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Abstract. We present lattice QCD results by the Budapest-Marseille-Wuppertal (BMW)
Collaboration for the leading-order contribution of the hadron vacuum polarization (LO-
HVP) to the anomalous magnetic moments of all charged leptons. Calculations are per-
formed with u, d, s and c quarks at their physical masses, in volumes of linear extent
larger than 6 fm, and at six values of the lattice spacing, allowing for controlled con-
tinuum extrapolations. All connected and disconnected contributions are calculated for
not only the muon but also the electron and tau anomalous magnetic moments. System-
atic uncertainties are thoroughly discussed and comparisons with other calculations and
phenomenological estimates are made.

1 Introduction

The muon’s anomalous magnetic moments aµ = (gµ − 2)/2, with gµ the Landé g-factor, is determined
experimentally with a high precision of 0.5 ppm [1], and forthcoming experiments aim to improve
uncertainties to around 0.15 ppm at Fermilab [2] and at J-PARC with similar objectives [3]. Compar-
isons of the experimental results with Standard Model (SM) predictions, accurate to about 0.4 ppm [4],
indicate a more than 3 standard deviation tension. This is in sharp contrast to the electron case (ae) in
which the SM agrees to experiments in the ppb level. The tension in the muon case could be a sign
of new, fundamental physics. Indeed, in many extensions of the SM, the new physics contributions
are proportional to the lepton mass squared, and the corrections to aµ would be roughly 40,000 times
larger than those to ae. The anomalous magnetic moments of τ lepton (aτ) with the mass 17 times
heaver than muon is even more sensitive for new physics, but the short lifetime of τ has made such a
measurement impossible.

Theoretically, the leading source of uncertainty (over 78% of the total) in the SM prediction of aµ
emerges from the leading order (LO) hadronic vacuum polarization (HVP) contribution, aLO-HVP

µ [5].
The LO-HVP contribution also gives a dominant uncertainty in aτ [6] and significant on the scale
�Speaker, e-mail: kohtaroh.miura@cpt.univ-mrs.fr
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β a [fm] (T×L/a2) #conf(uds/c/disc) #src(ud/s/c/disc) bin-size(uds/c/disc)
3.7000 0.134 64 × 48 1000/40/1000 768/64/4/9000 10/1/10
3.7500 0.118 96 × 56 1500/40/1500 768/64/4/6000 10/1/10
3.7753 0.111 84 × 56 1500/40/1500 768/64/4/6144 10/1/10
3.8400 0.095 96 × 64 2500/40/1500 768/64/4/3600 10/1/10
3.9200 0.078 128 × 80 3500/40/1000 768/64/4/6144 10/1/10
4.0126 0.064 144 × 96 450/40/ − 768/64/4/ − 10/1/10

Table 1. Parameters of the simulations performed. Each configurations are taken every 10 trajectories. The
right-most column shows the configuration number in jackknife bin.

of the experimental error for ae [7]. Today aLO-HVP
µ is determined most precisely using dispersion

relations and the cross section of e+e− to hadrons and/or the rate of hadronic τ decays (see [5, 8] and
references therein). However, completely independent cross-checks by lattice QCD, without recourse
to any experimental inputs, are important for testing the SM. Since the pioneering work of [9], lattice
QCD calculations of aLO-HVP

µ (see [10] and references therein) have made significant progress and will
become competitive in the coming years.

In this proceedings, we present lattice QCD calculations of the aLO-HVP
�

of all three leptons (� =
e, µ, τ) [11] based on the same ensembles as used in [10]. We employ a tree-level improved Symanzik
gauge action and a fermion action for four flavors of stout-smeared, rooted, staggered quarks. We
have generated 15 ensembles at six values of the bare coupling, β, corresponding to lattice spacings
ranging from 0.064 to 0.134 fm. We include all contributions from u, d, s and c quarks, in their
quark-connected and quark-disconnected configurations. The up and down quark masses are taken to
be degenerate and, together with the strange quark mass, they are tuned to around the physical mass
point defined using the Goldstone pion and kaon masses. The charm quark mass is fixed in units of
the strange mass to its physical value, mc/ms=11.85 [12]. The spatial (temporal) dimension of our
lattices are in the range 6.1 ÷ 6.6 (8.6 ÷ 11.3) fm. The lattice spacing is fixed with the pion leptonic
decay constant, fπ. More information about the simulations can be found in [13].

