet set of points from the experimental RC. An analytic expression for V(r), will make easier the numerical computation of the total density as given by Eq.(3). In order to alleviate this issue, in (Fune L. E., et. al. 2016) was proposed an empirical velocity profile to fit the total RC of the spiral galaxy M33, for the later use of the local density method. This empirical velocity profile has three free parameters and it is the simplest velocity profile that reproduces an asymptotically flat RC at large galactocentric distances:

$$V(r) = V_0 \frac{r/r_c + d}{r/r_c + 1},$$
(6)

where V_0 is the constant circular velocity of the outskirts of the galaxy, r_c is a radial length-scale and d is a dimensionless parameter different from 1 in order to prevent V(r) to be constant. Moreover, in the innermost parts of the galaxy, the circular velocity increases, which means that the parameter d is constrained to the range $0 \le d < 1$. To compute the corresponding density, it was assumed by extrapolation, that the extension of the experimental RC between any two data points was given by a point (r, V(r)).

The empirical velocity profile given by Eq.(6) has a limited use since it doesn't show the usual bumps of the bulge-to-disk transition in the innermost regions of the galaxy RCs. Despite this issue, its application in the local density method is valid since one only needs to know the velocity in the distant regions of the galaxy centres, free from the influences of the luminous matter. The motivation in this article is to introduce a more generalized model-independent empirical velocity profile that overcomes this issue and could help to express the total local density from the experimental RC, so that one can study in a deeper way the nature of the DM that surrounds galaxies.

This article is organized in three sections. In Section (2) are discussed the main properties of the introduced circular velocity profile, the gravitational potential that induces such a circular velocity and the total local density. In Section (3) are presented the results from the fittings of 850 galaxy RCs with the corresponding discussions on the values of the best fitting parameters and their possible correlations. In Section (4) are presented the conclusions and acknowledgements of this article.

2 EMPIRICAL VELOCITY PROFILE

There are many situations in which one needs a simple fitting formula for a RC between the initial and the final experimental points such that by extrapolation, it converges to the Keplerian circular velocity at very large distances. In order to do so, a

new empirical formula for the circular velocity is proposed:

$$V_n(r) = \frac{V_0 d^n (r/r_c)^{\frac{3}{2}} (1 + r/r_c)^{-(n+\frac{1}{2})}}{\sqrt{1 + (r/r_c)^2}} \sum_{i=0}^n \left(\frac{r/r_c}{d}\right)^i,\tag{7}$$

where as in Eq.(6), V_0 is the constant circular velocity of the outskirts of the galaxy, r_c is a radial length-scale, d is a dimensionless parameter and an additional free parameter $n \ge 1$ has been introduced, which is a positive integer number. This empirical velocity profile enlarges the number of RCs that one can analyse with respect to the main approach, that is: the mass modelling method, and although the functional fit might not have a direct physical meaning, mathematically it carries the properties of the RCs.

Similarly, as in Eq.(6), at large distances $r \gg r_c$ the velocity profile approaches asymptotically the constant value V_0 , independent of r_c , d and n, and reproduces a flat RC. At small distances $r \ll r_c$ the behaviour is $V_n(r \ll r_c) \sim V_0 d^n (r/r_c)^{\frac{3}{2}}$, which is always increasing and the RC starts at r = 0 regardless the values of d and n. It worth also to notice that as in Eq.(6) was needed $0 \le d < 1$ to reproduce an increasing RC near r = 0, for Eq.(7), the parameter d can take any real positive value since this empirical velocity profile always increases near the galaxy centres.

2.1 Gravitational potential

The introduced circular velocity profile aims to fit globally any galactic RC, which means that it already contains the information from the total luminous and DM contributions. The total gravitational potential that induces such a circular velocity on a massive point-like particle can be obtained by solving the differential equation:

$$\left. \frac{\partial \Phi_n(\vec{r})}{\partial r} \right|_{z=0} = -\frac{V_n^2(r)}{r}.$$
(8)

Assuming spherical symmetry, the Newtonian equations of motion for massive particles confine the stable orbits to the $\theta = \pi/2$ plane (z = 0 plane), then, one can get rid of the partial derivative and write Eq.(8) as

$$\frac{d\Phi_n(r)}{dr} = -\frac{V_0^2 d^{2n}}{r_c} \frac{(r/r_c)^2 (1+r/r_c)^{-(2n+1)}}{1+(r/r_c)^2} \sum_{i=0}^{2n} C_{(i,n)} \left(\frac{r/r_c}{d}\right)^i,\tag{9}$$

$$C_{(i,n)} = \begin{cases} i+1, & \text{if } 0 \le i \le n; \\ 2n-i+1, & \text{if } n \le i \le 2n. \end{cases}$$
(10)

Notice that to the gravitational potential contribute 2n + 1 components, but there is one which is not conventional to the known Newtonian physics; to see this more in details, one can expand $\Phi_n(r)$ as:

$$\Phi_n(r) = \Phi_n(+\infty) + \int_{r/r_c}^{+\infty} \frac{GM_0 d^{2n}}{r_c} \frac{s^2 (1+s)^{-(2n+1)}}{1+s^2} \sum_{i=0}^{2n-1} C_{(i,n)} \left(\frac{s}{d}\right)^i ds + \int_{r/r_c}^{+\infty} \frac{GM_0}{r_c} \frac{s}{1+s^2} \left(\frac{s}{1+s}\right)^{2n+1} ds, \tag{11}$$

being $M_0 = V_0^2 r_c/G$ a constant with mass unit and G is the universal gravitational constant. Assuming the factor GM_0/r_c to be a constant for all r, the gravitational potential can thus be written as

$$\Phi_n(r) = \Phi_n(+\infty) + \Phi_{nc}(r) + \int_{r/r_c}^{+\infty} \frac{GM_0}{r_c} \frac{s}{1+s^2} ds,$$
(12)

with

$$\Phi_{nc}(r) = \int_{r/r_c}^{+\infty} \frac{GM_0 d^{2n}}{r_c} \frac{s^2 (1+s)^{-(2n+1)}}{1+s^2} \sum_{i=0}^{2n-1} C_{(i,n)} \left(\frac{s}{d}\right)^i ds + \int_{r/r_c}^{+\infty} \frac{GM_0}{r_c} \sum_{j=1}^{2n+1} \binom{2n+1}{j} (-1)^j \frac{s}{(1+s)^j (1+s^2)} ds \tag{13}$$

the convergent part of $\Phi_n(r)$. Under the assumption that GM_0/r_c is constant throughout the galaxy, the logarithmically divergent part of the total gravitational potential, responsible for the flatness of the RC, gives an ill-defined expression, that will always bound the orbit of any massive particle and no possibility of scape will be possible, which in turn means that the Universe should be populated by a single galaxy and everything should be bounded to it. This is clearly not true as there are no observations that could support this assertion, and therefore, a finite scape velocity should exist even in the presence of a large DM component.

This issue can be easily solved by relaxing the condition of constancy of the parameters r_c and V_0 at large galactocentric distances. Indeed, to guarantee the convergence of every integral in the gravitational potential, it is enough to suppose that r_c is constant, or slowly varying with the galactic radius till some characteristic length scale r_{edge} , and after, increases linearly with r, while keeping constant d, n and the factor GM_0 . Notice that higher powers of r will improve faster the convergence, but the minimum power required to make the total gravitational potential well defined, is at the linear order. If one attains to this prescription, since $V_0^2 = GM_0/r_c$, then, for $r > r_{edge}$ one expects the Keplerian fall of the circular velocity as

Figure 1. The left panel shows the dependence with $r/\langle r_c \rangle$ of $r_c(r)/\langle r_c \rangle$ as given by Eqs.(14), for different values of the ratio $\langle r_c \rangle/r_{\rm edge}$: 0.2 and 0.5 respectively (see labels); the dashed lines corresponds to their linear asymptotes. The right panel shows as well the dependence with $r/\langle r_c \rangle$ of $V_0(r)/\langle V_0 \rangle$ as given by Eqs.(14), taking again the ratio $\langle r_c \rangle/r_{\rm edge}$: 0.2 and 0.5 (see labels); as before, the dashed lines correspond to their $\sim 1/\sqrt{r}$ asymptotes.

Figure 2. In both panels are shown the velocity formula Eq.(7) for d = 0.7 (left) and d = 1.3 (right) for several integer values of $n : 1 \le n \le 7$ with their corresponding labels for the prescription Eqs.(14). The continuous lines are given by Eq.(7), while the dashed lines correspond to the newtonian renormalized ones with $r_{edge}/\langle r_c \rangle = 12$.

 $V_n(r > r_{edge}) \propto \sqrt{GM_0/r}$, where the proportionality constant depends on n, d, r_{edge} and $\langle r_c \rangle$ (the constant part of r_c for $r \ll r_{edge}$). The power of this empirical method relies in the fact that Eq.(7), altogether with this "renormalization" prescription, one is able to reproduce analytical flat RCs, which after a length scale r_{edge} , the Keplerian regime is recovered for such a circular velocity and also allows to make predictions on the masses of galaxies.

As a toy example of such a variation for r_c and V_0 , which respects the continuity of the velocity and its derivative, one could propose, among many others:

$$r_{c}(r) = \langle r_{c} \rangle f(r), \quad V_{0}(r) = \langle V_{0} \rangle / \sqrt{f(r)}, \quad f(r) = \left(1 + r/r_{\rm edge} + \sqrt{(r/r_{\rm edge} - 1)^{2} + \langle r_{c} \rangle^{2} / r_{\rm edge}^{2}} - \sqrt{1 + \langle r_{c} \rangle^{2} / r_{\rm edge}^{2}}\right), \tag{14}$$

where $GM_0 = \langle V_0 \rangle^2 \langle r_c \rangle$, $\langle V_0 \rangle$ and $\langle r_c \rangle$ are constants. Recall that $\langle V_0 \rangle$ and $\langle r_c \rangle$ are the constant parts of $V_0(r)$ and $r_c(r)$ for $r \ll r_{edge}$ respectively. In Figs.(1) are shown the radial dependence of $r_c(r)$ and $V_0(r)$ for the above prescription. Notice that for small values of $r/\langle r_c \rangle$, $r_c(r)$ and $V_0(r)$ are almost constants and then, they start to vary such to make the gravitational potential finite at large distances as needed. Moreover, in Figs.(2) are shown the circular velocity profiles as given by Eq.(7) (continuous lines) and the same Eq.(7) but with the renormalized coefficients as given by the prescription Eqs.(14) (dashed lines) for d = 0.7 (left panel) and d = 1.3 (right panel) respectively. The Newtonian gravitational potential is recovered for large values of $r/\langle r_c \rangle$ and how quick this regime is reached, it depends on the ratio $\langle r_c \rangle/r_{edge}$.

In Figs.(3) on the other hand, are shown the graphics of the gravitational potential for d = 0.7 (left panel) and d = 1.3 (right panel), for n from 1 to 7, by setting $\Phi_n(+\infty) = 0$.

As the Keplerian regime is reached for $r \gg r_{edge}$, this means that beyond r_{edge} , the circular velocity of any massive point-like particle is the same as if it is moving in vacuum, influenced by the gravitational field created by a point-like particle of mass M_T , which can be computed from Eq.(7) substituting the renormalized coefficients $r_c \mapsto r_c(r)$ and $V_0 \mapsto V_0(r)$

Figure 3. In both panels are shown the gravitational potential in units of $\Phi_0 = \langle V_0 \rangle^2$ for d = 0.7 (left panel) and d = 1.3 (right panel) for several integer values of $n: 1 \le n \le 7$ with their corresponding labels for the prescription Eqs.(14) and $r_{\text{edge}}/r_c = 12$.

and taking the limit $r \to +\infty$ of the expression $rV^2(r)/G$ (keeping GM_0, d and n constants) with a suitable election of the renormalization conditions for $r_c(r)$ and $V_0(r)$. For example, for the renormalization prescription given by Eqs.(14), M_T is given by:

$$M_T = M_0 \frac{d^{2n} x^4 \left(1+x\right)^{-(2n+1)}}{1+x^2} \sum_{i=0}^{2n} C_{(i,n)} \left(\frac{x}{d}\right)^i, \ M_0 = \frac{\langle V_0 \rangle^2 \langle r_c \rangle}{G}, \ x = \frac{r_{\text{edge}}}{2 \langle r_c \rangle}.$$
(15)

Worth to mention that the deduced mass will depend on how one chooses the slope of the linear dependence with r of the function f(r) given by Eqs.(14), therefore M_T serves as only an estimation of the total mass enclosed by the galaxy.

The interpretation of the length-scale r_{edge} , as mentioned above, is that any point-like massive particle moving in orbits beyond this distance, will feel like it is moving in vacuum by the effects of the gravitational field produced by a point-like source with mass M_T . This means that beyond the scale r_{edge} , no luminous nor DM influence the state of motion and one can identify r_{edge} with the DM halo virial radius R_{vir} , as it represents a measure of the "edge" of a galaxy. Moreover, since the total mass M_T is the sum of the DM halo virial mass M_{vir} and luminous matter mass M_L components, and if one uses the relation between the virial mass and virial radius,

$$r_{\rm edge} = \left(\frac{3}{97.2} \frac{M_{\rm vir}}{4\pi\rho_{\rm crit}}\right)^{1/3} \quad \text{kpc.}$$
(16)

then:

 $\frac{M_T}{\frac{4\pi}{3}\rho_{\rm crit}r_{\rm edge}^3} = \frac{M_{\rm vir} + M_L}{\frac{4\pi}{3}\rho_{\rm crit}r_{\rm edge}^3} = \frac{M_{\rm vir}}{\frac{4\pi}{3}\rho_{\rm crit}r_{\rm edge}^3} \left(1 + \frac{M_L}{M_{\rm vir}}\right).$ (17)

Since the ratio M_L/M_{vir} is in principle constrained to $0 < M_L/M_{vir} < 1$, then the scale length r_{edge} is constrained to satisfy the inequalities

$$97.2 < \frac{M_T}{\frac{4\pi}{3}\rho_{\rm crit}r_{\rm edge}^3} < 2 \times 97.2,\tag{18}$$

where recall that M_T depends on r_{edge} as well.

2.2 The total local density

The total local density can be computed from Eq.(3) by substituting the analytical expression for V(r) given by Eq.(7). The essence of this empirical velocity profile method is to take the observational information given by the galaxy RC, convert it to an analytical expression using Eq.(7) (with the corresponding error propagation) and compute the local density assuming an extrapolation between any two observational points. There are two physical regimes where one doesn't have enough data to keep testing the empirical velocity formula. The first regime is the outskirts of the galaxy RCs, which in the previous subsection, by extrapolation was assumed that after the length scale r_{edge} , the Keplerian regime is reached. The second regime where many galaxy RCs have a poor spatial resolution is in the innermost regions, where precisely the cusp-core issue holds (de Blok et. al. 2002, 2008; de Blok W. J. G. 2010; Salucci et. al. 2000; Moore B. 1994; Gentile et. al. 2004, 2005) (and references therein). The discussion on this cusp-core controversy is out of the scope of the present article, however, in the inner parts of the galaxy RCs, the logarithmic slope of the associated total local density can be modified via renormalization

Figure 4. In both panels are shown the total local density in units of $\rho_c = M_0/4\pi/3 \langle r_c \rangle^3$ for d = 0.7, n = 1, 3 (left panel) and d = 1.3, n = 2, 4 (right panel). The black and gray lines in the left panel correspond to n = 1 and n = 3, and in the right panel to n = 2 and n = 4 respectively. The continuous lines correspond to the local density computed directly from Eq.(3) by substituting the analytical expression for $V_n(r)$ given by Eq.(7), and dashed lines correspond to the local density but with the renormalization prescription Eqs.(14), where in both cases the ratio $r_{edge}/\langle r_c \rangle = 12$ was fixed.

of the other free parameter d at the length scale $\langle r_c \rangle$. Indeed, as already discussed, for $r \ll \langle r_c \rangle$, the behaviour of the circular velocity profile Eq.(7) is $V_n(r) \sim r^{\frac{3}{2}}$, giving a logarithmic slope of the total local density as $d \log \rho(r)/d \log r = 1$; recall that in the regime $r \sim 0$ kpc, the logarithmic slopes of the NFW and BRK DM density profiles are $d \log \rho_{NFW}(r)/d \log r = -1$ and $d \log \rho_{BRK}(r)/d \log r = 0$ respectively. In this galactic central regime, the stellar and gaseous contributions are relevant, so the logarithmic slope of the total local density may change according to the logarithmic slope of the luminous matter distribution as well, but regarding the parameter d in Eq.(7), a renormalization procedure could absorb the powers of r such to make coincide both logarithmic slopes as long as beyond the length scale $\langle r_c \rangle$ the parameter d becomes constant again. As a toy example, a kind of renormalization of d like

$$d(r) = \langle d \rangle (1 + (r/\langle r_c \rangle)^{-\frac{3-2\alpha}{2n}}), \tag{19}$$

being $\langle d \rangle$ the constant part of d(r) at long distances and α the renormalizing power-law for d(r), that will give a cored total local density for $\alpha = 1$, increasing density for $1 < \alpha \leq 3/2$ and cuspy density profiles for $\alpha < 1$ ($\alpha = 1/2$ for the NFW density profile). Notice that for the velocity profile Eq.(7), the coefficient α can't be larger than 3/2 since d will no longer be a constant for such a prescription at large distances compared to $\langle r_c \rangle$. The renormalization of the parameter d could be a long subject of discussion, which is out of the scope of the present article. Future measurements on galaxy RCs with a better spatial resolution near their centres could help to clarify the sign of the logarithmic slope of the local density near r = 0 kpc. In what follows in this article, no renormalization procedure is taken into account for the parameter d.

In Figs.(4) are shown the ratio $\rho(r)/\rho_c$ of the total local density $\rho(r)$ and the constant $\rho_c = M_0/4\pi/3\langle r_c\rangle^3$ as a function of $r/\langle r_c\rangle$, where M_0 is given in Eq.(15), for d = 0.7, n = 1, 3 (left panel) and d = 1.3, n = 2, 4 (right panel). The continuous lines, correspond to the total local density computed directly from Eq.(3) by substituting the analytical expression for V(r)given by Eq.(7) and they show a positive logarithmic slope for distances below the length scale $\langle r_c \rangle$ as discussed previously. They arrive to a local maximum near $r = \langle r_c \rangle$ and after, they decline with logarithmic slope $d \log \rho(r)/d \log r = 2$. The dashed lines, which correspond to the total local density computed with $r_c(r)$ and $V_0(r)$ scale-dependent as in Eqs.(14), have the same behaviour as the continuous lines in the innermost regions, but around the length scale $r \simeq r_{edge}$, they present a sharp fall because the Keplerian regime of the circular velocity is reached.

3 RESULTS FROM THE FITTINGS WITH 850 GALAXIES.

In the Figs.(7) are shown¹ the experimental RCs and the corresponding fits using Eq.(7) (continuous lines) and with the renormalization prescription described in the last section to get the Keplerian fall of the circular velocity (dashed black lines). For such a study, a sample of 850 different RCs was taken from Refs.(Oh et. al. 2015; de Blok E. et. al. 2001; Fune L. E., et. al. 2016; Corbelli et. al. 2014; Karukes et. al. 2015; Lelli F. et. al. 2014; Weldrake D. et. al. 2003; Moiseev V. A. 2014; Swaters A. R. et. al. 2009; Persic M. et. al. 1995; Kuzio de Naray R. et. al. 2006, 2008). The RCs sample cover a wide range of different morphological types of galaxies, which include from dwarf spiral galaxies such as DDO154, DDO52 and NGC2366 (Oh et. al. 2015), low surface brightness (LSB) spiral galaxies such as F5631, F5683, F5718 (de Blok E. et. al.

 $^{^{1} \ {\}rm The \ complete \ set \ of \ fitted \ RCs \ can \ be \ found \ in \ this \ link: \ https://www.dropbox.com/s/vlfzbtpszw4uk12/graphics.tar.gz?dl=0} \\$

2001), till barred and lenticular spirals (Persic M. et. al. 1995). In the RC plots Figs.(7), there are RCs with error bars and with open symbols. All galaxies with error bars meet the excellence criterion since their approaching and receding arms are very symmetric and their RCs are extended out to (at least) the optical radius. The RCs with open symbols, as explained in (Persic M. et. al. 1995), they fail in at least one of the criteria stated above and therefore may be not suitable for accurate and direct mass modelling. However, they constitute a large database for those methods able to recover the DM properties by needing less stringent requirements on the RC quality. Since there are 4 free parameters to fit with Eq.(7), from the list of 900 different galaxies analysed in (Persic M. et. al. 1995), another selection criterion was used such that the RCs fitted contain 8 or more experimental points.

In this article was performed first a χ^2 minimization procedure to determine the parameters (V_0, r_c, d, n) regarding the formula given by Eq.(7) which throughout all the computation procedure they were considered as free or uncorrelated. Given the goodness of the first fits with Eq.(7), a second fit was performed to the above mentioned experimental RCs by using again Eq.(7), this time, r_c and V_0 are scale-dependent as given in Eqs.(14) but fixing the new parameters as equals to those of the first fits $(V_0, r_c, d, n) = (\langle V_0 \rangle, \langle r_c \rangle, d, n)$, and constrained r_{edge} in the range given by Eq.(18). For the error estimation in each parameter, as described in (Bevington P. R. et. al. 1987) for non-linear fitting methods, was used the formula $\sigma_i^2 = 2(\partial^2 \chi^2 / \partial^2 a_i)^{-1}$, being a_i any of the parameter and σ_i its corresponding error. In Table.(1) are tabulated the best fitting values (and their errors) of $(\langle V_0 \rangle, \langle r_c \rangle, d, n, r_{edge})$ for each galaxy analysed, including the total predicted mass M_T and the values of the reduced χ^2 , i.e. $\chi^2 / \# d.o.f$, where # d.o.f equals the number of experimental points minus the number of free parameters.

From the sample of galaxies with asymmetric RCs, as can be seen from Figs.(7), a large scattering from Eq.(7) is observed, being more frequent the data points to scatter to velocities higher than the model than to the ones scattered below when one would expect approximately the same compromise. This asymmetry is due to the fact that since no error bars are present, when minimizing the χ^2 distribution, all the experimental points have the same statistical significance, so when determining the best fitting value of the parameter V_0 , which have to be bounded from above to a few hundreds km s⁻¹, the innermost points of the RC weight more than the ones in the outskirts of the galaxy (where V_0 is relevant), tending to give a lower bound for V_0 . However, as already discussed above, these galaxy RCs with large asymmetries may be not suitable for accurate modelling, but they constitute a large database for statistical studies of the DM.

The relatively large amount of parameters is justified by the fact that the circular velocity profile used during the fitting process contains already all the information from the DM halo, bulge, stellar and gaseous disks and possible bars or other structures that will contribute to the experimental RCs by their composite probabilities. Moreover, in Figs.(5) are shown the best fitting values as points (with error bars) in a two dimensional graphics of $\langle V_0 \rangle - \langle r_c \rangle$, $\langle r_c \rangle - d$, $\langle r_c \rangle - M_T$ and $d - M_T$ for all values of the integer parameter n. As one may see in Figs.(5), there exist large dispersions between the best fitting values of the pairs of parameters ($\langle V_0 \rangle, \langle r_c \rangle$) (top-left), ($\langle r_c \rangle, d$) (top-right), and ($\langle r_c \rangle, M_T$) (bottom-left). For the pair (d, M_T) (bottom-right) instead, one may see a weak sign of a negative correlation, however, a large dispersion persists.

In Figs.(6) are the plots of the best fitting values of $\langle V_0 \rangle$ and the total predicted mass M_T (left panel), as well as the pair ($\langle V_0 \rangle, d$) (right panel). For the pair ($\langle V_0 \rangle, M_T$), one finds a positive correlation relation compatible with a power-law as a Tully-Fisher-like formula Eq.(20):

$$\log\left(\frac{M_T}{10^{11}M_{\odot}}\right) = -(5.84 \pm 0.01) + (2.96 \pm 0.01) \log\left(\frac{\langle V_0 \rangle}{km/s}\right).$$
(20)

In the right panel of Figs.(6) one can see also a week sign of a negative correlation between the parameters d and $\langle V_0 \rangle$ but a large dispersion still exists. This means that despite there are five free parameters to make the general fit, only four of them are independent. More extended and higher quality RCs are needed in order to arrive to conclusions on the correlation of the pairs ($\langle V_0 \rangle$, d) and (d, M_T).

Moreover, in (Corbelli et. al. 2014; Fune L. E., et. al. 2016) was computed the virial mass of the galaxy M33 using the standard mass modelling and the local density method. Along with the stellar mass reported by Corbelli et. al. (2014), the total mass in the mass modelling method corresponding to the NFW DM halo density profile as the best fit is $M_T =$ $(4.36 \pm 1.00) \times 10^{11} \text{ M}_{\odot}$, while for the BRK DM halo density profile in the local density method Fune L. E., et. al. (2016) reported $M_T = (3.06 \pm 0.80) \times 10^{11} \text{ M}_{\odot}$. From both computed masses, with different methods, only the BRK profile in the local density method is compatible with the total mass computed via Eq.(15): $M_T = (2.785 \pm 0.003) \times 10^{11} \text{ M}_{\odot}$.

