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Abstract 

This paper deals with a family of error correcting codes based on circular recursive 

systematic convolutional (CRSC) codes. A multidimensional parallel concatenation of CRSC codes 

is proposed to reach minimum distances close to those of random codes. For information blocks of 

size k, minimum distances as large as k/4 may be obtained if the code dimension is brought up to 4 

or 5. Such codes can be decoded using an iterative (turbo) process relying on extrinsic information 

concept. 
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Résumé 

Cet article présente une famille de codes correcteurs d'erreurs bâtie autour de codes 

convolutifs récursifs systématiques circulaires (CRSC). Une concaténation parallèle multi-

dimensionnelle de codes CRSC est utilisée pour atteindre des distances minimales proches de celles 

qui sont obtenues avec les codes aléatoires. Pour une taille k de bloc d'information, des distances 

minimales proches de k/4 peuvent être ainsi obtenues lorsqu'on porte la dimension du code à une 

valeur de 4 ou 5. De tels codes peuvent être décodés en utilisant une procédure itérative ("turbo") 

s'appuyant sur le concept d'information extrinsèque. 

Mots clés  : codes convolutifs, codes aléatoires, concaténation, information extrinsèque, turbo code  
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I. INTRODUCTION 

Since the Shannon pioneering work [1], random coding has always represented a reference 

for error correction. Systematic random encoding of k information bits, providing n-bit codewords, 

requires firstly to draw at random k (n - k)-bit « markers », and to store them in a memory, where 

the storage address is i (1  i  k). Secondly, the redundancy of any k-bit information block is 

calculated by modulo-2 adding all the markers whose addresses i correspond to the places of logic 

‘1’in the information block. The final codeword consists of the concatenation of the k information 

bits and the n k  redundancy bits. The code rate R is equal to k n/ . This very simple way of 



building up codewords gives a linear code and leads to large minimum distances for values of n k  

great enough. Since two codewords may only differ on one information bit, and since the redundancy 

is chosen at random, the statistical minimum distance is equal to 1
2


n k

. However, as the 

minimum distance of this code is a random variable, its different realizations may be smaller than this 

value. Appendix A provides the expression of the probability that minimum distance dmin  is greater 

than or equal to a given value D. 

For usual values of n and k, decoding random codes is not practically feasible. The only way 

of decoding consists in passing the 2k  different codewords in review, and to keep the closest one to 

the received word (i.e. the most likely codeword). Therefore, decoder complexity increases 

exponentially with the length k of the sequence to encode, and becomes unusable for practical 

applications. 

This paper proposes a code family imitating random codes and presenting moderate 

decoding complexity. We specially focus on minimum distances achieved by these codes based on a 

multiple parallel concatenation of recursive systematic convolutional codes. Besides, elementary 

encoding is organized so as to perform block encoding, due to the circular coding concept, which is 

developed in the next chapter.  

II. CIRCULAR CONVOLUTIONAL CODES 

Convolutional codes are not a priori really suited to encode information transmitted in block 

form. The knowledge of the initial state of the trellis is not a problem, as the« all zero » state is, in 

general, forced by the encoder. However, the decoder has no special available information regarding 

the final state of the trellis. This problem is even more serious for N-dimensional turbo codes, since 

the decoder does not know the final states of the N trellises after N encoding processes. Several 

answers can solve this problem, for example: 

 doing nothing, that is, no information concerning the final states of the trellises is provided to the 

decoder. The decoding process is less effective for the last encoded data and the asymptotic gain 

may be reduced. This degradation is a function of the block length and may be low enough to be 

accepted for a given application. 

 forcing the encoder state at the end of the encoding phase for one or all dimensions. This 

solution has been adopted by the CCSDS standard [2]. Tail bits are used to « close » the trellises 

and then sent to the decoder. This method presents two major drawbacks. First, minimum weight 

wmin  is no more equal to 2 for all information data1, since, at the end of each block, the second 

‘1’ bringing the encoder back to the « all zero » state may be a part of the tail bits. In that case, 

turbo decoding is handicapped if tail bits are not encoded at least twice. Next, the spectral 

efficiency of the transmission is degraded and the cost is all the higher since blocks are short and 

N is high.  

                                                                 
1
 The weight w of a binary word is defined as the number of information bits equal to ‘1’, that is the number of 

information bits differing from the « all zero » word, which is used as a reference for linear codes. For a recursive 

code, when the final states are fixed by the encoder, the minimum value for w is 2. For more details see [3-5], for 

example. 



 adopting circular coding. For circular convolutional codes, the encoder is left in the initial state at 

the end of the encoding stage. Decoding trellis can therefore be seen as a circle and decoding 

may be initialized everywhere on this circle. This technique, well known for non recursive codes, 

has been adapted to the specificity of recursive codes. 