In contrast to recent lattice works [14–16], our simulations are carried out at six values of the lattice
spacing directly at the physical values of their masses, allowing for controlled continuum extrapola-
tions. In particular, the continuum extrapolation of the disconnected contribution at the physical point
is important for work related in the literature. Moreover, we implement a description of the lattice
results [17, 18] that solves the small virtuality issue [19] with finite-volume (FV) artefacts that are ex-
ponentially suppressed in lattice size. The inclusion of all flavors up to the charm allows a controlled
matching onto perturbation theory.

2 Methodology

We consider the two-point function of the quark electromagnetic current in euclidean time t at zero
spatial-momentum:

Cµν(t) =
1
e2

∫
d3x 〈 jµ(x) jν(0)〉 , (1)

with e the positron charge, x=(t, �x) and jµ/e= 2
3 ūγµu− 1

3 d̄γµd− 1
3 s̄γµs+ 2

3 c̄γµc. We work in the isospin
limit, mu=md. It is useful to split Cµν into either flavor or isospin components since they have different
statistical/systematic uncertainties:

Cµν(t) = Cud
µν(t) +Cs

µν(t) +Cc
µν(t) +Cdisc

µν (t) = CI=1
µν (t) +CI=0

µν (t) , (2)
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with e the positron charge, x=(t, �x) and jµ/e= 2
3 ūγµu− 1

3 d̄γµd− 1
3 s̄γµs+ 2

3 c̄γµc. We work in the isospin
limit, mu=md. It is useful to split Cµν into either flavor or isospin components since they have different
statistical/systematic uncertainties:

Cµν(t) = Cud
µν(t) +Cs

µν(t) +Cc
µν(t) +Cdisc

µν (t) = CI=1
µν (t) +CI=0

µν (t) , (2)

where in the first equality, the first three terms correspond to the quark-connected contractions of
the light (u and d combined), strange and charm quarks, and the fourth to the quark-disconnected
contractions of u, d, and s. In the second equality, the separation is made between isospin I=1 and
I=0 contributions, given by CI=1

µν =
9
10Cud

µν and CI=0
µν =

1
10Cud

µν +Cs
µν +Cc

µν +Cdisc
µν .

The LO-HVP contributions to the anomalous magnetic moment of lepton � are obtained from
those of scalar HVP functions as [9, 20]

aLO-HVP
�, f =

(
α

π

)2 ∫ ∞
0

dQ2

m2
�

ω

Q
2

m2
�

 Π̂ f (Q2) , (3)

with α = e2/(4π), ω(r) = π2
[
r + 2 −

√
r(r + 4)

]2
/
√

r(r + 4), and the Π̂ f (Q2) is given by [17]

Π̂ f (Q2) ≡ Π f (Q2) − Π f (0) =
1
3

3∑
i=1

∫ ∞
0

dt
[
t2 − 4

Q2 sin2
(Qt

2

)]
C f

ii(t) . (4)

In Eqs. (3) and (4), f=ud, s, c, disc, I=1, I=0, � and the “�” indicates that this equation also applies to
the full LO-HVP contribution. One can construct the Π f (Q2) in terms of the hypercubic transforma-
tions of C f

ii(t) in Eq. (4), but they do not increase our overall accuracy, and are not taken account.
On a T ×L3 lattice with spacing a, the integral over t in Eq. (4) is replaced by a sum, in increments

of a, that runs up to T/2, once the correlator C f
ii(t) has been appropriately averaged with C f

ii(T − t).
Moreover, the integral over Q in Eq. (4) should, in principle, be replaced by a sum from 0 to π/a
in steps of 2π/T , but we here keep the integral; it should be noted, however, we need to introduce
an upper bound Q=Qmax in the integral. It is chosen much smaller than π/a, such that discretization
errors are under controlled, but perturbation theory can be applied for Q > Qmax:

aLO-HVP
�, f = aLO-HVP

�, f (Q≤Qmax) + γ�(Qmax) Π̂ f (Q2
max) + ∆pertaLO-HVP

�, f (Q>Qmax) . (5)