4 CONCLUSIONS

The main limitation of the local density method is that one needs to provide an analytical and model-independent formula to represent the experimental data of the RC to compute the total local density. For the galaxy M33, it was successfully

Figure 5. Best fitting parameters plots for all value of n. Large dispersions are observed in the $\langle V_0 \rangle - \langle r_c \rangle$ (top-left panel), $\langle r_c \rangle - d$ (top-right panel), $\langle r_c \rangle - M_T$ (bottom-left panel) and $d - M_T$ (bottom-right panel) planes.

Figure 6. Best fitting parameters plots for all value of n of the pairs $(\langle V_0 \rangle, M_T)$ (left panel) and $(\langle V_0 \rangle, d)$ (right panel). Some dispersion is observed in the $\langle V_0 \rangle - d$ plane, however, there is clearly a power-law correlation between the parameters $\langle V_0 \rangle$ and M_T , where the best fitting straight line (in red colour) corresponds to Eq.(20).

introduced Eq.(6) which solved this problem. However, there are many situations in which this formula doesn't provide a good representation of the experimental data, for example, when dealing with galaxies with only increasing RCs, slightly decreasing ones, prominent bulges or other galactic substructures. In this paper was given a solution to this problem by postulating an empirical circular velocity profile Eq.(7) as a function of the galactic radius, which at large distances gives a flat RC and fulfils the necessities above mentioned. A χ^2 fitting was performed with 850 different galaxy RCs with an unprecedented degree of accuracy. Given the goodness of the fits in the experimental data range, Eq.(7) was promoted as an extrapolation function to the regions where there are no more experimental points. Since an asymptotically flat RC will give rise to an ill-defined gravitational potential, a renormalization procedure of the length scale r_c and velocity V_0 was implemented in such a way that for distances greater than a length scale $r_{edge} > \langle r_c \rangle$, the circular velocity profile converges to the Keplerian one, providing a well defined total gravitational potential, and hence, to estimate the mass enclosed by the galaxy (including de DM halo), which are in agreement with other galaxy mass method estimations.

Figure 7. Galaxy RCs best fittings using Eq.(7).

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T~(10^{11}~{\rm M_{\odot}})$	Reference
101-g20	0.78	4	173.229 ± 0.001	0.099 ± 0.001	2.685 ± 0.001	176.214 ± 0.005	6.122 ± 0.001	Persic M. et. al. (1995)
101-g5	0.45	3	247.172 ± 0.001	5.307 ± 0.001	1.526 ± 0.001	323.124 ± 0.001	20.263 ± 0.001	Persic M. et. al. (1995)
102 - g10	0.42	2	180.380 ± 0.001	1.627 ± 0.001	1.658 ± 0.001	200.496 ± 0.001	7.387 ± 0.001	Persic M. et. al. (1995)
102-915	0.59	3	203.644 ± 0.001	1.646 ± 0.001	1.905 ± 0.001	209.610 ± 0.007	9.626 ± 0.001	Persic M. et. al. (1995)
103-913	0.20	3	234.151 ± 0.001	0.434 ± 0.002	0.699 ± 0.001	236.231 ± 0.007	14.750 ± 0.001	Persic M. et. al. (1995)
103-915	0.23	3	180.460 ± 0.001	1.613 ± 0.001	1.184 ± 0.001	185.977 ± 0.008	6.504 ± 0.001	Persic M. et. al. (1995)
103-939	0.20	4	213.197 ± 0.002	1.801 ± 0.001	1.326 ± 0.001	205.727 ± 0.009	9.742 ± 0.001	Persic M. et. al. (1995)
104 - 952	0.23	3	188.682 ± 0.001	2.419 ± 0.001	1.232 ± 0.001	193.461 ± 0.007	7.165 ± 0.001	Persic M. et. al. (1995)
105-920	0.15	ĩ	94.923 ± 0.001	6.060 ± 0.001	2.949 ± 0.001	127.374 ± 0.001	1.651 ± 0.001	Persic M. et. al. (1995)
105-g3	0.48	2	167.134 ± 0.001	1.758 ± 0.001	1.566 ± 0.001	181.660 ± 0.001	5.698 ± 0.001	Persic M. et. al. (1995)
106 - g12	0.16	2	130.908 ± 0.001	1.848 ± 0.001	1.947 ± 0.001	147.968 ± 0.009	2.876 ± 0.001	Persic M. et. al. (1995)
106-g8	0.21	2	205.154 ± 0.001	0.964 ± 0.001	1.069 ± 0.001	206.359 ± 0.004	9.832 ± 0.001	Persic M. et. al. (1995)
107 - g24	0.36	3	228.437 ± 0.001	2.572 ± 0.002	1.346 ± 0.001	221.750 ± 0.006	12.200 + 0.001	Persic M. et. al. (1995)
107-g36	0.75	3	199.274 ± 0.001	0.138 ± 0.001	1.832 ± 0.001	219.329 ± 0.006	10.082 ± 0.001	Persic M. et. al. (1995)
108-g13	0.54	4	299.124 ± 0.001	3.460 ± 0.001	1.373 ± 0.001	295.033 ± 0.003	26.578 ± 0.001	Persic M. et. al. (1995)
108-g19	1.14	2	168.911 ± 0.001	0.538 ± 0.001	2.062 ± 0.002	181.362 ± 0.005	5.985 ± 0.001	Persic M. et. al. (1995)
108-g6	0.35	3	221.584 ± 0.001	1.551 ± 0.001	1.375 ± 0.001	236.203 ± 0.009	12.759 ± 0.001	Persic M. et. al. (1995)
109 - g32	0.46	4	223.706 ± 0.001	3.309 ± 0.001	1.247 ± 0.001	229.189 ± 0.002	11.096 ± 0.001	Persic M. et. al. (1995)
10 - g4	0.70	5	320.243 ± 0.001	4.202 ± 0.001	1.282 ± 0.001	323.717 ± 0.007	31.130 ± 0.001	Persic M. et. al. (1995)
111-g9	0.38	4	418.006 ± 0.001	6.243 ± 0.001	1.349 ± 0.001	391.649 ± 0.003	65.420 ± 0.001	Persic M. et. al. (1995)
113 - g21	0.19	3	144.366 ± 0.001	2.491 ± 0.001	1.266 ± 0.001	135.957 ± 0.001	2.812 ± 0.001	Persic M. et. al. (1995)
114 - g21	0.88	2	167.903 ± 0.001	1.208 ± 0.001	1.840 ± 0.001	185.512 ± 0.002	5.981 ± 0.001	Persic M. et. al. (1995)
116 - g12	1.14	4	210.446 ± 0.004	0.834 ± 0.003	1.181 ± 0.009	208.928 ± 0.004	10.204 ± 0.001	Persic M. et. al. (1995)
116 - g14	0.13	2	169.168 ± 0.001	3.308 ± 0.001	1.471 ± 0.001	186.587 ± 0.003	5.796 ± 0.001	Persic M. et. al. (1995)
117 - g18	0.15	3	295.172 ± 0.001	1.584 ± 0.001	1.265 ± 0.001	311.818 ± 0.006	30.192 ± 0.001	Persic M. et. al. (1995)
117 - g19	0.18	1	161.121 ± 0.001	3.178 ± 0.001	1.949 ± 0.001	182.544 ± 0.001	5.662 ± 0.001	Persic M. et. al. (1995)
120 - g16	0.21	3	216.423 ± 0.001	1.805 ± 0.001	1.263 ± 0.002	219.023 ± 0.002	11.090 ± 0.001	Persic M. et. al. (1995)
121 - g26	1.55	6	273.042 ± 0.005	0.447 ± 0.001	2.720 ± 0.002	274.926 ± 0.003	23.250 ± 0.001	Persic M. et. al. (1995)
121-g6	18.29	4	179.883 ± 0.003	1.250 ± 0.001	1.560 ± 0.001	250.337 ± 0.001	8.885 ± 0.001	Persic M. et. al. (1995)
123 - g15	0.48	2	213.852 ± 0.001	0.408 ± 0.001	1.111 ± 0.001	228.202 ± 0.005	12.012 ± 0.001	Persic M. et. al. (1995)
123 - g23	0.67	3	238.793 ± 0.001	1.837 ± 0.005	1.070 ± 0.003	242.127 ± 0.008	14.921 ± 0.001	Persic M. et. al. (1995)
123 - g9	0.31	3	214.469 ± 0.001	3.331 ± 0.001	1.513 ± 0.001	214.007 ± 0.001	10.159 ± 0.001	Persic M. et. al. (1995)
124 - g15	0.39	3	183.513 ± 0.002	1.932 ± 0.001	1.245 ± 0.001	191.146 ± 0.004	6.842 ± 0.001	Persic M. et. al. (1995)
13-g16	0.45	4	190.853 ± 0.008	3.760 ± 0.001	1.380 ± 0.001	188.330 ± 0.002	6.269 ± 0.001	Persic M. et. al. (1995)
13 - g18	0.17	4	413.104 ± 0.001	8.281 ± 0.001	1.063 ± 0.001	361.439 ± 0.009	52.831 ± 0.005	Persic M. et. al. (1995)
140 - g24	0.10	2	117.951 ± 0.002	5.394 ± 0.001	3.096 ± 0.002	134.934 ± 0.001	2.528 ± 0.001	Persic M. et. al. (1995)
140 - g25	0.18	1	99.444 ± 0.001	2.003 ± 0.001	1.144 ± 0.001	118.706 ± 0.002	1.331 ± 0.001	Persic M. et. al. (1995)
140 - g28	0.85	3	114.488 ± 0.004	1.704 ± 0.001	1.764 ± 0.001	155.796 ± 0.009	2.206 ± 0.001	Persic M. et. al. (1995)
141 - g20	9.78	1	232.305 ± 0.003	1.826 ± 0.001	1.811 ± 0.005	237.842 ± 0.007	15.054 ± 0.003	Persic M. et. al. (1995)
141 - g23	0.24	4	351.744 ± 0.001	2.704 ± 0.001	1.160 ± 0.001	340.200 ± 0.004	44.054 ± 0.002	Persic M. et. al. (1995)
141 - g34	4.74	8	337.264 ± 0.002	0.684 ± 0.001	3.627 ± 0.001	337.099 ± 0.001	42.860 ± 0.002	Persic M. et. al. (1995)
141 - g37	0.24	2	350.340 ± 0.001	2.125 ± 0.001	1.309 ± 0.001	376.171 ± 0.001	52.267 ± 0.001	Persic M. et. al. (1995)
141-g9	0.95	1	219.404 ± 0.002	0.647 ± 0.001	1.827 ± 0.001	224.049 ± 0.007	12.584 ± 0.001	Persic M. et. al. (1995)
142-g30	0.19	2	206.152 ± 0.005	2.265 ± 0.001	1.421 ± 0.001	209.544 ± 0.002	9.896 ± 0.001	Persic M. et. al. (1995)
142-g35	0.27	1	218.261 ± 0.001	0.462 ± 0.001	1.718 ± 0.001	245.766 ± 0.009	13.632 ± 0.001	Persic M. et. al. (1995)
143-g8	0.32	4	131.619 ± 0.001	1.029 ± 0.001	1.356 ± 0.001	146.039 ± 0.006	2.694 ± 0.001	Persic M. et. al. (1995)
145-g18	0.45	2	191.596 ± 0.001	0.683 ± 0.001	1.439 ± 0.001	224.975 ± 0.003	9.479 ± 0.001	Persic M. et. al. (1995)
145-g22	0.20	1	213.723 ± 0.001	1.122 ± 0.001	0.956 ± 0.001	216.615 ± 0.004	11.372 ± 0.001	Persic M. et. al. (1995)
146-g6	0.49	3	140.273 ± 0.001	3.473 ± 0.001	1.425 ± 0.001	184.024 ± 0.001	3.622 ± 0.001	Persic M. et. al. (1995)
151 - g30	0.69	3	206.118 ± 0.001	2.812 ± 0.001	1.747 ± 0.001	284.551 ± 0.002	13.141 ± 0.001	Persic M. et. al. (1995)

Short title, max. 45 characters 21

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge} \ ({\rm kpc})$	$M_T \ (10^{11} {\rm M_{\odot}})$	Reference
1547.02	1.85	1	206.744 ± 0.003	3.075 ± 0.004	1.028 ± 0.003	200.027 ± 0.001	14.166 ± 0.002	Porsic M at al (1995)
155 06	0.31	5	422.055 ± 0.003	6.826 ± 0.004	1.023 ± 0.003 1.350 ± 0.003	428.030 ± 0.001	68.748 ± 0.002	Porsic M at al (1995)
157 m20	0.01	1	422.555 ± 0.001	0.320 ± 0.001	1.030 ± 0.003	423.039 ± 0.004	1.004 ± 0.002	$\begin{array}{c} \text{Persic} \text{Wi. et. al. (1995)} \\ \text{Bergin} \text{Most} \text{al. (1005)} \\ \end{array}$
157-g20	0.92	2	111.302 ± 0.001	0.223 ± 0.001	1.938 ± 0.001	131.242 ± 0.008 142.020 ± 0.000	1.904 ± 0.001	Persic M. et. al. (1995)
157-g38	0.10	3	141.833 ± 0.002	0.327 ± 0.001	0.986 ± 0.001	142.920 ± 0.009	3.200 ± 0.001	Persic M. et. al. (1995)
160-g2	0.19	4	402.901 ± 0.001	1.331 ± 0.001	1.202 ± 0.001	401.843 ± 0.005	72.603 ± 0.001	Persic M. et. al. (1995)
162-g15	0.32	4	160.632 ± 0.001	1.697 ± 0.001	1.478 ± 0.001	169.781 ± 0.005	4.523 ± 0.001	Persic M. et. al. (1995)
162-g17	0.52	4	126.004 ± 0.008	2.044 ± 0.001	1.466 ± 0.001	135.809 ± 0.001	2.099 ± 0.001	Persic M. et. al. (1995)
163-g11	0.07	1	166.278 ± 0.001	3.203 ± 0.001	2.543 ± 0.001	182.664 ± 0.007	6.273 ± 0.001	Persic M. et. al. (1995)
163-g14	0.44	4	154.726 ± 0.001	5.454 ± 0.001	1.826 ± 0.001	150.100 ± 0.001	2.938 ± 0.001	Persic M. et. al. (1995)
181-g2	0.46	1	128.820 ± 0.001	8.035 ± 0.001	6.346 ± 0.002	239.626 ± 0.006	7.698 ± 0.002	Persic M. et. al. (1995)
183-g14	0.20	3	138.737 ± 0.001	0.446 ± 0.001	0.143 ± 0.001	138.395 ± 0.009	2.966 ± 0.001	Persic M. et. al. (1995)
183-g5	0.65	4	159.537 ± 0.001	4.046 ± 0.001	1.483 ± 0.001	196.700 ± 0.005	4.584 ± 0.001	Persic M. et. al. (1995)
184-g51	2.47	2	238.865 ± 0.003	5.174 ± 0.005	1.963 ± 0.003	256.925 ± 0.001	16.450 ± 0.004	Persic M. et. al. (1995)
184-g54	0.33	2	185.869 ± 0.001	1.577 ± 0.001	1.490 ± 0.001	192.632 ± 0.006	7.492 ± 0.001	Persic M. et. al. (1995)
184-g60	0.93	3	108.082 ± 0.001	3.728 ± 0.001	1.585 ± 0.001	141.624 ± 0.001	1.594 ± 0.001	Persic M. et. al. (1995)
184 - g63	0.38	2	137.181 ± 0.001	2.050 ± 0.001	1.665 ± 0.001	156.044 ± 0.006	3.276 ± 0.001	Persic M. et. al. (1995)
184 - g67	0.26	3	305.913 ± 0.001	1.375 ± 0.001	1.602 ± 0.001	306.614 ± 0.004	32.252 ± 0.001	Persic M. et. al. (1995)
185 - g11	0.09	1	224.481 ± 0.001	1.430 ± 0.001	0.169 ± 0.001	242.627 ± 0.001	13.774 ± 0.001	Persic M. et. al. (1995)
185 - g26	0.33	3	291.243 ± 0.001	1.858 ± 0.001	1.036 ± 0.001	287.647 ± 0.007	26.629 ± 0.001	Persic M. et. al. (1995)
185 - g36	0.45	3	172.531 ± 0.001	4.147 ± 0.001	1.606 ± 0.001	225.519 ± 0.001	6.836 ± 0.001	Persic M. et. al. (1995)
185 - g68	0.81	1	85.619 ± 0.001	1.558 ± 0.001	1.498 ± 0.001	87.171 ± 0.001	0.741 ± 0.001	Persic M. et. al. (1995)
185 - g70	0.25	3	211.168 ± 0.001	2.201 ± 0.001	1.178 ± 0.001	204.952 ± 0.005	9.633 ± 0.001	Persic M. et. al. (1995)
186 - g21	0.78	1	175.229 ± 0.001	1.065 ± 0.001	1.860 ± 0.001	179.337 ± 0.001	6.453 ± 0.001	Persic M. et. al. (1995)
186 - g75	0.44	3	97.765 ± 0.001	2.345 ± 0.001	1.609 ± 0.001	127.488 ± 0.001	1.241 ± 0.001	Persic M. et. al. (1995)
186 - g8	0.21	3	164.549 ± 0.001	1.539 ± 0.001	1.240 ± 0.001	160.734 ± 0.001	4.646 ± 0.001	Persic M. et. al. (1995)
187 - g8	0.45	4	224.704 ± 0.001	3.831 ± 0.001	1.358 ± 0.001	225.860 ± 0.002	10.777 ± 0.001	Persic M. et. al. (1995)
18 - g13	0.13	3	350.395 ± 0.001	12.793 ± 0.001	1.627 ± 0.001	311.605 ± 0.001	33.853 ± 0.004	Persic M. et. al. (1995)
18 - g15	0.91	3	174.083 ± 0.001	2.479 ± 0.001	1.567 ± 0.001	176.333 ± 0.009	5.594 ± 0.001	Persic M. et. al. (1995)
196 - g11	0.34	3	165.548 ± 0.002	2.736 ± 0.001	1.365 ± 0.001	173.589 ± 0.001	4.855 ± 0.001	Persic M. et. al. (1995)
197 - g24	0.34	4	346.072 ± 0.001	5.623 ± 0.001	1.384 ± 0.002	316.890 ± 0.009	35.605 ± 0.005	Persic M. et. al. (1995)
197 - g2	0.33	3	220.701 ± 0.001	2.244 ± 0.001	1.427 ± 0.001	223.977 ± 0.004	11.692 ± 0.001	Persic M. et. al. (1995)
200-g3	0.43	4	170.739 ± 0.001	2.138 ± 0.001	1.411 ± 0.002	178.953 ± 0.003	5.248 ± 0.001	Persic M. et. al. (1995)
202 - g26	0.67	2	128.478 ± 0.001	0.871 ± 0.001	1.727 ± 0.002	147.916 ± 0.001	2.789 ± 0.001	Persic M. et. al. (1995)
202 - g35	0.57	4	220.663 ± 0.001	1.782 ± 0.001	1.470 ± 0.001	221.227 ± 0.004	11.374 ± 0.001	Persic M. et. al. (1995)
204 - g19	0.23	2	137.494 ± 0.001	2.167 ± 0.001	1.397 ± 0.001	156.163 ± 0.008	3.236 ± 0.001	Persic M. et. al. (1995)
205 - g2	0.42	4	170.698 ± 0.002	1.076 ± 0.001	1.206 ± 0.001	175.418 ± 0.006	5.484 ± 0.001	Persic M. et. al. (1995)
208 - g31	0.40	4	419.200 ± 0.001	4.021 ± 0.001	1.269 ± 0.001	404.273 ± 0.008	72.769 ± 0.002	Persic M. et. al. (1995)
215 - g39	0.46	4	313.304 ± 0.001	3.362 ± 0.001	1.404 ± 0.001	298.229 ± 0.006	29.678 ± 0.001	Persic M. et. al. (1995)
216 - g21	0.29	1	169.697 ± 0.001	1.718 ± 0.006	1.794 ± 0.001	186.845 ± 0.008	6.317 ± 0.001	Persic M. et. al. (1995)
216 - g8	0.45	3	232.990 ± 0.005	2.527 ± 0.001	1.667 ± 0.001	228.342 ± 0.001	13.321 ± 0.001	Persic M. et. al. (1995)
219 - g14	0.26	4	530.916 ± 0.003	2.162 ± 0.001	1.503 ± 0.001	550.107 ± 0.003	172.016 ± 0.002	Persic M. et. al. (1995)
21-g3	0.19	2	117.330 ± 0.001	1.220 ± 0.001	1.287 ± 0.001	134.018 ± 0.007	2.054 ± 0.001	Persic M. et. al. (1995)
21-g5	3.54	5	281.045 ± 0.002	2.272 ± 0.001	1.030 ± 0.001	384.419 ± 0.001	31.781 ± 0.001	Persic M. et. al. (1995)
220-g8	0.23	1	94.649 ± 0.001	3.539 ± 0.001	3.594 ± 0.001	108.128 ± 0.001	1.414 ± 0.001	Persic M. et. al. (1995)
221 - g21	0.28	4	615.000 ± 0.001	4.500 ± 0.001	1.110 ± 0.001	595.892 ± 0.002	236.748 ± 0.002	Persic M. et. al. (1995)
22-g3	0.51	3	118.276 ± 0.002	0.854 ± 0.001	1.136 ± 0.001	116.500 ± 0.004	1.769 ± 0.001	Persic M. et. al. (1995)
230-g2	0.40	2	132.141 ± 0.001	3.240 ± 0.001	1.329 ± 0.002	176.857 ± 0.001	3.308 ± 0.001	Persic M. et. al. (1995)
231 - g11	0.19	2	211.058 ± 0.001	2.058 ± 0.001	1.354 ± 0.001	216.240 ± 0.008	10.732 ± 0.001	Persic M. et. al. (1995)
231-g23	0.35	3	319.064 ± 0.001	2.401 ± 0.001	1.344 ± 0.001	331.931 ± 0.002	36.939 ± 0.001	Persic M. et. al. (1995)
231 - g25	0.04	4	599.198 ± 0.001	3.153 ± 0.001	1.117 ± 0.001	589.198 ± 0.005	228.858 ± 0.004	Persic M. et. al. (1995)