II.1. Principle of circular recursive systematic convolutional (CRSC) codes 

Let us consider a recursive convolutional encoder, for instance Figure 1 encoder (quaternary 

code with memory  equal to 3). At time i, register state Si  is a function of previous state Si1  and 

input vector Xi . Let G  be the generator matrix of the considered code. States Si  and Si1  are 

linked by the following recursion relation: 

(1) S G S Xi i i . 1  

s1 s3s2A

B  

Figure 1. Recursive convolutional (quaternary) encoder with memory   3  

For Figure 1 encoder, vectors Si  and Xi , and matrix G  are given by: 
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From (1) we can infer: 

S G S Xi i i . 1  

S G S Xi i i   1 2 1.  

S G S X1 0 1 .  

Hence, Si  may be expressed as a function of initial state S0  and of data applied to encoder input 

between times 1 and i: 

(2) S G S G Xi
i i p

p
p

i

  



. 0
1

 

If k is the input sequence length, it is possible to find a state Sc  so that S S Sc k  0 . Its value is 

derived from (2): 

(3) S I G G Xc
k k-p

p
p=

k

 



1

1

.   



where I  is the identity matrix. 

State Sc  exists only if I G k  is invertible2. Particularly, k can not be a multiple of the period L of 

the encoder recursive generator. L is defined as: 

G I
L   

Sc  is the conservative encoder state. That is, if the encoder starts from state Sc , it comes back to 

the same state when the encoding of the k data (k couples for Figure 1 encoder) is completed. The 

value of Sc  is a function of the data sequence. Such an encoding process is called circular because 

the associated trellis may be viewed as a circle, without any discontinuity on transitions between 

states. 

Determining Sc  requires an pre-encoding stage. First, the encoder is initialized in the « all zero » 

state S0 . Then, the data sequence of length k is encoded once, leading to final state Sk
0 . Thus, from 

(2): 

S G Xk
k p

p
p

k
0

1

 



  

Combining this result with (3), the value of conservative state Sc  can be linked to Sk
0  as follows: 

(4) S I G Sc
k

k 
1 0.   

In a second stage, data are definitely encoded from state Sc .  

In practice, the relation between Sc  and Sk
0  is provided by a small combinational operator 

with  input bits and  output bits, if  represents the code memory. The major disadvantage of this 

method lies in encoding the sequence twice: once from « all zero » state and once from state Sc . 

Nevertheless, the encoding stage can be performed at a frequency much higher than the data rate, so 

as to reduce the encoding latency effects. 

II.2. Circular codes and turbo codes  

Circular codes are well suited to turbo code encoding and decoding concepts. For example, 

let us consider the binary turbo encoder in Figure 2. The data sequence to be encoded, made up of 

k information bits, is applied twice at the CRSC encoder input: first, in the data natural order (switch 

in position 1), and next in an interleaved order, given by time permutation function  (switch in 

position 2). In fact, the circular code principle may be applied in two slightly different ways, 

according to whether the code is self-concatenated or not. 

                                                                 
2
 Note that some matrices G are not convenient.  
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Figure 2. Turbo code built from a CSRC code. 

Case 1 : the code is self-concatenated.  

The second encoding stage directly follows on the first stage without intermediate reinitializing of the 

encoder state. Conservative state Sc  is calculated for the whole sequence of length 2k. At 

reception, the decoder performs a global decoding of the double length sequence. 

Case 2 : the code is not self-concatenated.  

The encoder is initialized at the beginning of each encoding stage. Two conservative states Sc1  and 

Sc2 , corresponding to the both encoded sequences, are calculated. At reception, both sequences of 

length k are decoded separately. 

Depending on the case, data encoding may be represented with one or two circular or 

« tailbiting » trellises. Whatever elementary algorithm is applied, iterative decoding requires repeated 

turns around the circular trellis(es), the extrinsic information table being continuously updated during 

data processing. Iterations naturally follow one from each other without any discontinuity between 

transitions from state to state.  