Here, the low momentum contribution, aLO-HVP
�, f (Q≤Qmax), is obtained from the lattice measure-

ments for the correlator Eq. (1). We use the conserved lattice current at the source and sink so
that no renormalization is necessary. See Table 1 for details on the simulation setup. The last
term in Eq. (5) is the high-momentum, perturbative contribution renormalized at Qmax. The sec-
ond term is required to shift the renormalization point from Qmax to Q=0. It is obtained with lat-
tice results for C f

ii(t), through Eq. (4) with Q=Qmax. The γ�(Qmax) is a known kinematical factor:

γ�(Q2
max) =

(
α
π

)2 ∫ ∞
Qmax

dQ
m�
ω(Q2/m2

� ), where the ω(r) is defined after Eq. (3). In obtaining Eq. (5), it
is assumed that ∆pertaLO-HVP

�, f (Q>Qmax) is equal to the value that it would have nonperturbatively. We
check this by studying the dependence of our results on the choice of Qmax.

The light and disconnected correlators (Cud
ii (t) and Cdisc

ii (t)), are notoriously noisy at large dis-
tance. This is true even with our high statistics. To address this problem, we introduce a cut tc
fm in time in Eq. (4), and replace the Cud

ii (t) (−Cdisc
ii (t)) by an upper and a lower bound for t > tc.

Both Cud
ii (t) and −Cdisc

ii (t) are strictly positive and the lower bounds are given by zero. For the upper
bounds, we adopt Cud

ii (tc) ϕ(t)
ϕ(tc) for the light component and (1/10)Cud

ii (tc) ϕ(t)
ϕ(tc) for the minus of the dis-

connected components. Here, ϕ(t) = cosh[E2π(T/2− t)] with E2π denoting energy of two pions. Thus,
the light/disconnected contributions to HVP are obtained by summing the integrand in Eq. (4) with
Cud/disc

ii (t) given by our lattice data up to tc and performing the rest of the sum from t>tc to T/2 with
Cud/disc

ii (t) replaced by the average discussed above.
The tc is chosen as such that the upper and lower bounds agree well within statistical errors and

where these errors are not too large [10]. For light components, this condition is satisfied around 3.0
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fm. We consider various tc in the range of (3.000±0.134) fm, and adopt the average of aLO-HVP
�

over tc
as a value to be used in later. The systematic error is given by fluctuations over tc. The same procedure
is carried out for the disconnected part with tc in the range of (2.600 ± 0.134) fm.

3 Results

3.1 Continuum Extrapolation
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Figure 1. Continuum extrapolation of the various flavor
contributions to aLO-HVP

µ (Q≤2 GeV), plotted as a function
of lattice spacing squared. See text for details. The green
squares at a2=0 are our continuum limits with statistical
and systematic errors.

The continuum extrapolations are performed
for aLO-HVP

�, f (Q≤Qmax), the first term of the
right-hand side in Eq. (5), for which we
use our lattice data. Hereafter, quantities
with the subscript “lat” correspond to lat-
tice results obtained in a given simulation:
aLO-HVP
�, f ,lat (Q≤Qmax). To extrapolate our results

aLO-HVP
�, f ,lat (Q≤Qmax) to the continuum limit and

to interpolate them to the physical mass point,
we fit them to a function which depends on
the lattice spacing squared with or without the
Goldstone pion/kaon masses squared and/or
ηc meson mass (not squared).

We adopt a linear ansatz in a2. To take
account of systematics associated with dis-
cretizations, we impose four cuts on the lat-
tice spacing (no cut, and a≤0.118, 0.111,
0.095 fm) in the continuum extrapolation.
This number is reduced to three in the dis-
connected case for which we have no results
at a = 0.064 fm. Since the simulations are
performed close to the physical mass point,
a constant or linear pion/kaon mass-squared
or ηc mass dependence is always sufficient.
For the light-quark and disconnected contri-
butions, the dependence on meson masses is
not significant statistically and can safely be
ignored.

In Fig. 1, we show our results for the
muon case obtained with Qmax=2 GeV for all
flavors, aLO-HVP

µ, f ,lat (Q≤2 GeV) ( f=ud, s, c, disc)
as a function of a2. As can be seen in
the top panel of Fig. 1, the light component
aLO-HVP
µ,ud,lat (Q≤2 GeV) shows a strong a2 dependence: the coarsest lattice is about 16% smaller than the

continuum limit. This is due to the sensitivity of this contribution to low-energy, two-pion states
which, in turn, are sensitive to taste splittings. For the strange contribution aLO-HVP

µ,s,lat (Q≤2 GeV), the
kaon mass correction term (M2

Kχ ≡ M2
K − M2

π/2) is needed to get a reasonable fit quality. The taste
violations is much smaller than the light component case as seen in the second panel of Fig. 1.