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T~(10^{11}~{\rm M_\odot})$	Reference
231-g29	0.28	3	134.655 ± 0.001	2.947 ± 0.001	1.494 ± 0.001	170.667 ± 0.001	3.150 ± 0.001	Persic M. et. al. (1995)
231-g6	0.53	3	135.294 ± 0.001	4.130 ± 0.001	1.452 ± 0.001	173.828 ± 0.009	3.076 ± 0.001	Persic M. et. al. (1995)
233 - g25	0.30	3	355.865 ± 0.004	15.208 ± 0.009	1.144 ± 0.001	418.525 ± 0.009	44.611 ± 0.001	Persic M. et. al. (1995)
233-g36	0.30	3	184.129 ± 0.002	2.104 ± 0.001	1.363 ± 0.001	188.759 ± 0.005	6.778 ± 0.001	Persic M. et. al. (1995)
233 - g41	1.06	1	233.473 ± 0.001	1.297 ± 0.001	2.289 ± 0.001	239.951 ± 0.007	15.458 ± 0.001	Persic M. et. al. (1995)
233 - g42	0.41	3	111.599 ± 0.001	1.424 ± 0.001	1.695 ± 0.001	128.209 ± 0.001	1.718 ± 0.001	Persic M. et. al. (1995)
233 - g43	0.59	2	77.486 ± 0.002	2.610 ± 0.001	0.993 ± 0.001	71.1448 ± 0.001	0.403 ± 0.001	Persic M. et. al. (1995)
233 - g47	0.33	4	295.782 ± 0.001	7.132 ± 0.001	1.391 ± 0.001	366.578 ± 0.003	29.509 ± 0.001	Persic M. et. al. (1995)
234 - g13	0.25	2	147.871 ± 0.001	1.328 ± 0.001	1.514 ± 0.001	165.598 ± 0.001	4.082 ± 0.001	Persic M. et. al. (1995)
2352 - 14	0.65	3	98.842 ± 0.001	2.303 ± 0.001	1.698 ± 0.001	111.503 ± 0.001	1.101 ± 0.001	Persic M. et. al. (1995)
235 - g16	1.72	1	186.585 ± 0.004	3.577 ± 0.003	1.850 ± 0.002	265.444 ± 0.004	10.925 ± 0.002	Persic M. et. al. (1995)
235 - g20	0.40	2	163.320 ± 0.001	1.512 ± 0.001	1.590 ± 0.001	179.947 ± 0.005	5.417 ± 0.001	Persic M. et. al. (1995)
236 - g37	0.19	2	185.737 ± 0.001	0.991 ± 0.001	1.344 ± 0.001	199.539 ± 0.004	7.823 ± 0.001	Persic M. et. al. (1995)
237 - g49	0.44	4	251.158 ± 0.001	5.564 ± 0.001	1.241 ± 0.001	218.201 ± 0.001	11.624 ± 0.001	Persic M. et. al. (1995)
238 - g24	5.96	2	228.000 ± 0.002	2.370 ± 0.001	1.373 ± 0.001	316.359 ± 0.005	18.496 ± 0.001	Persic M. et. al. (1995)
239-g17	0.93	3	88.883 ± 0.001	0.882 ± 0.001	1.710 ± 0.005	105.107 ± 0.001	0.910 ± 0.001	Persic M. et. al. (1995)
240 - g11	2.94	1	228.512 ± 0.004	2.654 ± 0.002	1.603 ± 0.002	236.429 ± 0.008	14.403 ± 0.002	Persic M. et. al. (1995)
240 - g13	0.68	5	647.320 ± 0.001	3.385 ± 0.008	1.192 ± 0.005	633.706 ± 0.004	281.722 ± 0.032	Persic M. et. al. (1995)
241-g21	0.32	4	298.760 ± 0.001	1.273 ± 0.001	1.149 ± 0.001	312.101 ± 0.009	30.669 ± 0.001	Persic M. et. al. (1995)
242 - g18	0.86	1	70.340 ± 0.001	0.621 ± 0.001	2.396 ± 0.001	88.8651 ± 0.006	0.524 ± 0.001	Persic M. et. al. (1995)
243-g36	0.90	3	155.201 ± 0.001	3.087 ± 0.001	1.756 ± 0.001	213.125 ± 0.003	5.420 ± 0.001	Persic M. et. al. (1995)
243-g8	0.51	2	215.382 ± 0.001	2.241 ± 0.001	1.136 ± 0.001	218.168 ± 0.001	11.137 ± 0.001	Persic M. et. al. (1995)
244-g31	1.35	1	228.697 ± 0.001	1.479 ± 0.001	1.533 ± 0.001	241.838 ± 0.009	14.711 ± 0.001	Persic M. et. al. (1995)
244-g43	0.62	5	160.264 ± 0.001	0.155 ± 0.001	1.840 ± 0.001	162.218 ± 0.004	4.776 ± 0.001	Persic M. et. al. (1995)
245-g10	0.92	3	190.919 ± 0.001	3.337 ± 0.001	1.717 ± 0.001	195.646 ± 0.003	7.387 ± 0.001	Persic M. et. al. (1995)
249-g16	0.50	3	238.312 ± 0.001	2.542 ± 0.001	1.619 ± 0.001	233.441 ± 0.001	14.234 ± 0.001	Persic M. et. al. (1995)
249-g35	0.48	5	246.224 ± 0.002	1.798 ± 0.001	1.108 ± 0.001	260.169 ± 0.006	16.256 ± 0.001	Persic M. et. al. (1995)
24-g19	0.73	2	158.856 ± 0.002	2.768 ± 0.001	1.188 ± 0.001	215.561 ± 0.006	5.922 ± 0.001	Persic M. et. al. (1995)
250-g17	1.56	1	251.355 ± 0.002	1.678 ± 0.001	1.772 ± 0.001	270.057 ± 0.007	19.961 ± 0.001	Persic M. et. al. (1995)
251-g10	0.18	3	330.018 ± 0.001	2.761 ± 0.001	1.354 ± 0.001	340.907 ± 0.007	40.308 ± 0.001	Persic M. et. al. (1995)
251-g6	0.52	3	197.240 ± 0.001	4.278 ± 0.001	1.479 ± 0.001	261.144 ± 0.006	10.397 ± 0.001	Persic M. et. al. (1995)
25-g16	0.81	3	153.866 ± 0.001	2.593 ± 0.001	1.618 ± 0.001	199.432 ± 0.001	4.994 ± 0.001	Persic M. et. al. (1995)
204-g43	0.08	3	308.303 ± 0.001	1.707 ± 0.001	1.281 ± 0.001	390.157 ± 0.007	59.217 ± 0.001	Persic M. et. al. (1995)
204-g48	0.12	2	187.082 ± 0.002	1.854 ± 0.001	0.947 ± 0.001	194.217 ± 0.001	7.453 ± 0.001	Persic M. et. al. (1995)
205-g10	0.40	3	$184,216 \pm 0.001$	2.685 ± 0.001	1.039 ± 0.001 1.303 ± 0.001	180.567 ± 0.004	6.625 ± 0.001	Persic M. et. al. (1995)
200-g8	0.30	2	134.210 ± 0.002 230.822 ± 0.001	1590 ± 0.001	1.303 ± 0.001 1.342 ± 0.001	259.618 ± 0.001	16880 ± 0.001	Porsic M of al (1995)
267 g29	0.03	2	306.638 ± 0.001	1.056 ± 0.001	1.342 ± 0.001 1.434 ± 0.001	321370 ± 0.003	10.000 ± 0.001	Porsic M of al (1995)
207-g33	0.10	3	282540 ± 0.001	1.613 ± 0.001	1.434 ± 0.001 1.186 ± 0.001	321.379 ± 0.004	33.428 ± 0.001	Porsic M of al (1995)
208-g11 268 g33	0.15	3	267.131 ± 0.001	4.436 ± 0.001	1.130 ± 0.001 1.713 ± 0.001	348586 ± 0.007	24.095 ± 0.001	Porsic M of al (1995)
200-g00	0.03	1	$171 472 \pm 0.001$	4.430 ± 0.001	0.976 ± 0.001	185.662 ± 0.001	6.012 ± 0.001	Porsic M of al (1995)
269-g10	6.05	3	244.427 ± 0.001	1.507 ± 0.001	1.220 ± 0.001	250.272 ± 0.001	$16,466 \pm 0.001$	Porsic M of al (1995)
269-g19	0.17	4	160.858 ± 0.001	1.556 ± 0.001	1.225 ± 0.002 1.295 ± 0.001	171249 ± 0.001	4592 ± 0.001	Persic M et al (1995)
269-049	0.08	4	$458\ 600\ \pm\ 0\ 002$	2.862 ± 0.001	1.096 ± 0.001	$447\ 711\ \pm\ 0\ 007$	100410 + 0.001	Persic M et al (1995)
269-961	1 10	1	157529 ± 0.002	5.868 ± 0.001	4466 ± 0.001	$187 234 \pm 0.007$	7344 ± 0.001	Persic M et al (1995)
269-975	0.79	3	$123 345 \pm 0.001$	2466 ± 0.003	1.728 ± 0.001	161.998 ± 0.002	2.585 ± 0.001	Persic M et al (1995)
269-078	0.54	5	163790 ± 0.001	1415 ± 0.002	1.879 ± 0.001	$174\ 015\ \pm\ 0\ 001$	4834 ± 0.001	Persic M et al (1995)
269-982	1.84	2	73.200 ± 0.001	0.633 ± 0.003	2.119 ± 0.004	90.451 ± 0.001	0.558 ± 0.001	Persic M. et. al. (1995)
26-26	0.18	4	461.465 ± 0.002	7.207 ± 0.001	1.090 ± 0.001	434.448 ± 0.002	86.206 ± 0.002	Persic M. et. al. (1995)
271-g22	0.25	2	182.374 ± 0.001	1.958 ± 0.004	1.241 ± 0.004	192.033 ± 0.005	7.062 ± 0.001	Persic M. et. al. (1995)

Short title, max. 45 characters 23

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T~(10^{11}~{\rm M_{\odot}})$	Reference
271-94	0.43	6	97.394 ± 0.002	0.292 ± 0.001	1.569 ± 0.001	96.367 ± 0.008	1.001 ± 0.001	Persic M. et. al. (1995)
273-26	0.14	$\tilde{2}$	168.488 ± 0.002	2.721 ± 0.001	1.557 ± 0.001	166.865 ± 0.002	5.199 ± 0.001	Persic M. et. al. (1995)
27-g17	0.57	4	183.918 ± 0.001	0.901 ± 0.001	1.341 ± 0.001	195.926 ± 0.009	7.272 ± 0.001	Persic M. et. al. (1995)
27-g24	0.61	2	176.780 ± 0.001	1.755 ± 0.001	1.697 ± 0.001	187.971 ± 0.001	6.637 ± 0.001	Persic M. et. al. (1995)
27-g8	8.17	1	117.720 ± 0.002	3.650 ± 0.001	3.597 ± 0.003	182.792 ± 0.009	3.419 ± 0.001	Persic M. et. al. (1995)
280-g13	0.14	4	396.151 ± 0.001	3.727 ± 0.004	1.178 ± 0.001	378.585 ± 0.004	60.712 ± 0.001	Persic M. et. al. (1995)
281-g38	0.16	1	173.711 ± 0.001	1.990 ± 0.004	2.355 ± 0.001	185.437 ± 0.001	6.733 ± 0.001	Persic M. et. al. (1995)
282-g35	0.14	4	251.310 ± 0.001	2.585 ± 0.005	1.174 ± 0.001	252.688 ± 0.006	16.224 ± 0.001	Persic M. et. al. (1995)
282-g3	2.11	1	196.041 ± 0.004	2.495 ± 0.002	1.551 ± 0.002	207.742 ± 0.007	9.294 ± 0.002	Persic M. et. al. (1995)
284 - g13	0.51	3	221.757 ± 0.002	1.750 ± 0.002	1.471 ± 0.001	223.281 ± 0.005	11.991 ± 0.001	Persic M. et. al. (1995)
284 - g21	0.11	4	360.887 ± 0.002	3.331 ± 0.001	1.092 ± 0.001	344.697 ± 0.009	45.824 ± 0.002	Persic M. et. al. (1995)
284 - g24	0.80	3	130.624 ± 0.001	2.573 ± 0.006	1.715 ± 0.001	177.040 ± 0.001	3.180 ± 0.001	Persic M. et. al. (1995)
284-g29	0.56	3	189.630 ± 0.001	4.965 ± 0.001	1.632 ± 0.001	254.540 ± 0.001	9.270 ± 0.001	Persic M. et. al. (1995)
284-g39	0.45	3	133.552 ± 0.002	0.592 ± 0.001	1.525 ± 0.001	133.794 ± 0.002	2.680 ± 0.001	Persic M. et. al. (1995)
285 - g40	0.41	3	295.427 ± 0.007	3.958 ± 0.001	1.638 ± 0.001	298.416 ± 0.002	27.521 ± 0.002	Persic M. et. al. (1995)
286-g16	1.26	2	237.415 ± 0.006	4.134 ± 0.004	1.385 ± 0.003	323.992 ± 0.007	20.097 ± 0.004	Persic M. et. al. (1995)
286-g18	0.89	2	295.063 ± 0.001	1.900 ± 0.002	2.122 ± 0.001	328.919 ± 0.001	33.025 ± 0.001	Persic M. et. al. (1995)
287 - g13	5.63	2	180.873 ± 0.002	4.122 ± 0.001	1.893 ± 0.001	246.668 ± 0.008	9.055 ± 0.001	Persic M. et. al. (1995)
290 - g22	0.26	2	160.572 ± 0.001	1.028 ± 0.001	1.316 ± 0.001	174.587 ± 0.001	5.091 ± 0.001	Persic M. et. al. (1995)
290 - g35	0.58	3	254.571 ± 0.001	6.905 ± 0.001	1.346 ± 0.001	322.763 ± 0.008	20.382 ± 0.001	Persic M. et. al. (1995)
291 - g10	0.79	1	164.551 ± 0.001	0.966 ± 0.001	2.065 ± 0.001	175.817 ± 0.009	5.601 ± 0.001	Persic M. et. al. (1995)
291 - g24	0.06	3	181.134 ± 0.001	4.315 ± 0.001	1.371 ± 0.001	180.248 ± 0.001	5.663 ± 0.001	Persic M. et. al. (1995)
296 - g25	0.45	5	178.046 ± 0.004	0.244 ± 0.001	1.579 ± 0.001	179.562 ± 0.003	6.478 ± 0.001	Persic M. et. al. (1995)
296 - g26	0.58	1	157.943 ± 0.001	8.879 ± 0.002	4.486 ± 0.001	255.503 ± 0.001	10.372 ± 0.001	Persic M. et. al. (1995)
297 - g37	0.18	1	174.297 ± 0.001	1.361 ± 0.003	1.140 ± 0.001	176.660 ± 0.005	6.169 ± 0.001	Persic M. et. al. (1995)
298 - g16	0.58	3	300.047 ± 0.001	0.890 ± 0.001	2.089 ± 0.001	303.348 ± 0.002	31.232 ± 0.001	Persic M. et. al. (1995)
298 - g36	0.35	3	155.028 ± 0.006	2.088 ± 0.001	1.586 ± 0.001	150.114 ± 0.002	3.785 ± 0.001	Persic M. et. al. (1995)
298-g8	0.66	2	127.009 ± 0.001	2.038 ± 0.001	1.641 ± 0.001	146.698 ± 0.001	2.631 ± 0.001	Persic M. et. al. (1995)
299 - g18	0.21	3	187.334 ± 0.001	3.064 ± 0.001	1.259 ± 0.001	246.076 ± 0.005	9.001 ± 0.001	Persic M. et. al. (1995)
299-g4	0.37	3	218.309 ± 0.005	1.572 ± 0.005	1.648 ± 0.004	216.739 ± 0.001	11.392 ± 0.001	Persic M. et. al. (1995)
$2 - g_{12}$	0.07	6	241.434 ± 0.002	1.012 ± 0.001	0.982 ± 0.001	234.712 ± 0.007	14.467 ± 0.001	Persic M. et. al. (1995)
302-g9	0.60	3	71.820 ± 0.001	0.970 ± 0.001	1.613 ± 0.001	85.624 ± 0.009	0.473 ± 0.001	Persic M. et. al. (1995)
303 - g14	0.17	3	377.399 ± 0.001	2.935 ± 0.001	1.431 ± 0.001	390.497 ± 0.006	60.818 ± 0.001	Persic M. et. al. (1995)
304 - g16	0.13	1	200.012 ± 0.001	1.028 ± 0.001	1.627 ± 0.001	204.110 ± 0.009	9.514 ± 0.001	Persic M. et. al. (1995)
305 - g14	0.76	3	156.961 ± 0.001	3.169 ± 0.001	1.761 ± 0.001	165.633 ± 0.004	4.187 ± 0.001	Persic M. et. al. (1995)
305 - g6	0.27	3	201.417 ± 0.001	0.752 ± 0.001	1.429 ± 0.001	211.703 ± 0.008	9.697 ± 0.001	Persic M. et. al. (1995)
306 - g2	0.25	3	118.182 ± 0.001	1.519 ± 0.001	1.291 ± 0.001	133.756 ± 0.002	1.969 ± 0.001	Persic M. et. al. (1995)
306 - g32	1.30	3	236.743 ± 0.007	2.250 ± 0.002	1.420 ± 0.005	236.132 ± 0.006	14.235 ± 0.003	Persic M. et. al. (1995)
308 - g23	0.35	2	168.376 ± 0.001	0.861 ± 0.001	1.481 ± 0.001	178.599 ± 0.006	5.773 ± 0.001	Persic M. et. al. (1995)
309 - g17	0.37	3	305.370 ± 0.001	2.028 ± 0.001	1.486 ± 0.001	320.068 ± 0.009	32.994 ± 0.001	Persic M. et. al. (1995)
309 - g5	0.97	3	86.872 ± 0.001	0.231 ± 0.001	2.011 ± 0.001	104.223 ± 0.007	0.902 ± 0.001	Persic M. et. al. (1995)
30-g9	1.17	2	331.980 ± 0.004	4.235 ± 0.003	1.633 ± 0.003	454.957 ± 0.007	56.515 ± 0.008	Persic M. et. al. (1995)
310 - g2	0.44	2	220.204 ± 0.001	1.319 ± 0.002	1.540 ± 0.001	233.323 ± 0.008	12.876 ± 0.001	Persic M. et. al. (1995)
317 - g32	1.05	1	214.224 ± 0.003	0.697 ± 0.001	1.604 ± 0.001	232.699 ± 0.007	12.429 ± 0.001	Persic M. et. al. (1995)
317 - g52	0.61	3	218.210 ± 0.001	2.240 ± 0.001	1.870 ± 0.001	221.006 ± 0.002	11.479 ± 0.001	Persic M. et. al. (1995)
317 - g53	0.77	4	159.323 ± 0.001	5.869 ± 0.001	1.489 ± 0.001	184.648 ± 0.001	3.802 ± 0.001	Persic M. et. al. (1995)
319-g16	0.46	3	116.829 ± 0.001	3.199 ± 0.001	1.602 ± 0.001	151.165 ± 0.001	2.061 ± 0.001	Persic M. et. al. (1995)
319-g26	0.43	3	130.342 ± 0.001	4.893 ± 0.001	1.431 ± 0.001	162.985 ± 0.001	2.552 ± 0.001	Persic M. et. al. (1995)
31-g18	0.35	4	193.889 ± 0.001	0.494 ± 0.001	1.412 ± 0.001	194.566 ± 0.008	8.241 ± 0.001	Persic M. et. al. (1995)
31 - g5	0.67	1	191.843 ± 0.001	0.820 ± 0.001	1.250 ± 0.001	199.768 ± 0.007	8.511 ± 0.001	Persic M. et. al. (1995)

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T~(10^{11}~{\rm M_\odot})$	Reference
320-g26	0.71	3	227.000 ± 0.001	0.068 ± 0.001	1.812 ± 0.003	231.151 ± 0.002	13.819 ± 0.001	Persic M. et. al. (1995)
321 - g10	0.26	4	234.197 ± 0.001	1.202 ± 0.001	1.303 ± 0.001	230.965 ± 0.009	13.785 ± 0.001	Persic M. et. al. (1995)
321 - g17	0.37	4	158.620 ± 0.001	1.012 ± 0.001	1.432 ± 0.001	155.417 ± 0.001	4.200 ± 0.001	Persic M. et. al. (1995)
321 - g1	0.25	2	83.029 ± 0.001	7.306 ± 0.001	3.304 ± 0.001	136.258 ± 0.001	1.421 ± 0.001	Persic M. et. al. (1995)
322-g33	0.99	6	335.597 ± 0.001	2.426 ± 0.001	1.097 ± 0.002	456.970 ± 0.001	53.385 ± 0.002	Persic M. et. al. (1995)
322 - g36	0.66	4	278.486 ± 0.001	1.419 ± 0.001	1.470 ± 0.003	295.191 ± 0.008	25.12 ± 0.001	Persic M. et. al. (1995)
322-g45	0.37	3	147.497 ± 0.001	0.440 ± 0.001	1.245 ± 0.001	164.128 ± 0.003	4.052 ± 0.001	Persic M. et. al. (1995)
322-g48	0.05	2	132.885 ± 0.001	6.267 ± 0.001	1.682 ± 0.001	171.065 ± 0.001	3.178 ± 0.001	Persic M. et. al. (1995)
322-g55	0.54	5	239.551 ± 0.001	0.675 ± 0.001	1.439 ± 0.001	238.652 ± 0.009	15.208 ± 0.001	Persic M. et. al. (1995)
322-g82	6.39	3	252.835 ± 0.006	1.958 ± 0.004	1.735 ± 0.009	250.878 ± 0.003	17.667 ± 0.005	Persic M. et. al. (1995)
322-g87	0.71	5	477.622 ± 0.001	2.455 ± 0.001	1.290 ± 0.001	471.525 ± 0.006	114.622 ± 0.001	Persic M. et. al. (1995)
322-g93	0.57	4	258.096 ± 0.001	4.252 ± 0.001	1.266 ± 0.001	249.819 ± 0.009	15.613 ± 0.002	Persic M. et. al. (1995)
323-g27	0.65	4	366.917 ± 0.001	2.539 ± 0.001	1.543 ± 0.001	375.230 ± 0.001	54.265 ± 0.001	Persic M. et. al. (1995)
323-g33	0.34	2	130.994 ± 0.001	1.179 ± 0.001	1.087 ± 0.001	131.082 ± 0.003	$3.169 \pm 0.$	Persic M. et. al. (1995)
323-g41	0.74	2	107.600 ± 0.001	1.093 ± 0.001	1.927 ± 0.001	133.139 ± 0.009	2.701 ± 0.001	Persic M. et. al. (1995)
323-g42	0.00	3	197.099 ± 0.001	1.002 ± 0.001	1.211 ± 0.002 1.740 ± 0.001	198.880 ± 0.001	0.022 ± 0.001	Persic M. et. al. (1995)
323-g50 327 g27	0.24	4	$328\ 327\ \pm\ 0.001$	1.215 ± 0.001 9.277 ± 0.001	1.749 ± 0.001 1.341 ± 0.001	104.944 ± 0.008 270 166 \pm 0.001	0.923 ± 0.001 23 524 \pm 0.002	Persic M. et. al. (1995)
328-015	0.00	2	$191 145 \pm 0.001$	0.939 ± 0.001	1.938 ± 0.001	199360 ± 0.001	8382 ± 0.002	Persic M et al (1995)
328-03	0.69	4	387534 ± 0.001	8.091 ± 0.001	1.595 ± 0.001	350.252 ± 0.001	47359 ± 0.001	Persic M et al (1995)
328-g41	0.59	1	183970 ± 0.001	1231 ± 0.001	1.000 ± 0.001 1.271 ± 0.001	186936 ± 0.003	7309 ± 0.001	Persic M et al (1995)
328-943	0.36	2	87.032 ± 0.001	1.063 ± 0.002	1.308 ± 0.001	$103 315 \pm 0.003$	0.867 ± 0.001	Persic M et al (1995)
328-946	0.09	ĩ	138.509 ± 0.001	4.826 ± 0.001	4.127 ± 0.001	183.675 ± 0.001	5.187 ± 0.001	Persic M. et. al. (1995)
329-g7	0.43	3	316.423 ± 0.001	0.700 ± 0.001	1.679 ± 0.001	319.986 ± 0.008	36.659 ± 0.001	Persic M. et. al. (1995)
32-g18	0.54	3	215.401 ± 0.003	1.724 ± 0.001	1.725 ± 0.001	219.143 ± 0.002	11.193 ± 0.001	Persic M. et. al. (1995)
336-g13	0.45	5	195.049 ± 0.001	0.092 ± 0.001	1.441 ± 0.001	198.067 ± 0.006	8.694 ± 0.001	Persic M. et. al. (1995)
337-g22	0.24	4	336.382 ± 0.001	2.809 ± 0.001	1.377 ± 0.001	338.700 ± 0.009	40.226 ± 0.002	Persic M. et. al. (1995)
337-g6	0.22	2	199.657 ± 0.001	1.151 ± 0.001	1.292 ± 0.003	208.192 ± 0.008	9.397 ± 0.001	Persic M. et. al. (1995)
338-g22	0.59	4	247.369 ± 0.001	5.249 ± 0.004	1.481 ± 0.001	324.182 ± 0.006	19.078 ± 0.001	Persic M. et. al. (1995)
339 - g36	0.83	3	166.385 ± 0.001	2.481 ± 0.001	1.829 ± 0.001	222.731 ± 0.001	6.673 ± 0.001	Persic M. et. al. (1995)
33-g22	0.35	3	169.599 ± 0.001	3.734 ± 0.004	1.144 ± 0.001	178.487 ± 0.001	4.933 ± 0.001	Persic M. et. al. (1995)
33-g32	0.46	3	212.912 ± 0.001	1.071 ± 0.001	1.725 ± 0.001	213.244 ± 0.001	10.850 ± 0.001	Persic M. et. al. (1995)
340 - g8	0.40	4	188.161 ± 0.001	0.746 ± 0.001	1.263 ± 0.001	199.150 ± 0.004	7.810 ± 0.001	Persic M. et. al. (1995)
342 - g43	0.17	4	379.778 ± 0.001	1.843 ± 0.001	1.425 ± 0.001	398.262 ± 0.003	63.109 ± 0.001	Persic M. et. al. (1995)
343 - g18	0.15	3	267.996 ± 0.002	4.369 ± 0.001	1.126 ± 0.001	252.160 ± 0.004	17.940 ± 0.001	Persic M. et. al. (1995)
343 - g28	0.12	1	93.903 ± 0.002	1.921 ± 0.001	1.754 ± 0.001	116.191 ± 0.002	1.208 ± 0.001	Persic M. et. al. (1995)
346-g1	0.04	2	1.259 ± 0.003	6.727 ± 0.003	25.477 ± 0.009	51.317 ± 0.002	0.076 ± 0.001	Persic M. et. al. (1995)
346-g26	0.49	3	134.317 ± 0.001	1.713 ± 0.001	1.451 ± 0.001	149.830 ± 0.009	2.868 ± 0.001	Persic M. et. al. (1995)
347-g28	0.69	3	88.576 ± 0.001	1.071 ± 0.001	1.788 ± 0.001	104.022 ± 0.001	0.886 ± 0.001	Persic M. et. al. (1995)
347-g33	8.20	1	153.076 ± 0.002	1.609 ± 0.001	2.518 ± 0.001	162.764 ± 0.002	4.605 ± 0.001	Persic M. et. al. (1995)
347-g34	0.57	3	137.660 ± 0.001	1.300 ± 0.001	1.708 ± 0.001	154.294 ± 0.008	3.205 ± 0.001	Persic M. et. al. (1995)
349-g32	0.38	1	$_{201,082} \pm 0.004$	0.920 ± 0.001	2.872 ± 0.001	200.387 ± 0.0001	16.131 ± 0.001	Persic M. et. al. (1995)
349-g33	0.08	2	201.244 ± 0.001 241.085 ± 0.001	2.100 ± 0.001 2.124 ± 0.001	1.008 ± 0.001 1.491 ± 0.001	205.332 ± 0.0025 254.421 ± 0.0001	$\frac{9.000 \pm 0.001}{16.637 \pm 0.001}$	Persic M et al. (1995)
350-a23	7.66	1	$228 430 \pm 0.001$	1110 ± 0.001	1.331 ± 0.001 1.279 ± 0.003	232334 ± 0.0001	14.032 ± 0.001	Persic M et al (1995)
351-g18	0.69	3	149.817 ± 0.002	3.281 ± 0.001	1.273 ± 0.003 1.602 ± 0.001	160.251 ± 0.000	3.61 ± 0.001	Persic M et al (1995)
352-014	1 25	2	187269 ± 0.001	1.321 ± 0.001	2.062 ± 0.001	189.824 ± 0.001	7.653 ± 0.001	Persic M et al (1995)
352-915	0.14	4	$281 480 \pm 0.001$	2.629 ± 0.001	1.432 ± 0.001	281.695 ± 0.0094	23183 ± 0.001	Persic M et al (1995)
352-224	0.26	4	378.287 ± 0.001	1.222 + 0.001	1.334 ± 0.001	377.811 ± 0.003	60.34 ± 0.002	Persic M. et. al. (1995)
352-g27	0.85	2	165.736 ± 0.001	2.776 ± 0.001	1.931 ± 0.001	181.919 ± 0.001	5.636 ± 0.001	Persic M. et. al. (1995)