In the case where the APP algorithm (also called MAP, backward-forward, or BCJR [6] 

algorithm), or one of its simplified version [7] is applied, decoding the sequence consists in going 

round the circular trellis anticlockwise for backward process, and clockwise for forward process 

(Figure 3), where data are decoded and extrinsic information is built. For both processes, 

probabilities computed at the end of a turn are used as initial values for next recursion. The number 

of turns performed around the « tailbiting » trellis(es) is equal to the number of iterations required by 

the iterative decoding process. In practice, the iterative process is preceded by a « prologue » 

decoding step, performed on a part of the circle for a few . It is intended to « guide » the process 

towards an initial state which is a good estimation of the conservative state.  

If the decoding algorithm is a soft-output version of the Viterbi algorithm, iterative decoding 

requires the circular trellis to be processed anticlockwise for metrics computation, with a partial 

clockwise return to calculate decisions and extrinsic information. As for APP algorithm, iterations 

naturally follow one from each other, and the metrics computed at the end of each turn are used as 

initial metrics for the next iteration. An estimation of the conservative state may also be obtained by a 

prologue step. 
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Figure 3. Circular code processing with backward-forward algorithm . 

III. MULTIDIMENSIONAL CONCATENATION OF CRSC CODES 
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Figure 4. Parallel concatenation of N CRSC codes  

Let us consider the encoding process of a k-data block, using the (a ?) parallel concatenation 

of N CRSC codes in a similar way to a standard turbo code [3]. The global code rate is supposed 

to be 1/2. Figure 4 represents the global encoder and the N corresponding circular trellises. 

Permutations  j  ( )1 j N  are chosen randomly, except the first one which is the identity 

permutation. Each elementary encoder provides k N/  redundancy bits Yj
p

 

( , / )1 1   j N p k N , regularly emitted during the sequence encoding process. The study of 

distance properties of this multiconcatenated code is not an obvious problem in general and would 



not give any practical interesting information. However, three particular cases, corresponding to 

values of N equal to 1, 2, and k, can be considered. For N = 1, we have to deal with a simple 

convolutional code ; for N = 2, the code is a classic turbo code. These two particular cases have 

already been widely examined, especially in [11] for a turbo code using a random permutation. 

The extreme case N = k, where each elementary encoder provides only one redundancy 

symbol (bit ?) Yj
1 , behaves very close to random coding. Let us assume that the redundancy symbol 

is calculated when the sequence encoding starts, that is when the encoder is in the conservative state 

Sc . Then, two cases have to be examined, according to the value of the weight w of the sequence to 

be encoded. 

w = 1. Relation (3) shows that the conservative state Sc  can never be the « all zero » state (besides, 

the encoder never goes to the « all zero » state during the encoding process of the sequence, 

whatever the permutation). The redundancy bit may be ‘0’ or ‘1’ with equal probability. 

w  2. The conservative state may be any state. The probability that Sc  is different from the « all 

zero » state is 
2 1

2






. Consequently, the probability that the redundancy symbol is equal to ‘1’ is 

1

2

2 1

2
.






. For values of  great enough (let us say   3), it can be supposed that both logical 

values are almost equiprobable. 

Thus, the code redundancy is made up of a set of values Yj
1  (1  j  k) comparable to a set 

of binary random values: the value of each redundancy symbol Yj
1  depends on Sc , which is directly 

linked to the permutation implemented at place j of the concatenated encoding process, and this 

permutation is drawn (hit ?) at random. Hence this code must show minimum distances of the same 

order as those allowed by probabilities given by relation (A-4). In order to confirm this assertion, we 

programmed, for different dimensions, three multiconcatenated codes associated to three values of k 

retained as examples in Figure A-1: 40, 60, and 80. The elementary encoders use the same 

generator polynomials 15, 17 ( = 3). The program tried to obtain minimum distances as great as 

possible3, for each case and by trying different permutations. Results are presented in Figure 5. We 

can notice that minimum distances dmin increase with dimension N, but do not exceed the values 

predicted by the curves in Figure A-1, that is round about k / 4 . Even when performing an 

exhaustive search with a more powerful computer, the probabilities that we get maximum values 

greater than those actually obtained would be very small. Besides, the maximum values have been 

obtained for dimensions much lower than maximum dimension k, i.e. in the order of 4 or 5 for the 

cases considered. In consequence, we do not need to use maximum dimension codes to get large 

values for dmin. Much lower dimensions than k provide multiconcatenated codes with features 

comparable to those of random codes. 

                                                                 
3
 The search, which can last several days on an Ultra Sparc computer, was performed for weight values up to 

w = 8. For the cases considered, taking greater weights into account does not seem to influence our results, but 

we can not prove it. 



dmin

0 5 10

k = 40

k = 80

k = 60

dimension

       N

5

10

15

20

 

Figure 5. Minimum distances as a function of the dimension of the code, N, for k = 40, 60, 80. 