In advance to the analyses for the charm contribution aLO-HVP
µ,c,lat (Q≤2 GeV), we studied the con-

tinuum extrapolation of Ds meson mass (MDs), and found that Mηc correction term is necessary in
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In Fig. 1, we show our results for the
muon case obtained with Qmax=2 GeV for all
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as a function of a2. As can be seen in
the top panel of Fig. 1, the light component
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µ,ud,lat (Q≤2 GeV) shows a strong a2 dependence: the coarsest lattice is about 16% smaller than the

continuum limit. This is due to the sensitivity of this contribution to low-energy, two-pion states
which, in turn, are sensitive to taste splittings. For the strange contribution aLO-HVP

µ,s,lat (Q≤2 GeV), the
kaon mass correction term (M2

Kχ ≡ M2
K − M2

π/2) is needed to get a reasonable fit quality. The taste
violations is much smaller than the light component case as seen in the second panel of Fig. 1.

In advance to the analyses for the charm contribution aLO-HVP
µ,c,lat (Q≤2 GeV), we studied the con-

tinuum extrapolation of Ds meson mass (MDs), and found that Mηc correction term is necessary in

the fit model to reproduce the physical value Mphys
Ds [21]; via fixing Mηc to its physical value, a little

mistuning effect (∼ 2%) of the ratio mc/ms is corrected. We also apply this correction to aLO-HVP
µ,c

extrapolation. In addition, we include a pion mass M2
π correction but not the kaon mass term, where

the latter results in overfitting due to the fixed mc/ms. The dependence on a2 is strong; as shown in
the third panel of Fig. 1, our coarsest lattice is more than 50% smaller than the continuum limit, due
to the large value of mc in lattice units. To get reasonable fit qualities for charm contributions, we
consider the subset of 40 configurations most separated in molecular dynamics time, which provides
more than enough statistics for this contribution.

Our results for aLO-HVP
µ,disc,lat(Q≤2 GeV) show the strong lattice artefacts, as shown in the bottom panel

of Fig. 1. These are also due to the taste violations. The disconnected part includes both flavor-
diagonal and off-diagonal contributions, in which we take account of ud and s but neglect c; the
charm contribution amounts to less than 1% of the total disconnected contribution on our coarsest
lattice and much smaller than the statistical error. In addition, because statistical errors are quite large,
no dependence on quark mass is required to describe the lattice data.

We repeat this whole analysis for Qmax=1,
√

2,
√

3 and
√

5 GeV in aLO-HVP
�, f ,lat (Q≤Qmax) and in

Π̂ f (Q2
max) using Eq. (4), where the latter is necessary for the second term in Eq. (5).

3.2 Matching to Perturbation
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Figure 2. The Q = Qmax dependence of aLO-HVP
τ, . The

upside-down orange triangles, blue triangles and
green circles correspond to the first, second, and
third term in Eq. (5), respectively. The red squares
represent sum of the three. Error bars are smaller
than the symbols.

So far, we have focused on the low momentum contribution (first term in Eq. (5)); we now move
onto the other contributions (the second and third therms in Eq. (5)). They are computed from our
lattice results for Π f (Q2) (second term) and five-loop perturbation theory (third term) with the code
rhad [22]. These corrections are below our statistical errors for the e and µ, which have very little
sensitivity to large Q, but are significant for the τ. As shown in Fig. 2, however, the Qmax dependence
of high momentum effects are almost canceled by those in the low momentum of our lattice results,
and the total (red squares) are stable against Qmax. Thus, the continuum limits of our lattice data
aLO-HVP
�, f ,lat (Q≤Qmax) are consistent with five-loop perturbation theory for momenta, Q > Qmax. More

quantitatively, a weak Qmax dependence beyond statistical errors starts appearing for Q <
√

2 GeV,
indicating a break down of perturbation theory, and we adopt the safe region of

√
2 ≤ Qmax ≤

√
5

GeV for our final result.
The whole procedure described above gives us aLO-HVP

�, f for f=ud, s, c, disc, I=1, I=0, � and for all
three leptons. As explained above, there are three sources of systematic errors: a-cut = the data cutting
in continuum extrapolations, t-cut = the cuts associated with the large temporal distance treatment tc,
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Q-cut = the high/low momentum separation Qmax. The final central value is taken to be the mean
in the flat distribution over the variations of the above three cuts [23, 24]. The statistical error is the
jackknife error of the central value over jackknife samples with bins of length 10 configurations (for
charm, 1 configuration). For each of a-cut, t-cut, and Q-cut, the associated systematic error is the
maximum deviation from the central value. In addition, we put the systematic error associated with
the uncertainty in the lattice spacing determination by 0.4%, which amounts to 0.8% uncertainty on
aLO-HVP
�, f . The total systematic error is obtained by adding all systematic errors in quadrature.