Short title, max. 45 characters 25

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kp}c)$	$M_T~(10^{11}~{\rm M_{\odot}})$	Reference
352-g50	0.71	1	111.812 ± 0.001	1.607 ± 0.001	2.500 ± 0.001	136.900 ± 0.001	2.079 ± 0.001	Persic M. et. al. (1995)
352 - g53	1.76	2	264.541 ± 0.003	0.267 ± 0.001	0.718 ± 0.001	278.414 ± 0.002	22.495 ± 0.001	Persic M. et. al. (1995)
353 - g14	0.42	2	132.212 ± 0.001	1.665 ± 0.001	1.493 ± 0.007	150.920 ± 0.002	2.939 ± 0.001	Persic M. et. al. (1995)
353-g2	0.25	1	78.664 ± 0.002	1.734 ± 0.001	2.732 ± 0.002	99.8382 ± 0.001	0.776 ± 0.001	Persic M. et. al. (1995)
354 - g17	0.44	3	226.787 ± 0.001	2.993 ± 0.001	1.704 ± 0.009	220.604 ± 0.004	12.012 ± 0.001	Persic M. et. al. (1995)
354 - g46	0.66	3	264.978 ± 0.001	1.719 ± 0.001	1.719 ± 0.001	282.608 ± 0.006	22.106 ± 0.001	Persic M. et. al. (1995)
354 - g47	0.73	6	211.467 ± 0.001	0.183 ± 0.001	4.019 ± 0.005	214.641 ± 0.001	11.064 ± 0.001	Persic M. et. al. (1995)
355 - g26	0.21	2	132.230 ± 0.001	1.710 ± 0.001	1.540 ± 0.001	147.901 ± 0.004	2.881 ± 0.001	Persic M. et. al. (1995)
356 - g15	0.55	3	246.579 ± 0.001	6.259 ± 0.001	1.748 ± 0.001	322.403 ± 0.001	20.057 ± 0.001	Persic M. et. al. (1995)
356 - g18	0.55	6	680.158 ± 0.003	1.967 ± 0.001	1.000 ± 0.001	676.648 ± 0.007	341.409 ± 0.001	Persic M. et. al. (1995)
357 - g16	1.30	4	201.161 ± 0.009	1.265 ± 0.001	1.034 ± 0.003	202.124 ± 0.007	8.724 ± 0.001	Persic M. et. al. (1995)
357 - g19	0.56	4	224.886 ± 0.001	2.120 ± 0.001	1.412 ± 0.001	220.374 ± 0.004	11.528 ± 0.001	Persic M. et. al. (1995)
357-g3	0.46	3	177.309 ± 0.001	2.481 ± 0.001	1.373 ± 0.001	184.297 ± 0.001	6.026 ± 0.001	Persic M. et. al. (1995)
358 - g17	0.53	3	308.863 ± 0.006	0.781 ± 0.002	1.556 ± 0.007	335.227 ± 0.009	36.512 ± 0.002	Persic M. et. al. (1995)
358 - g58	0.23	4	183.857 ± 0.001	0.532 ± 0.001	1.438 ± 0.001	184.133 ± 0.009	6.985 ± 0.001	Persic M. et. al. (1995)
358 - g63	0.16	2	135.694 ± 0.005	3.103 ± 0.001	1.819 ± 0.001	134.660 ± 0.009	2.732 ± 0.001	Persic M. et. al. (1995)
358-g9	0.88	3	87.975 ± 0.001	2.067 ± 0.001	1.751 ± 0.007	112.591 ± 0.001	0.898 ± 0.001	Persic M. et. al. (1995)
359-g6	0.13	4	480.884 ± 0.002	2.708 ± 0.003	0.956 ± 0.001	477.948 ± 0.006	118.632 ± 0.004	Persic M. et. al. (1995)
35-g18	0.50	4	288.783 ± 0.001	2.105 ± 0.001	1.407 ± 0.004	297.329 ± 0.002	26.436 ± 0.003	Persic M. et. al. (1995)
35-g3	0.43	3	91.966 ± 0.001	0.757 ± 0.001	1.260 ± 0.001	110.277 ± 0.001	1.02 ± 0.001	Persic M. et. al. (1995)
361-g12	0.14	3	205.478 ± 0.003	3.709 ± 0.001	1.192 ± 0.003	209.598 ± 0.007	8.779 ± 0.003	Persic M. et. al. (1995)
362-g11	8.95	1	117.405 ± 0.003	2.118 ± 0.001	1.954 ± 0.002	121.347 ± 0.001	1.999 ± 0.001	Persic M. et. al. (1995)
363-g23	1.01	3	143.000 ± 0.001	0.029 ± 0.001	3.043 ± 0.001	145.732 ± 0.003	3.463 ± 0.001	Persic M. et. al. (1995)
365-g28	0.43	3	239.131 ± 0.001	4.075 ± 0.001	1.713 ± 0.001	238.745 ± 0.001	14.137 ± 0.001	Persic M. et. al. (1995)
366-g4	0.08	3	169.994 ± 0.001	1.991 ± 0.002	1.125 ± 0.001	163.729 ± 0.003	4.911 ± 0.001	Persic M. et. al. (1995)
366-g9	0.07	3	153.752 ± 0.001	0.352 ± 0.001	0.965 ± 0.001	154.930 ± 0.004	4.161 ± 0.001	Persic M. et. al. (1995)
36-g19	0.68	3	248.579 ± 0.001	3.661 ± 0.001	1.811 ± 0.001	247.992 ± 0.006	16.205 ± 0.001	Persic M. et. al. (1995)
373-g12	0.31	3	93.949 ± 0.008	1.734 ± 0.001	1.695 ± 0.001	124.561 ± 0.001	1.161 ± 0.001	Persic M. et. al. (1995)
373-g21	0.74	4	231.094 ± 0.001	4.126 ± 0.001	1.294 ± 0.001	226.897 ± 0.004	11.232 ± 0.001	Persic M. et. al. (1995)
374-g10	0.42	3	201.076 ± 0.001	2.182 ± 0.001	1.462 ± 0.001	196.092 ± 0.005	8.437 ± 0.001	Persic M. et. al. (1995)
374-g11	0.25	2	158.879 ± 0.001	1.183 ± 0.001	1.045 ± 0.001	168.795 ± 0.007	4.757 ± 0.001	Persic M. et. al. (1995)
374-g26	0.56	4	255.895 ± 0.001	2.298 ± 0.001	1.431 ± 0.001	256.525 ± 0.007	17.524 ± 0.001	Persic M. et. al. (1995)
374-g27	5.44	3	275.896 ± 0.007	0.862 ± 0.001	1.671 ± 0.001	278.074 ± 0.001	24.058 ± 0.001	Persic M. et. al. (1995)
374-g29	0.56	4	295.487 ± 0.002	3.000 ± 0.001	1.495 ± 0.001	373.311 ± 0.003	34.445 ± 0.001	Persic M. et. al. (1995)
274 m40	0.48	4	70.802 ± 0.001	3.039 ± 0.001	1.486 ± 0.001	38.997 ± 0.001	0.012 ± 0.001	Persic M. et. al. (1995)
374-g49	0.32	4	348.390 ± 0.001 341.821 ± 0.002	2.488 ± 0.001 2.333 ± 0.001	0.964 ± 0.001	331.650 ± 0.009	40.338 ± 0.001 40.815 ± 0.004	Persic M. et. al. (1995)
375 a12	0.32	3	227.858 ± 0.002	10.701 ± 0.001	2160 ± 0.003	210.618 ± 0.002	10.454 ± 0.004	Porsic M at al (1995)
375 g12	0.31	4	187.071 ± 0.001	0.541 ± 0.001	1.084 ± 0.002	186.063 ± 0.001	7312 ± 0.001	Porsic M at al (1995)
375 g20	0.13	5	600.00 ± 0.001	3.701 ± 0.001	1.034 ± 0.001 1.262 ± 0.001	587551 ± 0.007	220.625 ± 0.001	Porsic M at al (1995)
375 g23	0.45	1	138750 ± 0.001	1.464 ± 0.001	1.202 ± 0.001 1.751 ± 0.001	156705 ± 0.007	3537 ± 0.003	Porsic M at al (1995)
375 g47	0.04	1	153.750 ± 0.002 153.345 ± 0.001	1.404 ± 0.001 1 703 ± 0.001	1.751 ± 0.001 1.250 ± 0.002	181.034 ± 0.002	4.922 ± 0.001	Porsic M at al (1995)
376-92	0.02	2	186.616 ± 0.001	1.730 ± 0.001 1.571 ± 0.001	1.200 ± 0.002 1.443 ± 0.001	191.843 ± 0.006	7509 ± 0.001	Persic M et al (1995)
377-010	0.39	4	394738 ± 0.001	2238 ± 0.001	1.440 ± 0.001 1.469 ± 0.001	388.694 ± 0.008	$65,706 \pm 0.0017$	Persic M et al (1995)
377-031	0.89	3	173792 ± 0.001	1.886 ± 0.009	1.755 ± 0.001	$183 187 \pm 0.003$	6000 ± 0.001	Persic M et al (1995)
378-011	0.13	3	$214 419 \pm 0.004$	2514 ± 0.001	1.194 ± 0.001	213597 ± 0.001	10.263 ± 0.001	Persic M et al (1995)
379-96	1.57	1	200.070 ± 0.002	3753 ± 0.001	1.037 ± 0.002	$202\ 155\ \pm\ 0\ 001$	9.081 ± 0.002	Persic M et al (1995)
380-g14	1.21	2	166.167 ± 0.001	0.979 ± 0.001	1.984 ± 0.001	177.175 ± 0.001	5.626 ± 0.001	Persic M. et. al. (1995)
380-g19	0.14	2	285.801 ± 0.001	2.131 ± 0.008	0.929 ± 0.002	284.616 ± 0.003	25.796 ± 0.002	Persic M. et. al. (1995)
380-924	0.09	4	213.680 ± 0.001	0.919 ± 0.001	1.380 ± 0.001	212.033 ± 0.007	10.666 ± 0.001	Persic M. et. al. (1995)

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\mathrm{edge}}~(\mathrm{kpc})$	$M_T~(10^{11}~{\rm M_{\odot}})$	Reference
381-g51	0.43	4	367.358 ± 0.009	2.505 ± 0.001	1.565 ± 0.001	374.114 ± 0.005	54.311 ± 0.004	Persic M. et. al. (1995)
382-g32	1.36	3	267.394 ± 0.001	9.782 ± 0.001	1.793 ± 0.001	341.539 ± 0.001	23.790 ± 0.001	Persic M. et. al. (1995)
382 - g4	0.35	4	156.290 ± 0.001	1.667 ± 0.001	1.394 ± 0.001	164.632 ± 0.004	4.131 ± 0.001	Persic M. et. al. (1995)
382-g58	0.11	1	174.920 ± 0.001	7.152 ± 0.001	4.680 ± 0.001	287.152 ± 0.001	13.389 ± 0.001	Persic M. et. al. (1995)
383-g2	1.24	1	162.716 ± 0.001	2.277 ± 0.001	2.322 ± 0.001	175.255 ± 0.001	5.611 ± 0.001	Persic M. et. al. (1995)
383 - g55	0.21	2	280.254 ± 0.001	1.486 ± 0.001	1.177 ± 0.001	309.815 ± 0.004	27.585 ± 0.001	Persic M. et. al. (1995)
383-g67	0.31	4	284.548 ± 0.001	2.821 ± 0.002	1.236 ± 0.001	280.854 ± 0.003	23.232 ± 0.001	Persic M. et. al. (1995)
383-g88	0.85	2	177.908 ± 0.001	1.091 ± 0.001	1.574 ± 0.001	186.744 ± 0.001	6.727 ± 0.001	Persic M. et. al. (1995)
385 - g8	0.20	3	217.815 ± 0.001	5.889 ± 0.001	1.437 ± 0.001	211.532 ± 0.001	9.403 ± 0.001	Persic M. et. al. (1995)
386 - g43	0.28	3	370.320 ± 0.001	1.314 ± 0.001	1.516 ± 0.001	398.065 ± 0.009	61.830 ± 0.002	Persic M. et. al. (1995)
386 - g44	0.94	2	176.385 ± 0.001	0.290 ± 0.001	1.391 ± 0.001	179.146 ± 0.004	6.433 ± 0.001	Persic M. et. al. (1995)
386 - g6	0.12	2	170.483 ± 0.001	1.096 ± 0.001	1.073 ± 0.002	185.738 ± 0.009	6.070 ± 0.001	Persic M. et. al. (1995)
386 - g9	0.87	1	206.284 ± 0.001	0.423 ± 0.001	2.615 ± 0.001	211.193 ± 0.005	10.540 ± 0.001	Persic M. et. al. (1995)
387 - g26	0.40	3	282.105 ± 0.001	3.749 ± 0.001	1.798 ± 0.001	377.385 ± 0.006	32.703 ± 0.001	Persic M. et. al. (1995)
387 - g4	0.99	2	233.664 ± 0.001	0.284 ± 0.001	2.029 ± 0.001	251.564 ± 0.003	15.933 ± 0.001	Persic M. et. al. (1995)
38 - g12	0.16	1	152.862 ± 0.002	0.779 ± 0.001	0.842 ± 0.004	171.66 ± 0.007	4.607 ± 0.001	Persic M. et. al. (1995)
397 - g18	0.27	2	238.098 ± 0.001	4.999 ± 0.001	1.046 ± 0.001	235.151 ± 0.003	13.756 ± 0.001	Persic M. et. al. (1995)
398 - g20	0.09	1	108.406 ± 0.002	4.097 ± 0.001	4.100 ± 0.009	126.958 ± 0.001	2.290 ± 0.002	Persic M. et. al. (1995)
399 - g23	0.34	1	214.382 ± 0.001	1.284 ± 0.001	0.830 ± 0.001	216.788 ± 0.004	11.400 ± 0.001	Persic M. et. al. (1995)
3-g3	0.77	4	309.320 ± 0.001	3.076 ± 0.001	1.485 ± 0.001	309.745 ± 0.006	30.631 ± 0.001	Persic M. et. al. (1995)
3-g4	0.43	3	271.597 ± 0.001	2.918 ± 0.001	1.372 ± 0.001	278.37 ± 0.003	21.874 ± 0.001	Persic M. et. al. (1995)
400 - g21	0.42	4	321.943 ± 0.001	5.965 ± 0.001	1.274 ± 0.001	304.343 ± 0.002	28.698 ± 0.002	Persic M. et. al. (1995)
400 - g37	0.50	3	137.458 ± 0.001	1.194 ± 0.001	1.606 ± 0.001	154.851 ± 0.008	3.212 ± 0.001	Persic M. et. al. (1995)
400-g5	0.26	3	196.193 ± 0.001	0.997 ± 0.001	1.540 ± 0.001	213.279 ± 0.002	9.204 ± 0.001	Persic M. et. al. (1995)
401-g3	0.40	2	250.127 ± 0.001	2.554 ± 0.001	1.710 ± 0.001	266.863 ± 0.001	18.859 ± 0.001	Persic M. et. al. (1995)
403 - g16	0.48	4	217.507 ± 0.001	0.258 ± 0.001	1.260 ± 0.001	238.329 ± 0.001	12.925 ± 0.001	Persic M. et. al. (1995)
403 - g31	0.11	4	245.160 ± 0.001	2.811 ± 0.001	1.075 ± 0.001	230.149 ± 0.006	13.640 ± 0.001	Persic M. et. al. (1995)
404-g18	0.19	5	231.337 ± 0.002	2.498 ± 0.001	1.100 ± 0.002	258.078 ± 0.006	13.569 ± 0.001	Persic M. et. al. (1995)
404 - g45	0.57	4	313.706 ± 0.001	5.621 ± 0.001	1.442 ± 0.001	287.901 ± 0.001	26.161 ± 0.001	Persic M. et. al. (1995)
406-g26	0.43	4	215.963 ± 0.001	2.973 ± 0.001	1.429 ± 0.002	218.779 ± 0.009	10.079 ± 0.002	Persic M. et. al. (1995)
406-g33	0.10	2	154.704 ± 0.002	2.076 ± 0.001	1.381 ± 0.001	168.747 ± 0.001	4.452 ± 0.001	Persic M. et. al. (1995)
40-g12	1.00	1	190.290 ± 0.002	3.011 ± 0.005	1.994 ± 0.003	201.195 ± 0.007	8.697 ± 0.002	Persic M. et. al. (1995)
410-g19	0.29	1	145.463 ± 0.001	0.524 ± 0.001	2.673 ± 0.001	173.381 ± 0.005	4.325 ± 0.001	Persic M. et. al. (1995)
410-g27	0.60	2	152.710 ± 0.002	2.149 ± 0.001	1.792 ± 0.001	173.021 ± 0.001	4.541 ± 0.001	Persic M. et. al. (1995)
411-g10	1.64	2	134.297 ± 0.001	0.922 ± 0.001	1.957 ± 0.001	151.257 ± 0.002	3.132 ± 0.001	Persic M. et. al. (1995)
411-g3	0.37	3	184.215 ± 0.001	6.386 ± 0.001	2.168 ± 0.001	173.668 ± 0.001	5.861 ± 0.001	Persic M. et. al. (1995)
412-g21	0.92	2	157.310 ± 0.008	1.510 ± 0.001	1.963 ± 0.001	175.885 ± 0.001	4.975 ± 0.001	Persic M. et. al. (1995)
413-g14	0.56	3	389.127 ± 0.003	2.197 ± 0.001	1.359 ± 0.001	404.245 ± 0.002	67.953 ± 0.001	Persic M. et. al. (1995)
413-g16	0.70	2	259.047 ± 0.001	3.197 ± 0.002	1.844 ± 0.001	277.996 ± 0.006	21.093 ± 0.001	Persic M. et. al. (1995)
413-g23	0.77	1	136.446 ± 0.001	3.209 ± 0.002	1.620 ± 0.001	212.751 ± 0.001	5.429 ± 0.001	Persic M. et. al. (1995)
414-g25	0.70	1	148.578 ± 0.001	1.923 ± 0.001	2.275 ± 0.001	172.825 ± 0.001	4.580 ± 0.001	Persic M. et. al. (1995)
414-go	2.34	2	185.117 ± 0.003	0.815 ± 0.001	0.780 ± 0.001	104.751 ± 0.003	5.003 ± 0.001	Persic M. et. al. (1995)
415 g15	0.17	2	109.000 ± 0.001 248 585 ± 0.001	0.957 ± 0.003 0.640 \pm 0.001	1.331 ± 0.001 1.233 ± 0.001	129.207 ± 0.005 273.078 ± 0.005	10.386 ± 0.001	Persic M et al. (1995)
410-g10 415 g29	0.10	5	243.365 ± 0.001 457 530 ± 0.001	3.660 ± 0.001	1.233 ± 0.001 1.285 ± 0.001	213.078 ± 0.005 451.076 ± 0.007	15.360 ± 0.001 05.855 ± 0.002	Porsic M at al (1995)
416 g20	0.91	3	407.000 ± 0.001	0.262 ± 0.001	1.235 ± 0.001	306.602 ± 0.007	35.855 ± 0.002	$\begin{array}{c} \text{Persic} \text{M. et. al.} (1995) \\ \text{Persic} \text{M. et. al.} (1005) \\ \end{array}$
410-g20 416 g22	0.03	2	127363 ± 0.001	0.203 ± 0.002 1 803 \pm 0.001	2.270 ± 0.001 1 533 ± 0.001	$175 473 \pm 0.001$	21.708 ± 0.001 3.170 ± 0.001	Porsic M at al (1995)
410-g33 416 g37	0.49	2	127.303 ± 0.007 204 554 ± 0.001	1.393 ± 0.001 0.854 \pm 0.001	1.000 ± 0.001 1.813 ± 0.001	216.003 ± 0.001	$10,400 \pm 0.001$	Porsic M at al (1995)
416-g/1	0.87	1	138786 ± 0.001	2.334 ± 0.001 2.947 ± 0.001	3.076 ± 0.001	149561 ± 0.001	3743 ± 0.001	Persic M et al (1995)
417-g18	0.55	2	146906 ± 0.001	1.526 ± 0.001	1.783 ± 0.001	$197 136 \pm 0.001$	4842 ± 0.001	Persic M et al (1995)