Results obtained by computer searching. 

Multiconcatenated codes may be decoded using the « turbo » principle. Each elementary 

decoder in place j (1  j  N) provides for each binary information data di  (1  i  k), an extrinsic 

information symbol Z j
i , as a probability or a LLR (Logarithm of Likelihood Ratio). Each decoder in 

place j  takes advantage of the work performed by the N 1 other decoders which transmit it 

their extrinsic information Z j j
i
 ' . At each decoder input, the different extrinsic information symbols 

relating to the same data are simply combined through a product, for probabilities, or a sum, for 

LLR. 

However, turbo decoding is not optimal [12], so it is quite possible that, for great values of N 

(i.e. for elementary encoders with low redundancy rate) the loss due to iterative decoding is 

increased. Thus, it would not be possible to take a complete advantage of the error-correcting 

capability of large dimension codes. Fortunately, we showed that, with dimension values of 3, 4, or 

5, we obtain distances close to maximum values and that turbo decoding suboptimality does not 

seem to be a real handicap (e.g., see [13] for a three-dimensional turbo code). 

IV. CONCLUSION 

We showed that a maximum dimension concatenation of CSRC codes may be compared to 

random coding. Hence, minimum distances of such codes are large (great ?), in the order of the 

quarter of the block length. In fact, an experiment with some values of k led us to observe that these 

values of minimum distance could be obtained for dimensions much lower than k, but slightly greater 

than 2, the dimension of a standard turbo code. 

Two-dimensional turbo codes can be penalized because of insufficient minimum distances for 

certain applications, especially for short blocks when very low bit error rate is required. A possible 

answer to this problem consists in increasing the code dimension, practically up to 3, 4, or 5. In 



return, hardware complexity is raised by 50, 100 or 150 %, for the same decoding latency. For bit 

error rates greater than 10 5  typically, increasing the dimension of the turbo code beyond N = 2 

does not give extra gain. 

From a more conceptual point of view, a remark can be made on the codes presented in this 

paper in relation to Shannon statistical approach. When establishing his famous theorems, he 

considered a set of random codes and he predicted average statistical performance results, arguing 

that, amongst all the possible codes, there is at least one which shows performance equal or higher 

than average. Now, considering a multiple parallel concatenation of CRSC codes, and especially in 

the extreme case N k , we can take the advantage of whole error-correcting capability only if all 

the codes are actually used, and not only the best of them (besides, we would be unable to 

give a definition for it). Nowadays, the « turbo » technique allows a great number of codes to be 

decoded, and in fact, it appears to be a indirect means of taking advantage of the properties of a 

code statistically good, without being having to search for the best one amongst all the possibilities. 

 

APPENDIX A  

The purpose of this appendix is to calculate the probability  Pr mind D  that a codeword 

produced by random encoding of k-bit data blocks, with code rate 1/2, has a minimum distance 

dmin  greater than or equal to D. The principle of random coding is described in section I. 

As the code is linear, distances may be determined relatively to the « all zero » word. The 

distance d of a codeword may be expressed as the sum of the weights (that is, the number of logical 

‘1’) of the systematic part w and of the redundancy dr .  

(A-1) d w dr   

For a given weight w, 
k

w









  redundancy sequences or sequence combinations (obtained by modulo-

2 additions) have to be considered. The probability that one of these sequences or sequence 

combinations contains at least D w  ‘1’ is: 

(A-2)  Pr /d D w w
k

ir
k

i D w

k
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The probability that all the redundancy sequences or combinations contain at least D w  ‘1’ is: 

(A-3)  Pr /d D w w
k
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k
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k
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
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In order that all the codewords have a distance greater than or equal to D, the above relation has to 

be multiplied by itself for all the possible values of w, from 1 to D1 . Therefore, 
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This relation may also be expressed as: 

(A-4)  Pr mind D
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This probability is plotted in Figure A1 as a function of D for six values of k, from 40 to 140. It can 

be noticed that a minimum distance dmin  in the order of k / 4  can be easily reached, but because of 

the steep (abrupt ?) decrease of the probabilities, it seems unrealistic to get distances beyond this 

typical value, even with very powerful computers which would try to adapt redundancy patterns so 

as to raise dmin . For a more theoretical approach, see for instance [14-16]. 
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Figure A1. Probability that random coding of a k-bit data word leads to minimum distance dmin  

greater than or equal to D. 
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