3.2.1 FV, Isospin Breaking, and QED Corrections

The results obtained above are further corrected in terms of finite volume, isospin breaking, and QED
effects. In the absence of a systematic study with simulations in a variety of volumes, only model
estimates of FV effects can be made. As argued in [25, 26], for large volumes those effects will be
governed by pion contributions that can be computed in chiral perturbation theory (χPT) [25]. Since
the I=0 channel is dominated by three-pion exchange, the FV effects are expected to be smaller than
those of the I=1 contribution, which are already small. Thus we consider only the latter, and the
appropriate corrections are added to our I=1 and total results. We associate with these corrections a
100% uncertainty included in our error budget.

Compared to phenomenological determinations of aLO-HVP
µ , [5, 8] our md=mu calculation without

QED is missing a number of effects. We correct those effects as follows: the π0γ and ηγ contributions
for which can be taken directly from the dispersive approach [27], final-state radiation (FSR) for
which we use the results from [27] and attribute to it a 50% error, the ρ-ω mixing for which we take
from [27] and conservatively attribute to it a 50% error, the QED mass shift of charged pions by LO
in χPT using Mπ± and Mπ with 100% uncertainty to cover other, neglected effects.

4 Summary and Discussion

Putting everything together, we obtain our final results for all three leptons [11]: aLO-HVP
µ =

713(9)(18), aLO-HVP
e = 189(3)(6), aLO-HVP

τ = 342(1)(4), where the first and second brackets are the
statistical and systematic uncertainties, respectively. In the Fig. 3, we compare our final result of
aLO-HVP
µ with those in lattice QCD determinations including the contributions of quarks up to the

charm [14, 28] and recent phenomenological estimates [5, 8]. We also compare with the value that
aLO-HVP
µ would have to explain the experimental measurement of aµ [1] within SM, i.e. assuming no

new physics. This amounts to aLO-HVP
µ,noNP = (720.0 ± 6.8) × 10−10 by taking account of all SM contri-

butions summarized in [5], and shown by the light-blue band in the figure. Our result for aLO-HVP
µ is

larger than those of the other lattice calculations. In particular, our aLO-HVP
µ shows about 2.0σ tension

to the HPQCD result [28]. This namely originates from the larger value of the light component con-
tribution in our result. However, our aLO-HVP

µ is consistent with both phenomenological estimates with
dispersion relations and the aLO-HVP

µ,noNP within one and some standard deviations.
For aLO-HVP

e,τ , we find two lattice calculations [16, 28] and phenomenological ones [6, 7]. Our
aLO-HVP

e is somewhat larger but consistent to the estimate in [16] within the uncertainty, while there
exists a tension to the result in [28]. It is remarkable that our results are fully compatible with the
phenomenological ones. This suggests that the physics of the HVP over full range of Q2 is well-
controlled. Our results for both aLO-HVP

e and aLO-HVP
τ are determined with much smaller uncertainties

than those of [16]. For aLO-HVP
τ , our result is more precise even comparing to the phenomenological

estimates [6].
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Figure 3. Comparisons of our result for
aLO-HVP
µ with recently reported ones in

lattice QCD [14, 28], with ones in
phenomenology [5, 8], and with the value
which have to explain the experimental
measurement of aµ, assuming no new
physics (light-blue band). For the lattice
results, the first error is statistical and the
second is the total error, including
systematics.

The total error (statistical and all systematic uncertainties added in quadrature) in our aLO-HVP
µ is

a few percent level. In order to confirm or infirm the tension between the measurement of aµ and
the prediction of the SM based on phenomenology, we need to decrease a total uncertainty. To this
end, we plan to increase statistics, control finite volume effects directly with simulations, and perform
simulations with QED and isospin breaking effects.
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