Short title, max. 45 characters 27

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T~(10^{11}~{\rm M_{\odot}})$	Reference
418-g15	0.15	2	169.970 ± 0.001	2.052 ± 0.001	1.872 ± 0.001	170.888 ± 0.008	5.584 ± 0.001	Persic M. et. al. (1995)
418-g1	0.55	4	233.473 ± 0.001	1.661 ± 0.001	1.439 ± 0.001	240.474 ± 0.006	14.017 ± 0.001	Persic M. et. al. (1995)
418 - g8	0.23	5	394.119 ± 0.008	1.405 ± 0.001	1.126 ± 0.004	410.229 ± 0.004	69.784 ± 0.006	Persic M. et. al. (1995)
419 - g3	0.61	4	267.989 ± 0.001	4.435 ± 0.001	1.505 ± 0.001	250.659 ± 0.001	17.051 ± 0.001	Persic M. et. al. (1995)
419 - g4	0.81	1	165.781 ± 0.001	1.195 ± 0.001	1.851 ± 0.002	182.106 ± 0.004	5.869 ± 0.001	Persic M. et. al. (1995)
41-g9	1.76	2	248.775 ± 0.006	7.596 ± 0.003	1.371 ± 0.004	237.383 ± 0.001	14.967 ± 0.007	Persic M. et. al. (1995)
420 - g3	0.28	1	159.143 ± 0.001	0.992 ± 0.001	1.191 ± 0.001	161.587 ± 0.002	4.721 ± 0.001	Persic M. et. al. (1995)
422 - g10	1.15	1	209.741 ± 0.001	0.501 ± 0.001	1.864 ± 0.001	230.158 ± 0.009	11.807 ± 0.001	Persic M. et. al. (1995)
422 - g12	0.78	3	263.179 ± 0.001	2.130 ± 0.001	1.448 ± 0.001	274.371 ± 0.002	20.750 ± 0.001	Persic M. et. al. (1995)
426 - g8	0.46	3	214.354 ± 0.001	4.951 ± 0.001	1.509 ± 0.001	278.931 ± 0.001	13.013 ± 0.001	Persic M. et. al. (1995)
427-g14	1.04	2	78.999 ± 0.001	0.435 ± 0.002	2.042 ± 0.001	96.014 ± 0.002	0.691 ± 0.001	Persic M. et. al. (1995)
427-g2	0.83	2	201.490 ± 0.001	0.928 ± 0.009	1.854 ± 0.001	213.264 ± 0.001	9.956 ± 0.001	Persic M. et. al. (1995)
42-g10	0.13	3	237.414 ± 0.001	1.168 ± 0.001	1.265 ± 0.002	252.252 ± 0.009	15.864 ± 0.001	Persic M. et. al. (1995)
42-g3	0.39	1	195.902 ± 0.001	1.475 ± 0.001	2.749 ± 0.001	203.189 ± 0.007	9.386 ± 0.001	Persic M. et. al. (1995)
433-g10	0.11	4	282.689 ± 0.001	1.094 ± 0.001	1.245 ± 0.001	280.973 ± 0.009	24.819 ± 0.001	Persic M. et. al. (1995)
433-g15	0.77	4	192.085 ± 0.001	2.776 ± 0.001	1.508 ± 0.001	194.469 ± 0.004	7.064 ± 0.001	Persic M. et. al. (1995)
433-g17	0.54	6	478.990 ± 0.001	3.155 ± 0.001	2.065 ± 0.001	459.824 ± 0.001	108.782 ± 0.001	Persic M. et. al. (1995)
434-g23	0.31	4	373.658 ± 0.001	3.194 ± 0.001	1.267 ± 0.001	367.497 ± 0.004	53.387 ± 0.001	Persic M. et. al. (1995)
435-g10	0.66	4	181.747 ± 0.001	2.983 ± 0.001	1.491 ± 0.001	184.867 ± 0.004	5.881 ± 0.001	Persic M. et. al. (1995)
435-g14	0.42	3	241.200 ± 0.001	4.312 ± 0.003	1.453 ± 0.001	232.517 ± 0.009	13.595 ± 0.001	Persic M. et. al. (1995)
435-g19 425 m24	0.39	3	181.414 ± 0.001 172.201 ± 0.001	1.535 ± 0.004 1.751 ± 0.004	1.203 ± 0.002	183.074 ± 0.008 182.082 ± 0.001	6.391 ± 0.001	Persic M. et. al. (1995)
435-g24 435-g25	0.12	2	172.201 ± 0.001 $318 031 \pm 0.001$	12837 ± 0.004	1.920 ± 0.004 1.015 \pm 0.002	403.78 ± 0.001	30.007 ± 0.001	Persic M. et. al. (1995)
435 g23	0.30	2	130.721 ± 0.001	0.013 ± 0.003	1.013 ± 0.002 1.032 ± 0.004	403.73 ± 0.003 150.31 ± 0.001	39.907 ± 0.002	Porsic M of al (1995)
435 g54	0.18	2	130.721 ± 0.001	1337 ± 0.001	1.932 ± 0.004 1.018 ± 0.001	107.960 ± 0.001	0.967 ± 0.001	Porsic M of al (1995)
435-g51	0.13	2	161529 ± 0.002	0.756 ± 0.002	0.986 ± 0.001	107.909 ± 0.003 173.484 ± 0.005	5.126 ± 0.001	Persic M et al. (1995)
435-g5	0.29	3	283.034 ± 0.001	4.488 ± 0.002	1202 ± 0.003	267.684 ± 0.005	21.461 ± 0.001	Persic M et al (1995)
436-934	0.49	2	299509 ± 0.001	2237 ± 0.001	1.202 ± 0.001 1.157 ± 0.001	320177 ± 0.009	32176 ± 0.001	Persic M et al (1995)
436-939	0.65	5	381.965 ± 0.001	10.485 ± 0.001	1.502 ± 0.003	299.023 ± 0.001	29.916 ± 0.001	Persic M et al (1995)
436-93	0.61	4	328.495 ± 0.001	2.086 ± 0.001	1.378 ± 0.002	339.033 ± 0.009	39.415 ± 0.001	Persic M. et. al. (1995)
437-918	0.18	4	403.547 ± 0.002	2.986 ± 0.001	1.058 ± 0.001	400.929 ± 0.003	68.572 ± 0.001	Persic M. et. al. (1995)
437-g22	0.25	1	88.309 ± 0.001	3.354 ± 0.004	3.709 ± 0.001	101.591 ± 0.001	1.173 ± 0.001	Persic M. et. al. (1995)
437 - g25	0.10	3	194.063 ± 0.002	0.476 ± 0.001	1.161 ± 0.001	195.576 ± 0.005	8.371 ± 0.001	Persic M. et. al. (1995)
437-g31	0.26	2	113.239 ± 0.001	1.559 ± 0.004	1.481 ± 0.001	131.742 ± 0.006	1.875 ± 0.001	Persic M. et. al. (1995)
437 - g35	0.41	9	104.281 ± 0.001	0.083 ± 0.002	3.817 ± 0.003	105.352 ± 0.001	1.308 ± 0.001	Persic M. et. al. (1995)
437 - g47	0.37	4	194.932 ± 0.002	2.789 ± 0.001	1.295 ± 0.001	195.409 ± 0.007	7.219 ± 0.001	Persic M. et. al. (1995)
437 - g54	0.31	3	200.000 ± 0.001	2.275 ± 0.002	1.418 ± 0.001	194.399 ± 0.008	8.220 ± 0.001	Persic M. et. al. (1995)
437 - g71	0.72	5	215.483 ± 0.001	1.865 ± 0.001	1.173 ± 0.001	230.412 ± 0.006	10.828 ± 0.001	Persic M. et. al. (1995)
438 - g15	0.45	3	211.455 ± 0.001	3.375 ± 0.004	1.535 ± 0.001	273.335 ± 0.002	12.932 ± 0.001	Persic M. et. al. (1995)
438 - g18	0.57	3	202.050 ± 0.001	3.367 ± 0.003	1.677 ± 0.001	193.938 ± 0.001	8.162 ± 0.001	Persic M. et. al. (1995)
439 - g11	0.38	3	104.112 ± 0.001	1.038 ± 0.001	1.290 ± 0.002	120.708 ± 0.004	1.411 ± 0.001	Persic M. et. al. (1995)
439 - g18	0.22	2	135.959 ± 0.001	8.390 ± 0.002	3.556 ± 0.001	218.822 ± 0.004	5.862 ± 0.001	Persic M. et. al. (1995)
439 - g20	0.85	1	183.009 ± 0.001	1.791 ± 0.004	2.449 ± 0.001	189.73 ± 0.006	7.642 ± 0.001	Persic M. et. al. (1995)
439-g9	0.26	3	215.078 ± 0.001	9.922 ± 0.002	2.269 ± 0.001	201.729 ± 0.001	9.185 ± 0.001	Persic M. et. al. (1995)
43-g8	1.14	2	270.046 ± 0.001	0.599 ± 0.002	1.896 ± 0.001	288.66 ± 0.004	24.350 ± 0.001	Persic M. et. al. (1995)
440 - g51	0.10	2	120.841 ± 0.003	0.753 ± 0.001	0.950 ± 0.002	137.299 ± 0.009	2.253 ± 0.001	Persic M. et. al. (1995)
441-g11	0.48	3	70.668 ± 0.002	1.390 ± 0.002	1.474 ± 0.002	96.1461 ± 0.004	0.498 ± 0.001	Persic M. et. al. (1995)
441-g2	0.33	2	123.260 ± 0.001	0.767 ± 0.005	1.610 ± 0.001	142.834 ± 0.002	2.476 ± 0.001	Persic M. et. al. (1995)
442-g24	0.65	3	142.219 ± 0.001	2.315 ± 0.004	1.844 ± 0.002	190.967 ± 0.001	4.158 ± 0.001	Persic M. et. al. (1995)
442-g2	0.77	5	317.601 ± 0.007	4.782 ± 0.001	1.191 ± 0.004	317.077 ± 0.007	28.822 ± 0.002	Persic M. et. al. (1995)

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T~(10^{11}~{\rm M_{\odot}})$	Reference
443-g38	0.79	3	310.618 ± 0.001	3.989 ± 0.002	1.464 ± 0.003	310.958 ± 0.003	31.512 ± 0.001	Persic M. et. al. (1995)
443 - g41	0.58	1	217.644 ± 0.001	1.462 ± 0.002	2.717 ± 0.002	225.249 ± 0.002	12.787 ± 0.001	Persic M. et. al. (1995)
443 - g42	0.31	4	493.089 ± 0.001	3.783 ± 0.001	0.952 ± 0.001	485.562 ± 0.007	122.999 ± 0.002	Persic M. et. al. (1995)
443 - g59	0.11	4	199.496 ± 0.001	1.961 ± 0.001	1.263 ± 0.001	190.437 ± 0.002	7.727 ± 0.001	Persic M. et. al. (1995)
443 - g80	0.85	3	93.805 ± 0.001	1.203 ± 0.003	1.698 ± 0.003	109.108 ± 0.003	1.033 ± 0.001	Persic M. et. al. (1995)
444 - g14	0.23	5	306.505 ± 0.001	2.002 ± 0.001	1.315 ± 0.003	295.349 ± 0.001	28.826 ± 0.001	Persic M. et. al. (1995)
444 - g21	0.21	4	201.751 ± 0.001	2.550 ± 0.001	1.314 ± 0.001	189.06 ± 0.002	7.561 ± 0.001	Persic M. et. al. (1995)
444 - g33	0.56	3	65.866 ± 0.001	1.291 ± 0.002	1.676 ± 0.001	62.5484 ± 0.002	0.274 ± 0.001	Persic M. et. al. (1995)
444 - g47	0.26	4	336.067 ± 0.001	2.973 ± 0.003	1.298 ± 0.001	327.142 ± 0.005	38.296 ± 0.001	Persic M. et. al. (1995)
444 - g86	0.40	2	223.074 ± 0.001	0.853 ± 0.002	1.338 ± 0.003	241.668 ± 0.001	13.754 ± 0.001	Persic M. et. al. (1995)
445 - g15	1.24	3	239.760 ± 0.001	2.912 ± 0.003	1.871 ± 0.001	241.738 ± 0.001	14.987 ± 0.001	Persic M. et. al. (1995)
445 - g19	0.21	2	203.892 ± 0.001	1.527 ± 0.003	1.435 ± 0.001	209.247 ± 0.007	9.810 ± 0.001	Persic M. et. al. (1995)
445 - g39	1.12	3	353.386 ± 0.001	1.789 ± 0.001	1.615 ± 0.002	353.489 ± 0.007	49.421 ± 0.001	Persic M. et. al. (1995)
446 - g18	0.91	3	191.370 ± 0.001	4.910 ± 0.002	1.794 ± 0.002	255.971 ± 0.001	9.642 ± 0.001	Persic M. et. al. (1995)
446 - g1	0.75	3	232.072 ± 0.008	2.864 ± 0.005	1.828 ± 0.002	227.211 ± 0.001	13.124 ± 0.001	Persic M. et. al. (1995)
446 - g23	0.52	3	211.409 ± 0.004	7.838 ± 0.001	1.999 ± 0.002	273.31 ± 0.001	12.216 ± 0.001	Persic M. et. al. (1995)
446 - g2	0.53	3	127.539 ± 0.007	4.237 ± 0.002	2.289 ± 0.003	121.814 ± 0.002	2.022 ± 0.001	Persic M. et. al. (1995)
446 - g44	5.62	3	224.131 ± 0.002	1.588 ± 0.002	0.903 ± 0.002	220.127 ± 0.006	11.934 ± 0.001	Persic M. et. al. (1995)
446 - g51	0.54	2	134.966 ± 0.001	2.279 ± 0.001	1.272 ± 0.001	153.412 ± 0.001	3.028 ± 0.001	Persic M. et. al. (1995)
446 - g53	0.53	4	85.677 ± 0.002	0.828 ± 0.001	1.480 ± 0.001	99.481 ± 0.006	0.769 ± 0.001	Persic M. et. al. (1995)
446 - g58	0.08	6	270.916 ± 0.001	0.249 ± 0.001	2.441 ± 0.001	320.076 ± 0.004	26.966 ± 0.001	Persic M. et. al. (1995)
447 - g17	0.76	5	311.868 ± 0.001	1.544 ± 0.001	2.933 ± 0.001	324.417 ± 0.001	34.972 ± 0.001	Persic M. et. al. (1995)
447-g19	0.05	1	172.352 ± 0.001	4.563 ± 0.001	2.547 ± 0.002	195.680 ± 0.007	7.361 ± 0.001	Persic M. et. al. (1995)
447 - g21	0.26	3	291.092 ± 0.004	5.721 ± 0.001	1.695 ± 0.001	276.630 ± 0.009	23.685 ± 0.001	Persic M. et. al. (1995)
447 - g23	0.38	3	211.042 ± 0.001	1.807 ± 0.001	1.666 ± 0.001	208.549 ± 0.001	10.149 ± 0.001	Persic M. et. al. (1995)
448 - g13	0.21	1	222.259 ± 0.003	1.277 ± 0.002	1.842 ± 0.001	227.377 ± 0.004	13.153 ± 0.001	Persic M. et. al. (1995)
44 - g13	0.11	1	69.007 ± 0.001	7.226 ± 0.001	9.087 ± 0.004	158.626 ± 0.001	2.240 ± 0.001	Persic M. et. al. (1995)
44 - g1	0.92	3	161.490 ± 0.004	2.421 ± 0.001	1.795 ± 0.004	172.530 ± 0.001	4.775 ± 0.001	Persic M. et. al. (1995)
452 - g8	0.42	3	167.222 ± 0.001	3.625 ± 0.001	1.561 ± 0.001	224.671 ± 0.004	6.477 ± 0.001	Persic M. et. al. (1995)
459 - g14	0.36	2	139.005 ± 0.001	1.585 ± 0.001	1.356 ± 0.001	160.576 ± 0.001	3.452 ± 0.001	Persic M. et. al. (1995)
459-g6	0.41	4	447.981 ± 0.004	2.022 ± 0.001	1.480 ± 0.001	444.347 ± 0.003	98.163 ± 0.001	Persic M. et. al. (1995)
460 - g29	0.24	2	201.285 ± 0.003	7.655 ± 0.001	2.904 ± 0.001	292.301 ± 0.001	14.690 ± 0.001	Persic M. et. al. (1995)
460 - g31	0.66	3	264.379 ± 0.003	5.376 ± 0.001	1.743 ± 0.003	354.589 ± 0.009	26.032 ± 0.001	Persic M. et. al. (1995)
460-g8	0.14	1	164.436 ± 0.001	2.269 ± 0.001	1.824 ± 0.001	168.905 ± 0.007	5.392 ± 0.001	Persic M. et. al. (1995)
461-g10	0.79	4	275.042 ± 0.001	7.959 ± 0.001	1.471 ± 0.003	342.608 ± 0.001	23.016 ± 0.001	Persic M. et. al. (1995)
461-g25	0.47	1	114.932 ± 0.001	2.919 ± 0.001	3.630 ± 0.001	127.607 ± 0.001	2.325 ± 0.001	Persic M. et. al. (1995)
461-g3	0.28	1	73.887 ± 0.003	5.405 ± 0.001	9.713 ± 0.001	122.668 ± 0.001	2.065 ± 0.001	Persic M. et. al. (1995)
461-g44	0.21	4	503.137 ± 0.001	4.129 ± 0.001	1.303 ± 0.001	495.559 ± 0.009	131.278 ± 0.003	Persic M. et. al. (1995)
462-g16	0.61	3	162.529 ± 0.001	2.539 ± 0.001	1.579 ± 0.001	223.679 ± 0.004	6.311 ± 0.001	Persic M. et. al. (1995)
463-g25	0.64	3	266.120 ± 0.001	8.867 ± 0.001	1.882 ± 0.001	336.366 ± 0.006	23.747 ± 0.001	Persic M. et. al. (1995)
466-g13	0.98	3	214.067 ± 0.001	4.655 ± 0.001	1.726 ± 0.001	280.166 ± 0.001	13.346 ± 0.001	Persic M. et. al. (1995)
466-g27	1.29	4	440.048 ± 0.001	2.198 ± 0.001	1.533 ± 0.001	450.260 ± 0.003	95.703 ± 0.001	Persic M. et. al. (1995)
466-g28	0.81	3	73.537 ± 0.001	11.829 ± 0.003	2.523 ± 0.001	105.318 ± 0.001	0.654 ± 0.001	Persic M. et. al. (1995)
466-g5	0.22	3	179.513 ± 0.001	1.254 ± 0.003	1.502 ± 0.001	185.368 ± 0.003	0.584 ± 0.001	Persic M. et. al. (1995)
467-g11	0.65	4	334.593 ± 0.001	5.936 ± 0.001	1.178 ± 0.001	315.827 ± 0.004	32.236 ± 0.001	Persic M. et. al. (1995)
467-g23	0.07	2	232.296 ± 0.001	3.411 ± 0.001	1.884 ± 0.001	233.020 ± 0.006	14.157 ± 0.001	Persic M. et. al. (1995)
467-g27	0.77	3	221.297 ± 0.001	2.417 ± 0.001	1.786 ± 0.001	223.117 ± 0.003	11.824 ± 0.001	Persic M. et. al. (1995)
407-g30	0.80	9	$1/8.557 \pm 0.001$	0.044 ± 0.001	3.713 ± 0.001	190.119 ± 0.001	7.009 ± 0.001	Persic M. et. al. (1995)
408-g11	0.28	2	180.350 ± 0.001	0.622 ± 0.002	1.051 ± 0.001	162.231 ± 0.005	0.771 ± 0.001	Persic M. et. al. (1995)
408-g23	0.43	4	217.296 ± 0.001	2.713 ± 0.001	1.303 ± 0.001	$_{210.593} \pm 0.003$	10.162 ± 0.001	Persic M. et. al. (1995)

Short title, max. 45 characters 29

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T~(10^{11}~{\rm M_\odot})$	Reference
46-g8	0.45	4	219.458 ± 0.001	2.745 ± 0.002	1.293 ± 0.001	216.521 ± 0.003	10.337 ± 0.001	Persic M. et. al. (1995)
471 - g2	0.37	1	180.659 ± 0.001	6.295 ± 0.002	2.765 ± 0.001	197.046 ± 0.008	8.560 ± 0.001	Persic M. et. al. (1995)
474 - g39	0.06	2	208.348 ± 0.001	2.777 ± 0.001	1.146 ± 0.001	204.916 ± 0.007	9.627 ± 0.001	Persic M. et. al. (1995)
474-g5	0.32	3	152.009 ± 0.001	4.971 ± 0.001	1.682 ± 0.001	159.410 ± 0.001	3.485 ± 0.001	Persic M. et. al. (1995)
476 - g15	8.72	2	170.336 ± 0.004	1.541 ± 0.001	1.023 ± 0.002	238.804 ± 0.005	7.756 ± 0.001	Persic M. et. al. (1995)
476 - g16	0.96	3	234.095 ± 0.001	5.473 ± 0.001	1.828 ± 0.001	305.483 ± 0.002	17.388 ± 0.001	Persic M. et. al. (1995)
476 - g25	0.08	2	197.258 ± 0.001	3.880 ± 0.001	2.016 ± 0.001	198.060 ± 0.009	8.693 ± 0.001	Persic M. et. al. (1995)
476-g5	0.34	3	333.392 ± 0.001	4.473 ± 0.001	1.541 ± 0.001	330.071 ± 0.007	38.488 ± 0.002	Persic M. et. al. (1995)
477 - g16	0.26	2	114.884 ± 0.001	1.284 ± 0.001	1.596 ± 0.001	132.032 ± 0.006	1.959 ± 0.001	Persic M. et. al. (1995)
477 - g18	0.75	2	191.945 ± 0.001	0.925 ± 0.001	1.762 ± 0.001	204.535 ± 0.001	8.647 ± 0.001	Persic M. et. al. (1995)
478 - g11	4.49	4	155.380 ± 0.005	0.832 ± 0.001	1.079 ± 0.001	152.619 ± 0.004	3.978 ± 0.001	Persic M. et. al. (1995)
47 - g10	0.08	4	413.974 ± 0.001	4.945 ± 0.001	1.100 ± 0.001	403.484 ± 0.007	68.229 ± 0.005	Persic M. et. al. (1995)
481-g11	0.26	2	149.124 ± 0.005	2.296 ± 0.004	1.262 ± 0.001	166.055 ± 0.001	4.018 ± 0.001	Persic M. et. al. (1995)
481 - g13	5.95	2	190.988 ± 0.003	2.943 ± 0.001	1.359 ± 0.003	268.286 ± 0.009	10.837 ± 0.002	Persic M. et. al. (1995)
481 - g21	2.01	6	288.754 ± 0.002	1.478 ± 0.001	1.054 ± 0.001	277.854 ± 0.009	24.001 ± 0.001	Persic M. et. al. (1995)
481-g2	2.05	2	189.128 ± 0.003	2.988 ± 0.003	1.081 ± 0.003	263.969 ± 0.004	10.306 ± 0.001	Persic M. et. al. (1995)
481 - g30	0.51	3	142.240 ± 0.002	2.674 ± 0.006	1.062 ± 0.002	150.445 ± 0.005	2.989 ± 0.001	Persic M. et. al. (1995)
482 - g16	0.98	1	61.019 ± 0.001	0.811 ± 0.001	4.752 ± 0.001	80.050 ± 0.001	0.392 ± 0.001	Persic M. et. al. (1995)
482 - g1	0.29	2	160.170 ± 0.001	1.190 ± 0.001	1.404 ± 0.001	174.906 ± 0.001	5.066 ± 0.001	Persic M. et. al. (1995)
482 - g35	0.37	3	172.249 ± 0.001	2.377 ± 0.001	1.537 ± 0.001	178.022 ± 0.009	5.548 ± 0.001	Persic M. et. al. (1995)
482 - g41	0.36	1	53.051 ± 0.001	3.198 ± 0.001	9.571 ± 0.001	94.848 ± 0.008	0.688 ± 0.001	Persic M. et. al. (1995)
482 - g43	0.04	3	226.276 ± 0.001	3.159 ± 0.002	1.619 ± 0.001	223.287 ± 0.003	11.997 ± 0.001	Persic M. et. al. (1995)
482 - g46	0.67	3	100.214 ± 0.001	2.119 ± 0.001	1.707 ± 0.001	137.022 ± 0.003	1.439 ± 0.001	Persic M. et. al. (1995)
483 - g12	1.27	3	170.022 ± 0.001	1.426 ± 0.001	1.871 ± 0.001	168.739 ± 0.001	5.376 ± 0.001	Persic M. et. al. (1995)
483 - g2	0.58	4	202.214 ± 0.001	3.829 ± 0.001	1.474 ± 0.001	251.538 ± 0.002	9.997 ± 0.001	Persic M. et. al. (1995)
483 - g6	0.74	1	140.371 ± 0.005	1.668 ± 0.001	2.265 ± 0.004	145.438 ± 0.001	3.442 ± 0.001	Persic M. et. al. (1995)
484 - g25	0.06	3	264.940 ± 0.001	0.951 ± 0.001	1.037 ± 0.001	265.352 ± 0.007	20.905 ± 0.001	Persic M. et. al. (1995)
485 - g12	0.64	4	262.224 ± 0.004	3.294 ± 0.001	1.497 ± 0.001	254.602 ± 0.005	17.489 ± 0.001	Persic M. et. al. (1995)
485 - g24	0.05	5	174.410 ± 0.001	0.569 ± 0.001	1.454 ± 0.002	173.137 ± 0.007	5.807 ± 0.001	Persic M. et. al. (1995)
485 - g4	0.23	3	158.524 ± 0.001	2.602 ± 0.001	1.423 ± 0.001	216.690 ± 0.002	5.744 ± 0.001	Persic M. et. al. (1995)
487 - g19	0.83	3	87.385 ± 0.001	0.791 ± 0.001	1.782 ± 0.001	103.437 ± 0.003	0.872 ± 0.001	Persic M. et. al. (1995)
487 - g2	0.17	3	300.997 ± 0.001	2.108 ± 0.001	1.232 ± 0.001	297.208 ± 0.007	29.374 ± 0.001	Persic M. et. al. (1995)
488-g44	0.80	4	175.569 ± 0.001	1.620 ± 0.001	1.532 ± 0.001	181.080 ± 0.002	5.845 ± 0.001	Persic M. et. al. (1995)
488 - g54	0.26	4	462.072 ± 0.001	3.147 ± 0.001	1.358 ± 0.001	469.192 ± 0.009	107.141 ± 0.003	Persic M. et. al. (1995)
489 - g11	0.98	2	86.6872 ± 0.001	1.949 ± 0.001	2.121 ± 0.001	119.137 ± 0.001	1.021 ± 0.001	Persic M. et. al. (1995)
489 - g26	1.27	3	280.767 ± 0.001	1.692 ± 0.001	2.446 ± 0.001	282.768 ± 0.001	$25.297 \pm 0.$	Persic M. et. al. (1995)
489 - g47	0.24	1	162.144 ± 0.002	2.412 ± 0.001	3.215 ± 0.001	186.052 ± 0.001	6.176 ± 0.001	Persic M. et. al. (1995)
489-g6	0.44	3	145.042 ± 0.001	1.957 ± 0.001	1.626 ± 0.001	158.903 ± 0.008	3.554 ± 0.001	Persic M. et. al. (1995)
48 - g8	0.66	1	197.023 ± 0.001	1.685 ± 0.001	1.987 ± 0.001	275.529 ± 0.002	12.576 ± 0.001	Persic M. et. al. (1995)
490 - g10	0.82	5	299.978 ± 0.001	3.546 ± 0.002	1.266 ± 0.001	309.508 ± 0.003	26.750 ± 0.002	Persic M. et. al. (1995)
490 - g14	0.31	3	133.605 ± 0.001	3.351 ± 0.001	1.702 ± 0.001	176.363 ± 0.002	3.217 ± 0.001	Persic M. et. al. (1995)
490 - g28	0.41	5	165.078 ± 0.002	2.251 ± 0.002	1.251 ± 0.002	181.085 ± 0.001	4.661 ± 0.001	Persic M. et. al. (1995)
490 - g36	0.28	5	739.947 ± 0.002	3.707 ± 0.001	1.114 ± 0.001	925.984 ± 0.006	549.596 ± 0.007	Persic M. et. al. (1995)
490 - g45	0.36	4	186.817 ± 0.002	2.567 ± 0.001	1.407 ± 0.001	174.245 ± 0.003	5.919 ± 0.001	Persic M. et. al. (1995)
496-g19	0.49	4	204.051 ± 0.001	2.626 ± 0.002	1.526 ± 0.001	207.565 ± 0.001	8.675 ± 0.001	Persic M. et. al. (1995)
497 - g14	1.58	1	224.145 ± 0.001	0.346 ± 0.002	2.041 ± 0.001	228.839 ± 0.007	13.408 ± 0.001	Persic M. et. al. (1995)
497 - g18	0.72	4	386.056 ± 0.001	6.536 ± 0.004	1.570 ± 0.001	516.825 ± 0.006	77.500 ± 0.001	Persic M. et. al. (1995)
497 - g34	0.38	2	205.978 ± 0.002	0.818 ± 0.001	1.467 ± 0.001	229.266 ± 0.006	11.144 ± 0.001	Persic M. et. al. (1995)
498 - g3	0.51	4	257.135 ± 0.001	1.134 ± 0.003	1.580 ± 0.001	273.902 ± 0.009	20.066 ± 0.001	Persic M. et. al. (1995)
499 - g22	0.39	3	124.660 ± 0.001	1.195 ± 0.004	1.610 ± 0.001	140.758 ± 0.006	2.388 ± 0.001	Persic M. et. al. (1995)

