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EXACT CONTROLLABILITY OF A LINEAR KORTEWEG–DE
VRIES EQUATION BY THE FLATNESS APPROACH∗

PHILIPPE MARTIN† , IVONNE RIVAS‡ , LIONEL ROSIER§ , AND PIERRE ROUCHON¶

Abstract. We consider a linear Korteweg–de Vries equation on a bounded domain with a left
Dirichlet boundary control. The controllability to the trajectories of such a system was proved in
the last decade by using Carleman estimates. Here, we go a step further by establishing the exact
controllability in a space of analytic functions with the aid of the flatness approach.
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1. Introduction. The Korteweg–de Vries (KdV) equation is a well known dis-
persive equation that may serve as a model for the propagation of gravity waves on
the surface of a canal or a lake. It reads

(1.1) ∂ty + ∂3xy + y∂xy + ∂xy = 0,

where t is time, x is the horizontal spatial coordinate, and y = y(x, t) stands for the
deviation of the fluid surface from rest position. As usual, ∂ty = ∂y/∂t, ∂xy = ∂y/∂x,
∂3xy = ∂3y/∂x3, etc.

When the equation is considered on a bounded interval (0, L), it has to be sup-
plemented with three boundary conditions, for instance,

(1.2) y(0, t) = u(t), y(L, t) = v(t), ∂xy(L, t) = w(t),

and an initial condition

(1.3) y(x, 0) = y0(x).

The controllability of the Korteweg–de Vries equation with various boundary
controls has been considered by many authors for several decades (see, e.g., [16, 17,
18, 5, 6, 3, 1] and the surveys [19, 2]). The exact controllability in the energy space
L2(0, L) was derived by Rosier in [16] (resp., by Glass and Guerrero in [6]) with w as
the only control input (resp., with v as the only control input). On the other hand, if
we take u as the only control input, the exact controllability fails in the energy space
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[18], because of the smoothing effect. Nevertheless, both the null-controllability and
the controllability to the trajectories hold with the left Dirichlet boundary control (see
[18] and [5]). The aim of the present paper is to go a step further by investigating
the exact controllability in a “narrow” space with the left Dirichlet boundary control.
Due to the smoothing effect, the space in which the exact controllability can hold
is a space of analytic functions. For the sake of simplicity, we will focus on a linear
KdV equation (removing the nonlinear term y∂xy). Performing a scaling in time and
space, there is no loss of generality in assuming that L = 1. By a translation, we can
also assume that x ∈ (−1, 0). The first-order derivative term will assume the form
a∂xy, where a ∈ R+ is some constant. The case a = 1 corresponds to the linearized
KdV equation

(1.4) ∂ty + ∂3xy + ∂xy = 0,

while the case a = 0 corresponds to the “simplified” linearized KdV equation

(1.5) ∂ty + ∂3xy = 0,

which is often considered when investigating the Cauchy problem on the line R (in-
stead of a bounded interval) by doing the change of unknown ỹ(x, t) = y(x+ t, t).

The paper will be concerned with the control properties of the system:

∂ty + ∂3xy + a∂xy = 0, x ∈ (−1, 0), t ∈ (0, T ),(1.6)

y(0, t) = ∂xy(0, t) = 0, t ∈ (0, T ),(1.7)

y(−1, t) = u(t), t ∈ (0, T ),(1.8)

y(x, 0) = y0(x), x ∈ (−1, 0),(1.9)

where y0 = y0(x) is the initial data and u = u(t) is the control input.
We shall address the following issues:
1. (Null controllability) Given any y0 ∈ L2(−1, 0), can we find a control u such

that the solution y of (1.6)–(1.9) satisfies y(., T ) = 0?
2. (Reachable states) Given any y1 ∈ R (a subspace of L2(−1, 0) defined there-

after), can we find a control u such that the solution y of (1.6)–(1.9) with
y0 = 0 satisfies y(., T ) = y1?

We shall investigate both issues by the flatness approach and derive an exact control-
lability in R by combining our results.

The null controllability of (1.6)–(1.9) was established in [18] (see also [5]) by
using a Carleman estimate. The control input u was found in a Sobolev space (e.g.,

u ∈ H 1
2−ε(0, T ) for all ε > 0 if y0 ∈ L2(−1, 0); see [5]). Here, we shall improve this

result by designing a control input in a Gevrey class. Furthermore, the trajectory
and the control will be given explicitly as the sums of series parameterized by the
flat output. To state our result, we need to introduce some notation. A function
u ∈ C∞([t1, t2]) is said to be Gevrey of order s ≥ 0 on [t1, t2] if there exists some
constant C,R ≥ 0 such that

|∂nt u(t)| ≤ C (n!)s

Rn
∀n ∈ N, ∀t ∈ [t1, t2].

The set of functions Gevrey of order s on [t1, t2] is denoted by Gs([t1, t2]). A function
y ∈ C∞([x1, x2]× [t1, t2]) is said to be Gevrey of order s1 in x and s2 in t on [x1, x2]×
[t1, t2] if there exist some constants C,R1, R2 > 0 such that

|∂n1
x ∂n2

t y(x, t)| ≤ C (n1!)s1(n2!)s2

Rn1
1 Rn2

2

∀n1, n2 ∈ N, ∀(x, t) ∈ [x1, x2]× [t1, t2].
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The set of functions Gevrey of order s1 in x and s2 in t on [x1, x2]× [t1, t2] is denoted
by Gs1,s2([x1, x2]× [t1, t2]).