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T~(10^{11}~{\rm M_{\odot}})$	Reference
499-g26	0.69	5	401.061 ± 0.001	6.484 ± 0.001	1.210 ± 0.001	369.067 ± 0.005	51.420 ± 0.001	Persic M. et. al. (1995)
499-g39	0.59	1	176.223 ± 0.001	0.689 ± 0.001	1.543 ± 0.001	190.814 ± 0.007	6.892 ± 0.001	Persic M. et. al. (1995)
499-g4	0.50	9	143.231 ± 0.001	0.144 ± 0.001	3.566 ± 0.002	159.971 ± 0.002	3.735 ± 0.001	Persic M. et. al. (1995)
499-g5	7.49	1	148.020 ± 0.002	1.097 ± 0.001	1.927 ± 0.005	214.268 ± 0.005	5.503 ± 0.001	Persic M. et. al. (1995)
4-g19	0.86	3	133.628 ± 0.001	1.078 ± 0.001	1.843 ± 0.001	150.652 ± 0.009	2.986 ± 0.001	Persic M. et. al. (1995)
501-g11	0.14	1	82.9424 ± 0.001	4.085 ± 0.001	4.275 ± 0.002	115.438 ± 0.002	1.269 ± 0.001	Persic M. et. al. (1995)
501-g1	0.26	1	91.1524 ± 0.001	2.099 ± 0.001	2.122 ± 0.001	112.883 ± 0.002	1.136 ± 0.001	Persic M. et. al. (1995)
501-g68	1.21	2	138.794 ± 0.001	1.424 ± 0.003	2.068 ± 0.001	155.582 ± 0.008	3.436 ± 0.001	Persic M. et. al. (1995)
501-g69	0.31	5	486.018 ± 0.001	3.878 ± 0.001	1.122 ± 0.001	468.783 ± 0.008	111.538 ± 0.003	Persic M. et. al. (1995)
501-g75	0.72	3	196.471 ± 0.001	3.390 ± 0.001	1.731 ± 0.009	262.543 ± 0.001	10.792 ± 0.005	Persic M. et. al. (1995)
501-980	0.67	6	717.740 ± 0.001	3.111 ± 0.001	1.000 ± 0.001	981.351 ± 0.007	548.231 ± 0.005	Persic M. et. al. (1995)
501-986	0.09	3	256.229 ± 0.006	2.460 ± 0.002	1.426 ± 0.001	266.557 ± 0.001	18.873 ± 0.001	Persic M. et. al. (1995)
501-997	0.27	1	207.479 ± 0.001	0.885 ± 0.003	1.143 ± 0.001	210.843 ± 0.003	10.487 ± 0.001	Persic M. et. al. (1995)
502-912	0.09	3	167.799 ± 0.001	0.716 ± 0.001	1.075 ± 0.001	178.473 ± 0.002	5.620 ± 0.001	Persic M. et. al. (1995)
502-g13	0.71	3	138.467 ± 0.001	1.896 ± 0.001	1.831 ± 0.001	134.986 ± 0.001	2.752 ± 0.001	Persic M. et. al. (1995)
502-92	1.00	2	200.963 ± 0.001	0.517 ± 0.003	1.938 ± 0.001	221.418 ± 0.004	10.342 ± 0.001	Persic M. et. al. (1995)
503-922	0.66	5	66.306 ± 0.001	0.112 ± 0.001	0.001 ± 0.001	81.126 ± 0.005	$0.402 \pm 0.$	Persic M. et. al. (1995)
505-98	0.68	4	145.947 ± 0.001	1.092 ± 0.001	1.362 ± 0.001	156.352 ± 0.003	3.550 ± 0.001	Persic M. et. al. (1995)
506-94	1.07	1	197.026 ± 0.001	4.008 ± 0.001	3.487 ± 0.002	229.780 ± 0.004	11.755 ± 0.001	Persic M. et. al. (1995)
507-g11	0.17	1	199.689 ± 0.001	3.688 ± 0.001	2.109 ± 0.001	212.797 ± 0.006	10.243 ± 0.001	Persic M. et. al. (1995)
507-956	0.25	3	272.108 ± 0.001	4.144 ± 0.001	1.553 ± 0.001	267.393 ± 0.005	20.495 ± 0.001	Persic M. et. al. (1995)
507-962	0.35	3	215.395 ± 0.001	1.740 ± 0.001	1.413 ± 0.001	217.938 ± 0.009	11.009 ± 0.001	Persic M. et. al. (1995)
508-g11	0.57	3	138.241 ± 0.001	4.548 ± 0.001	1.473 ± 0.003	174.071 ± 0.002	3.169 ± 0.001	Persic M. et. al. (1995)
508-960	0.03	4	341.162 ± 0.003	9.293 ± 0.001	1.416 ± 0.001	294.430 ± 0.006	27.581 ± 0.005	Persic M. et. al. (1995)
509-944	0.05	1	239.677 ± 0.004	3.314 ± 0.001	1.014 ± 0.001	255.728 ± 0.008	16.646 ± 0.001	Persic M. et. al. (1995)
509-945	0.64	3	158.069 ± 0.001	3.662 ± 0.001	1.643 ± 0.001	206.244 ± 0.009	5.285 ± 0.001	Persic M. et. al. (1995)
509-g74	0.47	4	372.991 ± 0.001	4.137 ± 0.001	1.405 ± 0.001	354.194 ± 0.003	49.717 ± 0.001	Persic M. et. al. (1995)
509-g91	0.18	3	174.882 ± 0.001	1.688 ± 0.002	0.935 ± 0.004	169.493 ± 0.008	5.448 ± 0.003	Persic M. et. al. (1995)
511-g46	0.34	3	146.852 ± 0.002	3.255 ± 0.001	1.742 ± 0.001	158.148 ± 0.001	3.463 ± 0.001	Persic M. et. al. (1995)
514-g10	0.27	3	211.218 ± 0.001	2.348 ± 0.004	1.571 ± 0.001	215.206 ± 0.005	10.284 ± 0.001	Persic M. et. al. (1995)
515-g13	1.09	1	326.956 ± 0.001	3.201 ± 0.002	1.656 ± 0.001	337.334 ± 0.004	42.135 ± 0.002	Persic M. et. al. (1995)
515-g3	0.96	4	502.325 ± 0.001	4.809 ± 0.001	1.511 ± 0.001	490.848 ± 0.002	128.346 ± 0.001	Persic M. et. al. (1995)
516-g8	0.60	5	645.369 ± 0.001	4.427 ± 0.001	1.217 ± 0.001	625.429 ± 0.006	268.554 ± 0.004	Persic M. et. al. (1995)
51-g18	0.78	2	78.423 ± 0.001	0.866 ± 0.001	1.800 ± 0.001	98.0238 ± 0.001	0.685 ± 0.001	Persic M. et. al. (1995)
526-g11	0.59	3	143.251 ± 0.001	2.589 ± 0.001	1.502 ± 0.001	157.002 ± 0.001	3.300 ± 0.001	Persic M. et. al. (1995)
527 - g11	0.46	2	199.697 ± 0.001	4.943 ± 0.002	2.053 ± 0.001	276.175 ± 0.001	12.484 ± 0.001	Persic M. et. al. (1995)
527 - g19	0.85	5	710.670 ± 0.001	6.562 ± 0.001	1.218 ± 0.001	667.704 ± 0.007	332.013 ± 0.004	Persic M. et. al. (1995)
527 - g21	0.62	4	203.372 ± 0.001	1.325 ± 0.001	1.493 ± 0.001	199.271 ± 0.003	8.854 ± 0.001	Persic M. et. al. (1995)
528 - g17	0.45	3	155.867 ± 0.001	4.279 ± 0.001	1.474 ± 0.001	207.324 ± 0.003	4.993 ± 0.001	Persic M. et. al. (1995)
528 - g34	0.65	2	150.907 ± 0.001	1.162 ± 0.001	1.339 ± 0.002	168.837 ± 0.004	4.332 ± 0.001	Persic M. et. al. (1995)
530 - g34	0.57	2	212.134 ± 0.003	1.440 ± 0.001	1.646 ± 0.002	226.067 ± 0.001	11.579 ± 0.001	Persic M. et. al. (1995)
531 - g22	3.84	3	293.244 ± 0.006	2.805 ± 0.001	1.014 ± 0.002	284.812 ± 0.004	25.850 ± 0.002	Persic M. et. al. (1995)
531 - g25	0.12	4	424.433 ± 0.002	3.916 ± 0.002	1.093 ± 0.001	420.164 ± 0.003	77.616 ± 0.001	Persic M. et. al. (1995)
532 - g14	0.49	6	567.021 ± 0.002	3.721 ± 0.001	1.069 ± 0.001	773.485 ± 0.005	260.561 ± 0.005	Persic M. et. al. (1995)
533 - g37	0.44	5	306.581 ± 0.001	1.826 ± 0.001	1.144 ± 0.003	310.039 ± 0.009	30.596 ± 0.002	Persic M. et. al. (1995)
533 - g48	0.13	3	149.974 ± 0.002	0.376 ± 0.005	0.001 ± 0.001	166.625 ± 0.008	4.221 ± 0.001	Persic M. et. al. (1995)
533-g4	0.64	2	218.739 ± 0.001	2.720 ± 0.003	0.993 ± 0.004	214.775 ± 0.004	11.085 ± 0.003	Persic M. et. al. (1995)
533 - g53	22.84	3	238.706 ± 0.001	1.582 ± 0.001	1.181 ± 0.001	245.073 ± 0.008	15.300 ± 0.001	Persic M. et. al. (1995)
533 - g6	1.03	1	172.040 ± 0.002	0.850 ± 0.001	2.289 ± 0.001	176.658 ± 0.005	6.169 ± 0.001	Persic M. et. al. (1995)
533-g8	0.54	4	367.585 ± 0.001	1.714 ± 0.001	1.465 ± 0.001	364.213 ± 0.005	54.057 ± 0.001	Persic M. et. al. (1995)

Short title, max. 45 characters 31

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T \ (10^{11} {\rm M_{\odot}})$	Reference
534-g24	0.58	4	306.565 ± 0.001	2.550 ± 0.001	1.460 ± 0.001	310.971 ± 0.002	30.796 ± 0.001	Persic M et al (1995)
534-031	0.45	1	269543 ± 0.002	4.286 ± 0.006	1.494 ± 0.001	$252\ 241\ \pm\ 0.001$	17.482 ± 0.003	Persic M et al (1995)
534 a3	0.40		205.040 ± 0.002	1.040 ± 0.000	1.494 ± 0.001	202.241 ± 0.001 223.752 ± 0.008	12534 ± 0.000	Porsic M et al. (1005)
534 g0	0.00	3	220.433 ± 0.007 206 611 ± 0.001	2732 ± 0.001	1.144 ± 0.001	223.752 ± 0.003 288 750 ± 0.001	13537 ± 0.001	Porsic M et al (1995)
534=g5	0.30	4	200.011 ± 0.001	2.732 ± 0.001	1.959 ± 0.001	258.750 ± 0.001	10.307 ± 0.001	$P_{\text{ension}} M$ at al (1995)
535-g15	0.27	4	258.423 ± 0.001	0.727 ± 0.001	1.354 ± 0.001	258.812 ± 0.009	19.397 ± 0.001	Persic M. et. al. (1995)
539-g14	0.47	4	286.078 ± 0.001	4.724 ± 0.001	1.415 ± 0.001	287.439 ± 0.001	22.459 ± 0.001	Persic M. et. al. (1995)
539-g5	0.14	2	172.077 ± 0.001	1.987 ± 0.002	1.033 ± 0.000	172.715 ± 0.009	3.703 ± 0.002	Persic M. et. al. (1995)
53-g2	0.11	4	159.901 ± 0.001	0.728 ± 0.001	1.612 ± 0.004	152.779 ± 0.002	3.990 ± 0.001	Persic M. et. al. (1995)
540-g10	0.61	3	144.719 ± 0.004	1.458 ± 0.001	1.296 ± 0.004	157.632 ± 0.002	3.542 ± 0.001	Persic M. et. al. (1995)
540-g16	8.72	3	136.988 ± 0.004	3.570 ± 0.001	1.489 ± 0.002	183.237 ± 0.001	3.442 ± 0.001	Persic M. et. al. (1995)
541-g1	0.79	2	221.147 ± 0.004	3.358 ± 0.001	1.741 ± 0.001	294.120 ± 0.001	16.188 ± 0.001	Persic M. et. al. (1995)
541-g4	0.58	4	293.537 ± 0.001	2.901 ± 0.001	1.459 ± 0.001	281.345 ± 0.007	24.917 ± 0.001	Persic M. et. al. (1995)
543 - g12	6.87	4	220.515 ± 0.009	0.785 ± 0.001	1.318 ± 0.002	219.749 ± 0.009	11.873 ± 0.001	Persic M. et. al. (1995)
544 - g27	0.64	3	127.403 ± 0.001	1.607 ± 0.001	1.575 ± 0.001	142.901 ± 0.008	2.479 ± 0.001	Persic M. et. al. (1995)
544 - g32	0.69	4	287.349 ± 0.001	4.865 ± 0.001	1.471 ± 0.001	266.242 ± 0.004	20.635 ± 0.001	Persic M. et. al. (1995)
545 - g11	0.79	1	179.674 ± 0.001	0.393 ± 0.001	1.519 ± 0.001	193.690 ± 0.004	7.270 ± 0.001	Persic M. et. al. (1995)
545 - g21	0.71	1	153.322 ± 0.003	2.533 ± 0.001	2.565 ± 0.001	181.464 ± 0.001	5.239 ± 0.001	Persic M. et. al. (1995)
545 - g3	0.63	4	85.718 ± 0.002	0.836 ± 0.002	1.382 ± 0.001	107.551 ± 0.005	0.835 ± 0.001	Persic M. et. al. (1995)
545 - g5	0.70	4	279.242 ± 0.004	2.311 ± 0.002	1.147 ± 0.005	274.892 ± 0.009	22.290 ± 0.003	Persic M. et. al. (1995)
546 - g15	0.15	1	338.037 ± 0.004	2.364 ± 0.003	0.928 ± 0.001	361.046 ± 0.004	47.243 ± 0.002	Persic M. et. al. (1995)
546 - g29	0.27	3	207.337 ± 0.002	5.207 ± 0.001	1.697 ± 0.001	205.417 ± 0.003	8.670 ± 0.001	Persic M. et. al. (1995)
546 - g31	0.41	2	209.665 ± 0.001	2.272 ± 0.003	1.678 ± 0.001	226.026 ± 0.007	11.194 ± 0.001	Persic M. et. al. (1995)
546 - g36	0.65	3	106.714 ± 0.001	1.551 ± 0.001	1.423 ± 0.001	120.781 ± 0.005	1.441 ± 0.001	Persic M. et. al. (1995)
546 - g37	1.00	1	73.453 ± 0.001	0.609 ± 0.004	2.364 ± 0.001	92.396 ± 0.002	0.592 ± 0.001	Persic M. et. al. (1995)
547 - g14	1.09	3	179.226 ± 0.001	0.302 ± 0.001	2.724 ± 0.001	182.224 ± 0.001	6.770 ± 0.001	Persic M. et. al. (1995)
547 - g1	0.52	3	118.047 ± 0.001	1.610 ± 0.004	1.382 ± 0.001	133.529 ± 0.001	1.958 ± 0.001	Persic M. et. al. (1995)
547 - g24	0.43	2	93.544 ± 0.001	0.389 ± 0.001	1.812 ± 0.001	94.827 ± 0.005	0.954 ± 0.001	Persic M. et. al. (1995)
547 - g31	0.35	1	147.554 ± 0.001	0.202 ± 0.002	0.946 ± 0.001	150.176 ± 0.008	3.790 ± 0.001	Persic M. et. al. (1995)
547 - g32	0.06	1	150.359 ± 0.001	2.436 ± 0.001	2.187 ± 0.001	177.276 ± 0.009	4.823 ± 0.001	Persic M. et. al. (1995)
547 - g4	0.60	3	80.806 ± 0.001	0.496 ± 0.004	1.360 ± 0.001	80.239 ± 0.006	0.578 ± 0.001	Persic M. et. al. (1995)
548 - g21	0.93	6	1127.770 ± 0.001	3.974 ± 0.001	0.928 ± 0.001	1131.290 ± 0.006	1547.134 ± 0.002	Persic M. et. al. (1995)
548 - g31	0.54	4	190.749 ± 0.002	0.078 ± 0.001	1.768 ± 0.001	215.975 ± 0.005	9.099 ± 0.001	Persic M. et. al. (1995)
548 - g32	0.81	4	113.791 ± 0.006	1.143 ± 0.002	1.035 ± 0.004	129.143 ± 0.006	1.722 ± 0.001	Persic M. et. al. (1995)
548 - g50	0.13	5	111.333 ± 0.002	1.075 ± 0.001	1.403 ± 0.001	104.450 ± 0.009	1.275 ± 0.001	Persic M. et. al. (1995)
548 - g71	0.17	5	424.073 ± 0.002	2.220 ± 0.001	1.138 ± 0.001	430.055 ± 0.002	82.213 ± 0.001	Persic M. et. al. (1995)
548 - g77	0.14	2	94.976 ± 0.001	0.862 ± 0.001	1.025 ± 0.001	111.246 ± 0.004	1.115 ± 0.001	Persic M. et. al. (1995)
549-g18	0.92	4	242.520 ± 0.001	3.393 ± 0.003	1.541 ± 0.001	230.117 ± 0.005	13.282 ± 0.001	Persic M. et. al. (1995)
549 - g22	0.54	3	211.570 ± 0.001	2.156 ± 0.001	1.391 ± 0.001	211.387 ± 0.009	10.111 ± 0.001	Persic M. et. al. (1995)
549 - g40	0.36	2	213.452 ± 0.001	4.927 ± 0.001	2.444 ± 0.001	218.471 ± 0.001	11.667 ± 0.001	Persic M. et. al. (1995)
54 - g21	0.60	1	57.192 ± 0.009	0.553 ± 0.001	1.169 ± 0.001	57.919 ± 0.001	0.217 ± 0.001	Persic M. et. al. (1995)
550-g7	0.59	4	140.117 ± 0.002	1.902 ± 0.001	1.434 ± 0.001	150.402 ± 0.005	2.950 ± 0.001	Persic M. et. al. (1995)
550-89	0.22	3	199.155 ± 0.001	2.099 ± 0.002	1229 ± 0.001	198484 ± 0.007	8.328 ± 0.001	Persic M et al (1995)
551-g13	0.81	5	736.731 ± 0.001	8.154 ± 0.002	1.250 ± 0.001	685.541 ± 0.007	354.556 ± 0.007	Persic M. et. al. (1995)
551-931	0.45	5	323.158 ± 0.001	1.725 ± 0.004	1.217 ± 0.001	314.381 ± 0.002	34.766 ± 0.001	Persic M. et. al. (1995)
552-943	0.52	$\tilde{2}$	184.393 ± 0.001	3.238 ± 0.002	1.400 ± 0.001	192.356 ± 0.004	7.087 ± 0.001	Persic M. et. al. (1995)
553-226	0.76	4	434.331 ± 0.001	7.698 ± 0.001	1.470 ± 0.001	398.893 ± 0.005	69.815 ± 0.002	Persic M. et. al. (1995)
553-93	0.54	3	207.759 ± 0.001	1.729 ± 0.001	1.658 ± 0.001	214.559 ± 0.006	10.159 ± 0.001	Persic M. et. al. (1995)
554-910	0.82	2	221.504 ± 0.001	0.432 ± 0.001	1.978 ± 0.002	225.335 ± 0.005	12.802 ± 0.001	Persic M. et. al. (1995)
554-g19	0.29	3	161.497 ± 0.001	0.493 ± 0.001	1.296 ± 0.001	175.537 ± 0.005	5.192 ± 0.001	Persic M. et. al. (1995)
554 - g24	0.42	3	166.686 ± 0.001	1.013 ± 0.001	1.390 ± 0.001	175.888 ± 0.009	5.414 ± 0.001	Persic M. et. al. (1995)

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T~(10^{11}~{\rm M_{\odot}})$	Reference
554-g28	0.65	5	279.243 ± 0.001	1.832 ± 0.001	1.215 ± 0.001	282.442 ± 0.009	22.932 ± 0.001	Persic M. et. al. (1995)
554 - g29	0.57	5	486.027 ± 0.007	5.399 ± 0.001	1.231 ± 0.001	461.337 ± 0.007	104.076 ± 0.006	Persic M. et. al. (1995)
554 - g34	0.12	2	201.949 ± 0.001	3.512 ± 0.001	1.737 ± 0.001	200.941 ± 0.002	9.078 ± 0.001	Persic M. et. al. (1995)
555-g16	8.40	2	252.860 ± 0.003	2.678 ± 0.001	1.660 ± 0.001	258.457 ± 0.007	18.585 ± 0.002	Persic M. et. al. (1995)
555 - g29	0.41	4	306.351 ± 0.001	2.618 ± 0.001	1.368 ± 0.001	305.903 ± 0.002	30.027 ± 0.001	Persic M. et. al. (1995)
555-g2	0.75	5	143.238 ± 0.001	0.079 ± 0.001	1.893 ± 0.001	159.430 ± 0.002	3.775 ± 0.001	Persic M. et. al. (1995)
555-g8	0.44	4	332.883 ± 0.001	2.525 ± 0.001	1.059 ± 0.001	328.335 ± 0.009	38.087 ± 0.001	Persic M. et. al. (1995)
556 - g23	0.06	1	164.777 ± 0.001	1.645 ± 0.001	0.909 ± 0.001	177.722 ± 0.007	5.487 ± 0.001	Persic M. et. al. (1995)
556 - g5	0.85	1	142.787 ± 0.001	1.352 ± 0.001	2.129 ± 0.001	147.137 ± 0.007	3.564 ± 0.001	Persic M. et. al. (1995)
55 - g29	0.09	2	180.017 ± 0.001	2.597 ± 0.001	1.599 ± 0.002	179.045 ± 0.007	6.422 ± 0.001	Persic M. et. al. (1995)
562 - g14	0.49	3	254.651 ± 0.001	3.640 ± 0.001	1.708 ± 0.001	246.780 ± 0.001	16.816 ± 0.001	Persic M. et. al. (1995)
563 - g11	0.91	1	236.122 ± 0.001	1.870 ± 0.001	1.927 ± 0.001	254.211 ± 0.007	16.673 ± 0.001	Persic M. et. al. (1995)
563 - g13	0.80	3	162.740 ± 0.001	2.240 ± 0.001	1.870 ± 0.001	224.939 ± 0.009	6.505 ± 0.001	Persic M. et. al. (1995)
563 - g14	2.41	2	205.195 ± 0.005	1.645 ± 0.003	1.000 ± 0.006	213.349 ± 0.001	9.976 ± 0.002	Persic M. et. al. (1995)
563 - g17	0.62	3	321.921 ± 0.001	1.890 ± 0.001	1.734 ± 0.001	339.040 ± 0.007	39.294 ± 0.001	Persic M. et. al. (1995)
563 - g21	0.36	2	331.855 ± 0.001	4.848 ± 0.001	1.645 ± 0.001	335.289 ± 0.001	40.990 ± 0.001	Persic M. et. al. (1995)
563 - g28	0.11	6	521.514 ± 0.002	1.481 ± 0.001	1.323 ± 0.001	516.073 ± 0.002	153.786 ± 0.001	Persic M. et. al. (1995)
564 - g20	8.22	4	241.411 ± 0.002	3.323 ± 0.002	1.275 ± 0.001	326.210 ± 0.008	19.420 ± 0.001	Persic M. et. al. (1995)
564 - g23	0.35	3	195.069 ± 0.008	4.179 ± 0.001	1.509 ± 0.001	263.736 ± 0.003	10.332 ± 0.001	Persic M. et. al. (1995)
564 - g31	0.76	3	193.772 ± 0.004	3.222 ± 0.006	1.783 ± 0.001	265.032 ± 0.003	10.677 ± 0.001	Persic M. et. al. (1995)
564 - g35	0.33	4	207.378 ± 0.005	0.894 ± 0.001	1.442 ± 0.001	205.884 ± 0.009	9.765 ± 0.001	Persic M. et. al. (1995)
564 - g36	0.31	1	54.433 ± 0.003	4.279 ± 0.003	9.662 ± 0.002	115.177 ± 0.001	0.939 ± 0.001	Persic M. et. al. (1995)
566 - g14	0.11	2	159.745 ± 0.001	2.817 ± 0.001	1.524 ± 0.001	157.606 ± 0.009	4.380 ± 0.001	Persic M. et. al. (1995)
566 - g22	3.55	3	180.345 ± 0.003	0.506 ± 0.003	0.993 ± 0.001	181.279 ± 0.004	6.665 ± 0.001	Persic M. et. al. (1995)
566 - g26	6.09	2	227.765 ± 0.005	1.014 ± 0.001	1.088 ± 0.001	229.303 ± 0.005	13.490 ± 0.001	Persic M. et. al. (1995)
566 - g30	0.22	4	311.049 ± 0.001	2.430 ± 0.001	1.313 ± 0.001	301.369 ± 0.004	30.625 ± 0.001	Persic M. et. al. (1995)
566 - g9	0.13	2	206.804 ± 0.001	0.982 ± 0.001	1.042 ± 0.001	207.934 ± 0.005	10.059 ± 0.001	Persic M. et. al. (1995)
567 - g26	0.76	1	140.024 ± 0.001	1.431 ± 0.001	2.775 ± 0.001	163.474 ± 0.001	3.888 ± 0.001	Persic M. et. al. (1995)
567 - g45	0.50	1	260.284 ± 0.001	3.162 ± 0.001	1.852 ± 0.001	267.310 ± 0.008	21.371 ± 0.001	Persic M. et. al. (1995)
567 - g6	0.70	3	119.423 ± 0.006	1.890 ± 0.001	1.579 ± 0.001	134.357 ± 0.009	2.007 ± 0.001	Persic M. et. al. (1995)
569 - g22	0.27	2	243.007 ± 0.002	2.528 ± 0.001	1.465 ± 0.001	242.594 ± 0.007	15.974 ± 0.001	Persic M. et. al. (1995)
570 - g2	0.35	3	178.896 ± 0.001	1.024 ± 0.003	1.428 ± 0.001	186.418 ± 0.002	6.630 ± 0.001	Persic M. et. al. (1995)
571 - g12	0.15	2	233.861 ± 0.001	3.525 ± 0.003	1.587 ± 0.001	232.265 ± 0.007	14.019 ± 0.001	Persic M. et. al. (1995)
571 - g15	0.17	4	449.967 ± 0.001	4.736 ± 0.004	1.241 ± 0.001	441.116 ± 0.006	90.472 ± 0.002	Persic M. et. al. (1995)
571 - g16	0.29	4	342.681 ± 0.001	2.732 ± 0.002	1.297 ± 0.001	341.751 ± 0.007	42.167 ± 0.002	Persic M. et. al. (1995)
572 - g18	0.44	3	114.072 ± 0.001	0.684 ± 0.001	1.531 ± 0.001	130.764 ± 0.005	1.899 ± 0.001	Persic M. et. al. (1995)
572 - g22	0.11	2	99.128 ± 0.007	2.401 ± 0.001	1.581 ± 0.001	96.982 ± 0.003	1.021 ± 0.001	Persic M. et. al. (1995)
573 - g12	0.90	3	274.720 ± 0.001	2.170 ± 0.001	2.046 ± 0.001	389.757 ± 0.009	33.132 ± 0.001	Persic M. et. al. (1995)
573 - g14	0.35	3	162.597 ± 0.001	2.688 ± 0.001	1.623 ± 0.001	170.575 ± 0.002	4.681 ± 0.001	Persic M. et. al. (1995)
573-g6	0.76	5	478.937 ± 0.001	7.213 ± 0.003	1.265 ± 0.001	425.609 ± 0.008	85.758 ± 0.004	Persic M. et. al. (1995)
574 - g28	0.76	4	217.852 ± 0.001	3.189 ± 0.002	1.384 ± 0.001	214.076 ± 0.005	9.856 ± 0.001	Persic M. et. al. (1995)
574 - g32	0.49	5	381.733 ± 0.001	2.834 ± 0.004	1.278 ± 0.003	379.732 ± 0.004	56.785 ± 0.008	Persic M. et. al. (1995)
576-g11	0.64	3	167.628 ± 0.001	3.438 ± 0.001	1.708 ± 0.001	158.925 ± 0.001	4.491 ± 0.001	Persic M. et. al. (1995)
576-g12	0.98	5	501.335 ± 0.001	5.430 ± 0.001	1.239 ± 0.003	478.236 ± 0.003	115.499 ± 0.002	Persic M. et. al. (1995)
576-g14	0.33	5	752.003 ± 0.001	7.311 ± 0.001	1.286 ± 0.003	728.235 ± 0.002	405.187 ± 0.004	Persic M. et. al. (1995)
576-g26	0.44	4	248.130 ± 0.001	3.776 ± 0.001	1.164 ± 0.001	256.049 ± 0.004	15.115 ± 0.001	Persic M. et. al. (1995)
576-g32	0.20	1	128.567 ± 0.001	0.739 ± 0.001	0.001 ± 0.001	144.758 ± 0.006	$2.698 \pm 0.$	Persic M. et. al. (1995)
576-g39	0.72	0	(45.921 ± 0.001)	0.251 ± 0.002	1.038 ± 0.001	101.085 ± 0.007	365.562 ± 0.014	Persic M. et. al. (1995)
576-g3	8.07	3	197.249 ± 0.004	4.231 ± 0.001	1.253 ± 0.002	265.202 ± 0.001	10.435 ± 0.001	Persic M. et. al. (1995)
576-g48	0.45	1	177.098 ± 0.001	1.639 ± 0.001	2.198 ± 0.001	182.664 ± 0.008	0.819 ± 0.001	Persic M. et. al. (1995)

Short title, max. 45 characters 33

Galaxy	χ^2_{nod}	n	$\langle V_0 \rangle ~(\mathrm{km} ~\mathrm{s}^{-1})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge} (\rm kpc)$	$M_T \ (10^{11} \ {\rm M_{\odot}})$	Reference
FR0 F1	0.70	0	100 195 0 009	8 F 4 4 0 0 0 1	1 502 0 001	104.051 0.000	<u> </u>	
576-g51	0.79	3	188.435 ± 0.003	2.566 ± 0.001	1.786 ± 0.001	194.271 ± 0.003	7.353 ± 0.001	Persic M. et. al. (1995)
577-g1	1.14	3	174.978 ± 0.004	1.807 ± 0.001	1.766 ± 0.001	239.521 ± 0.006	8.101 ± 0.001	Persic M. et. al. (1995)
579-g9	0.41	1	85.219 ± 0.001	2.049 ± 0.001	2.817 ± 0.002	91.510 ± 0.001	0.857 ± 0.001	Persic M. et. al. (1995)
57-g80	0.76	3	173.212 ± 0.001	3.650 ± 0.001	1.849 ± 0.001	232.279 ± 0.008	7.346 ± 0.001	Persic M. et. al. (1995)
580-g29	0.51	3	67.286 ± 0.002	6.554 ± 0.001	2.677 ± 0.001	94.161 ± 0.001	0.477 ± 0.001	Persic M. et. al. (1995)
580-g37	0.22	2	217.735 ± 0.002	2.224 ± 0.001	1.115 ± 0.001	215.813 ± 0.004	11.246 ± 0.001	Persic M. et. al. (1995)
580-g41	0.84	3	100.734 ± 0.009	1.479 ± 0.003	1.849 ± 0.001	97.952 ± 0.001	1.052 ± 0.001	Persic M. et. al. (1995)
580-g45	0.74	5	378.203 ± 0.009	6.995 ± 0.001	1.231 ± 0.001	340.701 ± 0.002	40.296 ± 0.003	Persic M. et. al. (1995)
580-g49	0.37	4	236.406 ± 0.001	3.077 ± 0.001	1.320 ± 0.001	239.432 ± 0.002	13.255 ± 0.001	Persic M. et. al. (1995)
580-g6	0.54	4	315.470 ± 0.001	2.825 ± 0.001	1.413 ± 0.001	318.552 ± 0.008	33.088 ± 0.001	Persic M. et. al. (1995)
581-g10	0.29	3	152.859 ± 0.001	0.924 ± 0.003	1.541 ± 0.001	168.905 ± 0.001	4.398 ± 0.001	Persic M. et. al. (1995)
581-g15	0.92	8	165.866 ± 0.001	0.144 ± 0.001	2.576 ± 0.001	187.641 ± 0.009	5.893 ± 0.001	Persic M. et. al. (1995)
581-g4	0.12	2	36.499 ± 0.001	9.738 ± 0.001	4.339 ± 0.001	89.233 ± 0.002	0.397 ± 0.001	Persic M. et. al. (1995)
581-g6	0.26	5	824.619 ± 0.002	7.344 ± 0.001	1.000 ± 0.001	1121.160 ± 0.009	788.410 ± 0.02	Persic M. et. al. (1995)
582-g12	0.82	3	155.085 ± 0.007	0.706 ± 0.001	1.933 ± 0.003	168.913 ± 0.003	4.602 ± 0.001	Persic M. et. al. (1995)
582-g13	0.71	2	203.942 ± 0.004	4.481 ± 0.003	2.249 ± 0.001	282.268 ± 0.001	13.513 ± 0.001	Persic M. et. al. (1995)
582-g21	0.26	2	90.383 ± 0.001	6.171 ± 0.009	3.701 ± 0.001	111.172 ± 0.001	1.537 ± 0.001	Persic M. et. al. (1995)
582-g4	0.13	2	108.429 ± 0.002	2.014 ± 0.001	1.732 ± 0.002	107.707 ± 0.002	1.398 ± 0.001	Persic M. et. al. (1995)
583-g2	0.64	3	233.523 ± 0.001	1.938 ± 0.003	1.711 ± 0.001	231.169 ± 0.002	13.822 ± 0.001	Persic M. et. al. (1995)
583-g7	0.77	3	365.765 ± 0.003	3.519 ± 0.001	1.648 ± 0.002	375.612 ± 0.009	54.599 ± 0.002	Persic M. et. al. (1995)
584-g4	0.89	3	227.623 ± 0.003	1.012 ± 0.002	1.873 ± 0.001	228.753 ± 0.009	13.393 ± 0.001	Persic M. et. al. (1995)
586-g2	0.32	4	240.907 ± 0.001	5.774 ± 0.001	1.344 ± 0.001	309.783 ± 0.002	16.639 ± 0.001	Persic M. et. al. (1995)
58-g25	0.22	4	284.406 ± 0.001	2.381 ± 0.001	1.551 ± 0.001	275.739 ± 0.008	23.457 ± 0.001	Persic M. et. al. (1995)
58-g28	0.60	4	201.786 ± 0.002	3.670 ± 0.001	1.311 ± 0.001	201.835 ± 0.003	7.627 ± 0.001	Persic M. et. al. (1995)
58-g30	0.10	1	149.642 ± 0.002	1.554 ± 0.001	2.856 ± 0.004	156.466 ± 0.002	4.286 ± 0.001	Persic M. et. al. (1995)
58-g3	0.45	2	124.532 ± 0.001	1.644 ± 0.001	1.518 ± 0.001	140.978 ± 0.003	2.433 ± 0.001	Persic M. et. al. (1995)
593-g3	0.48	3	214.230 ± 0.001	2.369 ± 0.001	1.517 ± 0.001	225.388 ± 0.002	11.086 ± 0.001	Persic M. et. al. (1995)
594-g8	0.35	2	187.762 ± 0.001	3.843 ± 0.001	1.404 ± 0.001	199.241 ± 0.001	7.540 ± 0.001	Persic M. et. al. (1995)
595-g10	0.19	2	139.066 ± 0.009	4.534 ± 0.001	1.959 ± 0.002	138.172 ± 0.006	2.951 ± 0.001	Persic M. et. al. (1995)
596-g9	0.29	2	139.209 ± 0.001	1.500 ± 0.001	1.336 ± 0.001	156.066 ± 0.001	3.366 ± 0.001	Persic M. et. al. (1995)
59-g23	0.64	3	203.410 ± 0.001	3.803 ± 0.001	1.642 ± 0.001	275.583 ± 0.005	12.010 ± 0.001	Persic M. et. al. (1995)
59-g24	0.48	1	135.556 ± 0.001	4.902 ± 0.003	3.789 ± 0.001	155.838 ± 0.004	4.234 ± 0.001	Persic M. et. al. (1995)
601-g19	0.39	4	335.511 ± 0.001	3.654 ± 0.001	1.415 ± 0.001	324.684 ± 0.001	37.081 ± 0.001	Persic M. et. al. (1995)
601-g25	0.60	2	68.339 ± 0.001	0.742 ± 0.001	1.384 ± 0.001	83.927 ± 0.001	0.438 ± 0.001	Persic M. et. al. (1995)
601-g4	0.21	3	226.208 ± 0.001	2.802 ± 0.002	1.416 ± 0.001	225.649 ± 0.001	12.136 ± 0.001	Persic M. et. al. (1995)
601-g5	0.11	4	345.987 ± 0.001	2.301 ± 0.001	1.198 ± 0.001	337.281 ± 0.001	42.930 ± 0.001	Persic M. et. al. (1995)
601-g7	0.63	5	244.486 ± 0.001	1.666 ± 0.001	1.221 ± 0.001	245.851 ± 0.008	15.228 ± 0.001	Persic M. et. al. (1995)
601-g9	1.63	1	269.000 ± 0.004	5.062 ± 0.002	1.671 ± 0.002	388.898 ± 0.006	32.955 ± 0.005	Persic M. et. al. (1995)
602-g15	0.44	3	94.559 ± 0.002	2.942 ± 0.001	1.617 ± 0.001	125.494 ± 0.002	1.106 ± 0.001	Persic M. et. al. (1995)
602-g25	0.63	2	212.205 ± 0.001	0.963 ± 0.002	1.625 ± 0.001	228.007 ± 0.008	11.764 ± 0.001	Persic M. et. al. (1995)
603-g12	0.24	3	109.608 ± 0.001	0.826 ± 0.001	1.360 ± 0.001	127.680 ± 0.001	1.688 ± 0.001	Persic M. et. al. (1995)
603-g20	0.34	5	549.463 ± 0.001	4.584 ± 0.001	1.088 ± 0.001	748.455 ± 0.005	235.961 ± 0.004	Persic M. et. al. (1995)
603-g22	0.24	2	190.204 ± 0.001	3.797 ± 0.001	2.443 ± 0.001	213.123 ± 0.001	9.003 ± 0.001	Persic M. et. al. (1995)
604-g1	0.93	5	275.305 ± 0.001	4.376 ± 0.001	1.293 ± 0.001	280.887 ± 0.004	19.153 ± 0.001	Persic M. et. al. (1995)
605-g7	0.53	5	449.773 ± 0.001	2.953 ± 0.001	1.215 ± 0.001	449.447 ± 0.009	94.532 ± 0.002	Persic M. et. al. (1995)
606-g11	0.87	2	105.537 ± 0.009	1.146 ± 0.001	1.336 ± 0.001	174.460 ± 0.007	5.393 ± 0.001	Persic M. et. al. (1995)
60-g25	0.36	4	104.975 ± 0.002	0.785 ± 0.002	1.230 ± 0.001	119.154 ± 0.008	1.402 ± 0.001	Persic M. et. al. (1995)
61-g8	0.48	4	323.194 ± 0.001	3.694 ± 0.001	1.369 ± 0.001	314.036 ± 0.001	33.006 ± 0.001	Persic M. et. al. (1995)
62-g3	0.27	3	175.526 ± 0.001	1.003 ± 0.001	1.498 ± 0.001	174.903 ± 0.001	5.987 ± 0.001	Persic M. et. al. (1995)
09-g11	12.86	3	242.803 ± 0.003	3.950 ± 0.001	1.031 ± 0.002	318.771 ± 0.004	19.977 ± 0.002	$rersic_{M}$, et. al. (1995)

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\mathrm{edge}}~(\mathrm{kpc})$	$M_T~(10^{11}~{\rm M_\odot})$	Reference
6-g3	0.57	3	177.500 ± 0.001	2.562 ± 0.001	1.762 ± 0.002	187.982 ± 0.001	6.289 ± 0.001	Persic M. et. al. (1995)
71-g14	0.83	1	184.724 ± 0.001	0.505 ± 0.001	1.587 ± 0.001	197.043 ± 0.003	7.823 ± 0.001	Persic M. et. al. (1995)
71-g4	0.61	5	409.476 ± 0.001	6.148 ± 0.001	1.267 ± 0.001	362.853 ± 0.003	53.453 ± 0.005	Persic M. et. al. (1995)
72-g5	0.81	4	152.986 ± 0.001	0.803 ± 0.001	1.732 ± 0.001	164.807 ± 0.002	4.251 ± 0.001	Persic M. et. al. (1995)
73-g11	0.24	3	237.975 ± 0.001	3.751 ± 0.004	1.215 ± 0.001	227.474 ± 0.004	12.935 ± 0.001	Persic M. et. al. (1995)
73-g22	0.22	4	12.248 ± 0.001	11.121 ± 0.001	3.703 ± 0.001	51.226 ± 0.002	0.075 ± 0.001	Persic M. et. al. (1995)
73-g25	0.36	5	499.957 ± 0.001	2.863 ± 0.001	1.262 ± 0.001	494.386 ± 0.006	130.324 ± 0.002	Persic M. et. al. (1995)
74-g19	0.32	4	232.905 ± 0.001	0.730 ± 0.002	1.425 ± 0.003	232.891 ± 0.007	14.133 ± 0.001	Persic M. et. al. (1995)
75-g33	0.20	1	138.904 ± 0.001	3.507 ± 0.001	1.000 ± 0.001	153.813 ± 0.006	3.293 ± 0.001	Persic M. et. al. (1995)
75-g37	1.75	2	147.718 ± 0.005	4.557 ± 0.002	1.460 ± 0.003	193.292 ± 0.002	4.479 ± 0.002	Persic M. et. al. (1995)
79-g14	1.64	4	284.383 ± 0.003	2.365 ± 0.008	1.236 ± 0.005	274.203 ± 0.009	23.067 ± 0.003	Persic M. et. al. (1995)
7-g2	0.15	5	161.872 ± 0.001	0.082 ± 0.001	1.721 ± 0.004	164.376 ± 0.008	4.969 ± 0.001	Persic M. et. al. (1995)
80-g1	0.45	4	253.055 ± 0.001	3.174 ± 0.001	1.368 ± 0.004	252.549 ± 0.001	16.115 ± 0.001	Persic M. et. al. (1995)
84-g10	2.42	3	30.805 ± 0.003	10.773 ± 0.002	3.808 ± 0.003	78.441 ± 0.004	0.270 ± 0.001	Persic M. et. al. (1995)
84-g33	0.34	2	331.015 ± 0.006	3.515 ± 0.001	1.496 ± 0.002	342.862 ± 0.002	41.973 ± 0.002	Persic M. et. al. (1995)
85-g27	0.75	3	214.319 ± 0.001	3.033 ± 0.001	1.715 ± 0.004	218.494 ± 0.001	10.610 ± 0.001	Persic M. et. al. (1995)
85-g2	13.05	3	268.065 ± 0.001	3.450 ± 0.001	1.516 ± 0.002	265.284 ± 0.001	20.052 ± 0.002	Persic M. et. al. (1995)
85-g38	0.21	2	206.834 ± 0.001	2.530 ± 0.001	1.476 ± 0.001	210.434 ± 0.009	9.982 ± 0.001	Persic M. et. al. (1995)
85-g61	0.30	2	600.210 ± 0.001	5.537 ± 0.001	1.149 ± 0.004	610.777 ± 0.004	218.864 ± 0.004	Persic M. et. al. (1995)
87-g50	0.54	5	396.675 ± 0.001	4.878 ± 0.002	1.158 ± 0.001	387.930 ± 0.001	57.244 ± 0.002	Persic M. et. al. (1995)
88-g10	1.86	3	258.562 ± 0.003	1.341 ± 0.001	1.456 ± 0.002	258.076 ± 0.002	19.232 ± 0.001	Persic M. et. al. (1995)
88-g17	0.44	3	475.564 ± 0.002	5.576 ± 0.001	1.570 ± 0.002	463.408 ± 0.007	111.346 ± 0.003	Persic M. et. al. (1995)
88-g8	0.33	3	265.430 ± 0.003	5.068 ± 0.001	1.780 ± 0.002	270.992 ± 0.001	19.671 ± 0.001	Persic M. et. al. (1995)
89-g12	1.23	3	226.859 ± 0.003	0.707 ± 0.001	2.618 ± 0.001	260.201 ± 0.006	15.423 ± 0.001	Persic M. et. al. (1995)
8-g1	0.43	4	232.867 ± 0.001	4.506 ± 0.001	1.437 ± 0.001	220.391 ± 0.008	10.915 ± 0.001	Persic M. et. al. (1995)
8-g/	0.50	5	395.587 ± 0.001	4.540 ± 0.001	1.228 ± 0.001	391.390 ± 0.001	58.585 ± 0.001	Persic M. et. al. (1995)
90-g9	0.04	3	241.630 ± 0.001	0.840 ± 0.002	1.065 ± 0.002	242.189 ± 0.009	15.894 ± 0.001	Persic M. et. al. (1995)
9-g10	0.57	3	245.136 ± 0.001	1.852 ± 0.001	1.608 ± 0.001	242.906 ± 0.007	16.036 ± 0.001	Persic M. et. al. (1995)
DD0154	0.22	2	55.551 ± 0.003	0.696 ± 0.002	0.939 ± 0.008	54.448 ± 0.001	0.181 ± 0.001	On et. al. (2015)
DD052	0.13	3	79.121 ± 0.002	0.591 ± 0.006	0.939 ± 0.008	77.589 ± 0.006	0.523 ± 0.001	On et. al. (2015)
DD064	2.83	6	227.195 ± 0.008	19.177 ± 0.002	1.023 ± 0.006	156.922 ± 0.001	0.920 ± 0.004	Kuzio de Naray R. et. al. $(2006, 2008)$
ESO0140040	0.22	3	305.050 ± 0.006	1.060 ± 0.005	1.074 ± 0.003	305.775 ± 0.008	31.988 ± 0.002	de Blok E. et. al. (2001)
ESO0840411	0.03	0	140.020 ± 0.004	3.830 ± 0.009	0.969 ± 0.009	171.037 ± 0.002	3.100 ± 0.003	de Blok E. et. al. (2001)
ESO1200211	0.03	2	507.776 ± 0.003	3.934 ± 0.002	0.996 ± 0.004	480.812 ± 0.005	120.361 ± 0.082	de Blok E. et. al. (2001)
ES01870310	0.03	1	120.776 ± 0.003	0.481 ± 0.002	0.427 ± 0.003	120.458 ± 0.003	0.203 ± 0.001	de Blok E. et. al. (2001)
ESO2000140	0.13	2	129.170 ± 0.001	2.050 ± 0.002	1.700 ± 0.007	130.438 ± 0.002	2.484 ± 0.001	de Blok E. et. al. (2001)
ESO3020120	0.02	2	117.641 ± 0.009	1.820 ± 0.003	1.799 ± 0.003 1.077 ± 0.004	$110,012 \pm 0.009$	1527 ± 0.01	de Blok E. et. al. (2001)
ESO3030090	0.05	4	$108 176 \pm 0.003$	1.830 ± 0.002	1.077 ± 0.004	101.912 ± 0.008	7.822 ± 0.001	de Blok E. et. al. (2001)
ESO4230180	0.03	2	130.100 ± 0.001	1.000 ± 0.009	1.203 ± 0.007	191.293 ± 0.009	7.852 ± 0.002	de Blok E. et. al. (2001)
E504880049	0.02	2	129.100 ± 0.009 127.111 ± 0.002	2.170 ± 0.002	1.262 ± 0.002	124.547 ± 0.003 124.776 ± 0.001	2.003 ± 0.003 2.174 ± 0.003	de Blok E. et. al. (2001)
F5692	0.13	1	127.111 ± 0.002	5.042 ± 0.003	12.303 ± 0.000	124.770 ± 0.001 87.116 ± 0.002	0.27 ± 0.002	de Blok E. et. al. (2001)
F 5085	0.11	2	$182 121 \pm 0.001$	1.974 ± 0.002	12.718 ± 0.002	170572 ± 0.002	6.470 ± 0.002	de Blok E. et. al. (2001)
E570V1	0.03	3	132.131 ± 0.004 132.216 ± 0.002	1.274 ± 0.004	1.130 ± 0.002 1.522 ± 0.004	142.626 ± 0.001	0.479 ± 0.001	de Blok E. et. al. (2001)
F5831	0.01	1	97.061 ± 0.002	2343 ± 0.002	0.925 ± 0.004	96160 ± 0.003	0.995 ± 0.001	de Blok E. et. al. (2001)
F5834	0.21	4	189.772 ± 0.002	3.275 ± 0.003	1302 ± 0.004	171.881 ± 0.002	5.682 ± 0.001	de Blok E. et. al. (2001)
F730V1	0.13	2	$165,326 \pm 0.005$	1.144 ± 0.005	1.002 ± 0.002 1.016 ± 0.009	179541 ± 0.009	5.002 ± 0.004 5.495 ± 0.002	de Blok E. et. al. (2001)
holm370	1.50	1	137337 ± 0.005	1.144 ± 0.003 1.588 ± 0.002	2.789 ± 0.009	208169 ± 0.003	5.435 ± 0.002	Persic M et al. (1005)
i1330	0.17	5	289764 ± 0.003	0.611 ± 0.002	1.547 ± 0.009	290503 ± 0.001	$27 431 \pm 0.004$	Persic M et al (1995)
i1474	0.58	4	280.148 ± 0.004	2.977 ± 0.001	1.047 ± 0.008 1.451 ± 0.003	277462 ± 0.002	22.266 ± 0.002	Persic M et al (1995)
11414	0.00	-	200.140 ± 0.001	2.311 ± 0.001	1.401 ± 0.003	211.402 ± 0.002	22.200 ± 0.001	1 CIBIC MI. CO. al. (1990)

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle ~({\rm km~s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T~(10^{11}~{\rm M_{\odot}})$	Reference
i2974	2.74	1	171.519 ± 0.006	4.475 ± 0.003	3.257 ± 0.007	188.111 ± 0.001	7.448 ± 0.005	Persic M. et. al. (1995)
i382	0.88	2	189.659 ± 0.003	0.457 ± 0.001	1.941 ± 0.001	199.154 ± 0.001	8.286 ± 0.001	Persic M. et. al. (1995)
i387	0.13	4	265.343 ± 0.004	0.341 ± 0.001	1.622 ± 0.002	286.002 ± 0.002	23.090 ± 0.001	Persic M. et. al. (1995)
i407	13.77	1	162.742 ± 0.002	1.853 ± 0.002	2.160 ± 0.005	174.497 ± 0.004	5.515 ± 0.001	Persic M. et. al. (1995)
i5078	0.28	1	105.856 ± 0.002	2.087 ± 0.001	2.134 ± 0.003	110.215 ± 0.002	1.498 ± 0.001	Persic M. et. al. (1995)
i5282	0.53	1	190.451 ± 0.002	1.981 ± 0.003	1.060 ± 0.001	195.453 ± 0.009	8.093 ± 0.001	Persic M. et. al. (1995)
i784	0.75	3	204.083 ± 0.001	4.187 ± 0.001	1.813 ± 0.002	279.136 ± 0.003	12.278 ± 0.001	Persic M. et. al. (1995)
m-1-2313	0.64	3	164.110 ± 0.001	2.809 ± 0.001	1.804 ± 0.001	158.067 ± 0.001	4.419 ± 0.001	Persic M. et. al. (1995)
m-1-2321	0.67	3	206.198 ± 0.001	2.062 ± 0.002	1.798 ± 0.003	215.811 ± 0.005	10.016 ± 0.001	Persic M. et. al. (1995)
m-1-2522	0.47	3	235.686 ± 0.001	2.271 ± 0.001	1.503 ± 0.001	240.569 ± 0.001	14.430 ± 0.001	Persic M. et. al. (1995)
m-1-2524	0.32	4	203.975 ± 0.008	1.459 ± 0.002	1.209 ± 0.001	198.181 ± 0.004	8.709 ± 0.001	Persic M. et. al. (1995)
m-1-5-47	0.48	4	366.183 ± 0.002	4.499 ± 0.001	1.539 ± 0.001	346.289 ± 0.001	46.462 ± 0.001	Persic M. et. al. (1995)
m-2-1009	0.55	4	454.155 ± 0.001 111 244 ± 0.001	7.074 ± 0.002 6.108 \pm 0.001	1.250 ± 0.001	423.654 ± 0.005 155.654 ± 0.001	82.215 ± 0.002	Persic M. et. al. (1995) Persic M et. al. (1995)
m-213019	0.20	2	07.460 ± 0.001	4.682 ± 0.001	2.339 ± 0.001	133.034 ± 0.001	2.201 ± 0.001	Persic M. et. al. (1995)
m-214003	0.24	3	122.671 ± 0.001	1.032 ± 0.001	1.220 ± 0.001	142740 ± 0.001	0.844 ± 0.001	Persic M. et. al. (1995)
m-213000 m-222022	0.33	1	123.071 ± 0.001 172.405 ± 0.001	1.804 ± 0.001 1.200 ± 0.001	1.239 ± 0.001 1.534 ± 0.001	142.749 ± 0.002 102.065 ± 0.004	2.380 ± 0.001 6 722 ± 0.001	Persic M. et. al. (1995) Borgio M. et. al. (1995)
m 222025	0.13	6	175.495 ± 0.001 175.562 ± 0.001	1.390 ± 0.001	1.324 ± 0.001	152.003 ± 0.004 178560 ± 0.000	6.270 ± 0.001	Persic M. et. al. (1995)
$m_{-2-2-40}$	0.17	3	175.077 ± 0.001	1.780 ± 0.001	1.584 ± 0.001	171.689 ± 0.003	5.663 ± 0.001	Persic M. et. al. (1995)
m_2_2502	0.43	3	171.474 ± 0.001	1.936 ± 0.001	1.004 ± 0.002 1.744 ± 0.002	178146 ± 0.001	5.656 ± 0.001	Persic M et al. (1995)
m-2-2-51	0.74	1	126.638 ± 0.001	1.559 ± 0.001 1.559 ± 0.004	1.744 ± 0.002 1.239 ± 0.001	128227 ± 0.001	2.359 ± 0.001	Persic M et al. (1995)
m-2-7-33	0.43	3	231.079 ± 0.001	1.968 ± 0.001	1.696 ± 0.001	232.899 ± 0.005	13.622 ± 0.001	Persic M. et. al. (1995)
m-3-1042	3.05	2	176.519 ± 0.003	0.710 ± 0.001	0.917 ± 0.002	177.674 ± 0.003	6.276 ± 0.001	Persic M. et. al. (1995)
m-3-1364	0.47	4	373.222 ± 0.001	7.385 ± 0.007	1.393 ± 0.001	336.293 ± 0.001	41.881 ± 0.007	Persic M. et. al. (1995)
m-3-1623	0.49	4	350.214 ± 0.001	3.768 ± 0.001	1.495 ± 0.001	334.059 ± 0.007	41.711 ± 0.002	Persic M. et. al. (1995)
m-338025	0.65	3	167.649 ± 0.001	1.762 ± 0.001	1.673 ± 0.001	178.428 ± 0.008	5.435 ± 0.001	Persic M. et. al. (1995)
M33	0.67	4	127.476 ± 0.007	0.286 ± 0.002	1.361 ± 0.004	150.981 ± 0.002	2.785 ± 0.003	Corbelli et. al. (2014); Fune L. E., et. al. (2016)
n1090	2.25	2	200.410 ± 0.004	1.142 ± 0.001	0.772 ± 0.002	200.319 ± 0.008	8.994 ± 0.001	Persic M. et. al. (1995)
n1114	3.94	3	245.295 ± 0.002	1.413 ± 0.002	1.463 ± 0.002	244.281 ± 0.002	16.31 ± 0.001	Persic M. et. al. (1995)
n1163	0.30	2	52.051 ± 0.001	3.308 ± 0.001	3.517 ± 0.001	73.973 ± 0.001	0.301 ± 0.001	Persic M. et. al. (1995)
n1241	1.09	2	265.427 ± 0.001	0.873 ± 0.001	2.024 ± 0.001	269.747 ± 0.009	21.961 ± 0.001	Persic M. et. al. (1995)
n1247	19.38	5	306.964 ± 0.002	0.661 ± 0.001	1.386 ± 0.001	307.422 ± 0.008	32.508 ± 0.001	Persic M. et. al. (1995)
n1337	0.40	3	157.513 ± 0.001	1.373 ± 0.001	1.365 ± 0.002	168.681 ± 0.009	4.544 ± 0.001	Persic M. et. al. (1995)
n1417	0.91	2	236.493 ± 0.001	0.809 ± 0.001	1.967 ± 0.001	254.819 ± 0.008	16.459 ± 0.001	Persic M. et. al. (1995)
n151	0.94	1	240.080 ± 0.001	1.446 ± 0.001	1.670 ± 0.001	245.163 ± 0.009	16.487 ± 0.001	Persic M. et. al. (1995)
n1620	0.10	3	289.136 ± 0.001	1.779 ± 0.001	1.372 ± 0.002	302.042 ± 0.007	27.935 ± 0.002	Persic M. et. al. (1995)
n1752	0.44	1	165.667 ± 0.002	2.912 ± 0.001	3.182 ± 0.001	177.579 ± 0.001	6.266 ± 0.001	Persic M. et. al. (1995)
n1832	2.26	1	159.843 ± 0.002	0.664 ± 0.002	3.020 ± 0.002	164.888 ± 0.003	5.016 ± 0.001	Persic M. et. al. (1995)
n2584	0.23	2	100.389 ± 0.001	4.447 ± 0.001	2.764 ± 0.001	148.983 ± 0.001	1.850 ± 0.001	Persic M. et. al. (1995)
n2721	0.96	2	207.717 ± 0.001	0.081 ± 0.001	1.792 ± 0.001	216.994 ± 0.009	10.872 ± 0.001	Persic M. et. al. (1995)
n2722	0.58	3	150.984 ± 0.001	1.282 ± 0.001	1.720 ± 0.001	166.356 ± 0.009	4.179 ± 0.001	Persic M. et. al. (1995)
n2763	0.79	3	152.549 ± 0.001	0.869 ± 0.001	1.887 ± 0.002	166.139 ± 0.009	4.348 ± 0.001	Persic M. et. al. (1995)
11280	0.96	1	270.980 ± 0.001	0.031 ± 0.001	1.021 ± 0.001	216.178 ± 0.003	23.509 ± 0.001	Persic M. et. al. (1995)
n2980 n2020	3.94	3	303.311 ± 0.004 172.457 ± 0.001	1.773 ± 0.001 1.027 ± 0.001	1.003 ± 0.001 1.562 ± 0.001	310.731 ± 0.000 173.828 ± 0.001	52.529 ± 0.001	Persic M. et. al. (1995) Densie M. et. al. (1995)
n3029 n2129	0.50	1	173.437 ± 0.001 154.770 ± 0.006	1.027 ± 0.001	1.002 ± 0.001 2.165 ± 0.001	160501 ± 0.001	4.626 ± 0.001	Parsia M at al. (1995)
n3138 n2145	1.22	1	242.625 ± 0.000	2.280 ± 0.001	2.103 ± 0.001 2.000 ± 0.001	241.051 ± 0.001	4.020 ± 0.001	Parsia M at al. (1995)
n3321	0.15	1	140.667 ± 0.001	1.858 ± 0.001	3.323 ± 0.001 1 372 ± 0.007	159340 ± 0.001	3641 ± 0.001	Persic M et al. (1995)
n3361	0.15	3	$162 162 \pm 0.001$	1.865 ± 0.001	1.649 ± 0.007	171519 ± 0.001	4.850 ± 0.001	Parsic M at al (1995)
n3456	0.39	1	143.104 ± 0.001	1.040 ± 0.001	1.628 ± 0.001	146.099 ± 0.001	3.489 ± 0.001	Persic M. et. al. (1995)
		-		±	0.000		<u>.</u>	

Galaxy	$\chi^2_{\rm red}$	n	$\langle V_0 \rangle \ ({\rm km \ s^{-1}})$	$\langle r_c \rangle$ (kpc)	d	$r_{\rm edge}~({\rm kpc})$	$M_T~(10^{11}{\rm M_\odot})$	Reference
n3715	0.32	12	192.428 ± 0.002	0.020 ± 0.001	2.417 ± 0.001	195.728 ± 0.005	8.390 ± 0.001	Persic M. et. al. (1995)
n4348	2.77	13	184.594 ± 0.002	0.037 ± 0.002	1.263 ± 0.002	192.431 ± 0.006	7.551 ± 0.003	Persic M. et. al. (1995)
n4705	3.79	1	194.989 ± 0.004	1.497 ± 0.001	1.241 ± 0.001	197.949 ± 0.004	8.678 ± 0.001	Persic M. et. al. (1995)
n697	31.37	1	207.744 ± 0.001	2.240 ± 0.002	1.657 ± 0.001	212.349 ± 0.002	10.714 ± 0.001	Persic M. et. al. (1995)
n699	0.27	1	147.800 ± 0.001	2.206 ± 0.001	2.121 ± 0.001	167.378 ± 0.002	4.380 ± 0.001	Persic M. et. al. (1995)
n701	0.62	4	227.265 ± 0.001	1.550 ± 0.001	1.368 ± 0.001	235.746 ± 0.004	13.047 ± 0.001	Persic M. et. al. (1995)
UGC477	4.69	3	183.986 ± 0.003	23.777 ± 0.003	1.359 ± 0.005	170.217 ± 0.003	2.759 ± 0.001	Kuzio de Naray R. et. al. (2006, 2008)
n7300	27.62	3	329.698 ± 0.001	5.031 ± 0.001	1.676 ± 0.001	457.145 ± 0.007	53.446 ± 0.002	Persic M. et. al. (1995)
n7339	2.77	3	194.193 ± 0.009	0.365 ± 0.002	1.017 ± 0.003	212.940 ± 0.002	9.177 ± 0.001	Persic M. et. al. (1995)
n7536	0.15	3	247.510 ± 0.001	2.276 ± 0.001	1.202 ± 0.001	241.771 ± 0.002	15.812 ± 0.001	Persic M. et. al. (1995)
n755	0.70	4	144.130 ± 0.005	11.874 ± 0.003	1.809 ± 0.004	147.518 ± 0.001	1.796 ± 0.003	Persic M. et. al. (1995)
n7568	0.71	3	264.116 ± 0.001	4.232 ± 0.001	1.795 ± 0.001	366.483 ± 0.001	27.553 ± 0.001	Persic M. et. al. (1995)
n7591	0.94	7	224.870 ± 0.001	0.054 ± 0.001	6.518 ± 0.001	236.824 ± 0.001	13.909 ± 0.001	Persic M. et. al. (1995)
n7593	0.37	2	144.524 ± 0.001	1.114 ± 0.001	1.467 ± 0.001	158.803 ± 0.002	3.748 ± 0.001	Persic M. et. al. (1995)
n7631	0.53	3	221.614 ± 0.001	1.557 ± 0.001	1.786 ± 0.001	229.184 ± 0.005	12.502 ± 0.001	Persic M. et. al. (1995)
n7677	0.39	1	174.333 ± 0.001	1.002 ± 0.003	1.458 ± 0.001	177.594 ± 0.004	6.267 ± 0.001	Persic M. et. al. (1995)
NGC3198	0.54	1	140.533 ± 0.001	3.482 ± 0.008	2.261 ± 0.004	207.311 ± 0.001	4.984 ± 0.003	Karukes et. al. (2015)
NGC6822	0.09	4	200.122 ± 0.002	4.679 ± 0.002	1.225 ± 0.001	188.966 ± 0.001	6.437 ± 0.001	Weldrake D. et. al. (2003)
NGC959	1.50	2	73.765 ± 0.005	25.880 ± 0.002	2.173 ± 0.003	112.484 ± 0.001	0.796 ± 0.002	Kuzio de Naray R. et. al. $(2006, 2008)$
U11454	0.37	2	182.924 ± 0.006	1.567 ± 0.005	1.047 ± 0.005	193.845 ± 0.006	7.199 ± 0.001	de Blok E. et. al. (2001)
U11557	0.03	3	238.977 ± 0.008	4.200 ± 0.007	1.002 ± 0.008	232.254 ± 0.002	12.928 ± 0.008	de Blok E. et. al. (2001)
U11583	0.03	2	12.442 ± 0.007	1.560 ± 0.009	4.139 ± 0.007	23.962 ± 0.002	0.008 ± 0.001	de Blok E. et. al. (2001)
U11616	0.14	2	164.774 ± 0.009	2.177 ± 0.002	1.412 ± 0.009	176.449 ± 0.003	5.289 ± 0.005	de Blok E. et. al. (2001)
U11048	0.38	4	260.699 ± 0.008	2.936 ± 0.004	1.366 ± 0.006	247.025 ± 0.004	10.800 ± 0.007	de Blok E. et. al. (2001)
U11748	1.02	4	223.364 ± 0.003	3.021 ± 0.002	2.245 ± 0.003	313.796 ± 0.007	18.096 ± 0.003	de Blok E. et. al. (2001)
011819	0.30	2	184.055 ± 0.009	5.572 ± 0.009	1.764 ± 0.007	$1072 250 \pm 0.001$	6.000 ± 0.000	de blok E. et. al. (2001)
	0.44		780.309 ± 0.003	3.003 ± 0.001	1.000 ± 0.001	1073.230 ± 0.008	12 604 0 001	Persic M. et. al. (1995)
u12290	0.40	3	234.607 ± 0.001	3.2445 ± 0.001	1.330 ± 0.001	238.836 ± 0.001 118 200 ± 0.004	13.624 ± 0.001	Persic M. et. al. (1995) Baraia M. at. al. (1995)
u12370	0.75	2	99.284 ± 0.001	1.046 ± 0.001	1.628 ± 0.001	118.290 ± 0.004 150.618 ± 0.005	1.310 ± 0.001	Persic M. et. al. (1995) Baraia M. at. al. (1995)
u12382	0.40	2	137.900 ± 0.001 189.675 ± 0.001	6.858 ± 0.004	1.494 ± 0.001 1.882 ± 0.001	130.018 ± 0.003 253.199 ± 0.001	10.035 ± 0.001	Persic M. et. al. (1995)
u12423	2.64	1	$205,370 \pm 0.001$	5.302 ± 0.001	2132 ± 0.001	203.199 ± 0.001 301.964 ± 0.007	15.033 ± 0.001	Persic M. et. al. (1995)
u12555	0.54	4	178874 ± 0.005	2.279 ± 0.001	1.351 ± 0.002	186680 ± 0.003	5.972 ± 0.003	Persic M et al. (1995)
u12565	0.73	3	200.508 ± 0.001	2.273 ± 0.001 2.183 ± 0.001	1.301 ± 0.001 1 708 ± 0.001	202.613 ± 0.003	8.788 ± 0.001	Persic M et al. (1995)
u12500	0.66	1	106.699 ± 0.001	1.807 ± 0.001	3.416 ± 0.001	114921 ± 0.001	1.698 ± 0.001	Persic M et al. (1995)
u12583	0.16	4	121582 ± 0.002	0.494 ± 0.001	1241 ± 0.001	141118 ± 0.008	2.317 ± 0.001	Persic M et al (1995)
u12000	0.36	8	208.848 ± 0.002	0.098 ± 0.001	2.903 ± 0.001	219.504 ± 0.006	11.019 ± 0.001	Persic M. et. al. (1995)
11938	0.49	4	308.447 ± 0.001	2.116 ± 0.001	1.597 ± 0.001	302.048 ± 0.003	30.833 ± 0.001	Persic M. et. al. (1995)
112020	0.42	2	92.743 ± 0.001	1.278 ± 0.001	1.411 ± 0.005	113.436 ± 0.001	1.082 ± 0.001	Persic M. et. al. (1995)
u2079	0.42	3	129.786 ± 0.001	4.237 ± 0.001	1.778 ± 0.001	173.146 ± 0.009	2.904 ± 0.001	Persic M. et. al. (1995)
11210	0.31	2	121.511 ± 0.001	1.068 ± 0.002	1.304 ± 0.001	138.437 ± 0.004	2.292 ± 0.001	Persic M. et. al. (1995)
u321	0.59	4	178.892 ± 0.001	2.081 ± 0.001	1.379 ± 0.001	169.138 ± 0.007	5.414 ± 0.001	Persic M. et. al. (1995)
U4115	0.01	3	129.643 ± 0.007	0.705 ± 0.007	0.983 ± 0.002	128.572 ± 0.001	2.378 ± 0.001	Persic M. et. al. (1995)
u541	0.61	4	212.051 ± 0.001	4.600 ± 0.001	1.441 ± 0.004	270.497 ± 0.008	11.557 ± 0.001	Persic M. et. al. (1995)
U4115	0.01	3	129.643 ± 0.008	0.705 ± 0.008	0.983 ± 0.002	128.572 ± 0.001	2.378 ± 0.001	de Blok E. et. al. (2001)
u541	0.61	4	212.051 ± 0.001	4.600 ± 0.001	1.441 ± 0.001	270.497 ± 0.008	11.557 ± 0.001	Persic M. et. al. (1995)
U5750	0.02	2	72.406 ± 0.005	10.050 ± 0.006	2.247 ± 0.008	105.912 ± 0.002	0.676 ± 0.012	de Blok E. et. al. (2001)
U6614	1.02	3	237.681 ± 0.009	4.852 ± 0.009	1.769 ± 0.004	326.234 ± 0.001	19.424 ± 0.003	de Blok E. et. al. (2001)
UGC1281	2.47	6	125.004 ± 0.007	18.956 ± 0.003	1.129 ± 0.005	143.478 ± 0.002	0.235 ± 0.001	Moiseev V. A. (2014); Swaters A. R. et. al. (2009)
UGC4325	5.78	5	275.876 ± 0.009	14.329 ± 0.002	1.022 ± 0.002	243.449 ± 0.001	8.072 ± 0.004	Kuzio de Naray R. et. al. (2006, 2008)

Table 1. Best fitting dynamical parameters $\langle V_0 \rangle$, $\langle r_c \rangle$, d, n, r_{edge} and the total mass M_T given by Eq.(15).

REFERENCES

Athanassoula E., Bosma A. and Papaioannou S., Astron. Astrophys. **179**, 23-40 (1987).

Bevington P. R. and Robinson K. D., Data reduction and error analysis for the physical sciences, McGraw-Hill, 2003.

Bosma A., PhD Thesis, Groningen Univ., (1978), arXiv:0009161.

Bosma A. and van der Kruit P. C., Astron. Astrophys., **79** (1979) 281-286.

Burkert A., IAU Symp. **171** (1996) 175, Astrophys. J. **447** (1995) L25.

Cen Y. R. and Ostriker P. J., Astrophys. J. 417 (1993) 404.

Corbelli E., Thilker D., Zibetti S., Giovanardi C. and Salucci P., Astron. Astrophys. 572 (2014) A23.

de Blok E., McGaugh S. and Rubin V., astro-ph/0107366.

de Blok W. J. G. and Bosma A., Astron. Astrophys. 385 (2002) 816.

de Blok W. J. G., Walter F., Brinks E., Trachternach C., Oh S. H. and Kennicutt R. C. Jr., Astron. J. 136 (2008) 2648.

de Blok W. J. G., Adv. Astron. 2010 (2010) 789293.

Evrard E. A., Summers J. F. and Davis M., Astrophys. J. 422 (1994) 11.

Fune L. E., Salucci P. and Corbelli E., arXiv:1611.01409 [astro-ph.GA].

Gentile G., Salucci P., Klein U., Vergani D. and Kalberla P., Mon. Not. Roy. Astron. Soc. 351 (2004) 903.

Gentile G., Burkert A., Salucci P., Klein U. and Walter F., Astrophys. J. Lett. 634 (2005) L145.

Karukes E. V., Salucci P. and Gentile G., Astron. Astrophys. 578 (2015) A13.

Kuzio de Naray R., McGaugh S. S., de Blok G. J. W. and Bosma A., Astrophys. J. Suppl. 165 (2006) 461.

Kuzio de Naray R., McGaugh S. S., de Blok G. J. W. and Bosma A., Astrophys. J. 676 (2008) 920.

Lelli F., Verheijen M. and Fraternali F., Astron. Astrophys. 566 (2014) A71.

Moiseev V. A., Astrophys. Bull. 69 (2014) 1.

Moore B., 1994, Nature ${\bf 370}$ (1994) 629.

Navarro J. F. and White M. D. S., Mon. Not. Roy. Astron. Soc. 267 (1994) 401.

Navarro J. F., Frenk C. S. and White S. D. M., Astrophys. J. 462 (1996) 563.

Navarro J. F., Frenk C. S. and White S. D. M., Astrophys. J. 490 (1997) 493.

Oh S. H. *et al.* Astron. J. **149** (2015) 180.

Palunas P. and Williams T. B., Astron. J. **120** (2000) no.6, 2284.

Persic M. and Salucci P., Mon. Not. Roy. Astron. Soc. 234 (1988) 131.

Persic M. and Salucci P., Astrophys. J. Suppl. 99 (1995) 501.

Rubin V. C., Thonnard N. and Ford W. K., Jr., Astrophys. J. 238 (1980) 471.

Salucci P. and Persic M., Astron. Astrophys. **351** (1999) 442.

Salucci P. and Burkert A., Astrophys. J. 537 (2000) L9.

Salucci P., Nesti F., Gentile G. and Martins C. F., Astron. Astrophys. 523 (2010) A83.

Swaters A. R., Sancisi R., van Albada S. T. and van der Hulst M. J., Astron. Astrophys. 493 (2009) 871.

Weldrake D., de Blok E. and Walter F., Mon. Not. Roy. Astron. Soc. 340 (2003) 12.

This paper has been typeset from a T_EX/LAT_EX file prepared by the author.