The first main result in this paper is a null controllability result with a control
input in a Gevrey class.

Theorem 1.1. Let y0 ∈ L2(−1, 0), T > 0, and s ∈ [ 32 , 3). Then there exists a
control input u ∈ Gs([0, T ]) such that the solution y of (1.6)–(1.9) satisfies y(., T ) = 0.
Furthermore, it holds that

(1.10) y ∈ C([0, T ], L2(−1, 0)) ∩G s
3 ,s([−1, 0]× [ε, T ]) ∀ε ∈ (0, T ).

The second issue investigated in this paper is the problem of the reachable states.
For the heat equation, an important step in the characterization of the reachable
states was given in [12] with the aid of the flatness approach. It was proved there
that reachable states can be extended as holomorphic functions on some square of the
complex plane, and conversely that holomorphic functions defined on a ball centered
at the origin and with a sufficiently large radius, when restricted to the real line, are
reachable states. See also [4] for an improvement of this result as far as the domain
of analyticity of the reachable states is concerned.

To the best knowledge of the authors, the determination of the reachable states for
(1.6)–(1.9) has not been addressed so far. From the controllability to the trajectories
established in [18, 5], we know only that any function y1 = y1(x) that can be written
as y1(x) = ȳ(x, T ) for some trajectory ȳ of (1.6)–(1.9) associated with some y0 ∈
L2(−1, 0) and u = 0 is reachable. But such a function is in G

1
2 ([−1, 0])1 with y1(−1) =

0 and (∂3x + a∂x)n y1(−1) = 0 for all n ≥ 1, according to Proposition 2.1 (see below).
Proceeding as in [12], we shall obtain a class of reachable states that are less regular
than those for the controllability to the trajectories (namely, y1 ∈ G1([−1, 0]) for
which no boundary condition has to be imposed at x = −1.

To state our second main result, we need to introduce again some notation. For
z0 ∈ C and R > 0, we denote by D(z0, R) the open disk

D(z0, R) := {z ∈ C; |z − z0| < R},

and by H(D(z0, R)) the set of holomorphic (i.e., complex analytic) functions on
D(z0, R). Introduce the operator

Py := ∂3xy + a∂xy,

so that (1.6) can be written

(1.11) ∂ty + Py = 0.

Since ∂t and P commute, it follows from (1.11) that for all n ∈ N∗

(1.12) ∂nt y + (−1)n−1Pn y = 0,

where Pn = P ◦Pn−1 and P 0 = Id. We are in a position to define the set of reachable
states: for any R > 1, let

RR := {y ∈ C0([−1, 0]); ∃z ∈ H(D(0, R)), y = z|[−1,0],

and (Pn y)(0) = ∂x(Pn y)(0) = 0 ∀n ≥ 0}.

The following result is the second main result in this paper.

1It is conjectured that it belongs to G
1
3 ([−1, 0]).
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Fig. 1. The function y(x) = ex + jejx + j2ej
2x.

Theorem 1.2. Let a ∈ R+, T > 0, and R > R0 := e(3e)
−1

(1 + a)
1
3 > 1. Pick any

y1 ∈ RR. Then there exists a control input u ∈ G3([0, T ]) such that the solution y of
(1.6)–(1.9) with y0 = 0 satisfies y(., T ) = y1. Furthermore, y ∈ G1,3([−1, 0]× [0, T ]).

Remark 1.1.
1. As for the heat equation, it is likely that any reachable state for the linear

Korteweg–de Vries equation can be extended as an holomorphic function on
some open set in C.

2. The reachable states corresponding to the controllability to the trajectories
are in G

1
2 ([−1, 0]), so that they can be extended as functions in H(C). By

contrast, the reachable functions in Theorem 1.2 need not be holomorphic on
the whole set C: they can have poles outside D(0, R).

3. The set RR takes a very simple form when a = 0. Indeed, in that case

RR = {y ∈ C([−1, 0]); ∃z ∈ H(D(0, R)), y = z|[−1,0],

and ∂3nx y(0) = ∂3n+1
x y(0) = 0 ∀n ∈ N}

=

{
y ∈ C([−1, 0]); ∃(an)n∈N ∈ RN,

∞∑
n=0

|an|r3n <∞ ∀r ∈ (0, R) and

y(x) =

∞∑
n=0

anx
3n+2 ∀x ∈ [−1, 0]

}
.

Note that y(−1) needs not be 0 for y ∈ RR. Examples of functions in RR

include (i) the polynomial functions of the form y(x) =
∑N
n=0 anx

3n+2 and
(ii) the entire function

y(x) = ex + jejx + j2ej
2x,

where j := ei
2π
3 . Note that y is real-valued and y(−1) > 0 (see Figure 1).

Combining Theorems 1.1 and 1.2, we obtain the following result, which implies
the exact controllability of (1.6)–(1.9) in RR for R > R0.

Corollary 1.1. Let a ∈ R+, T > 0, R > R0, y0 ∈ L2(−1, 0), and y1 ∈ RR.
Then there exists u ∈ G3([0, T ]) such that the solution of (1.6)–(1.9) satisfies y(., T ) =
y1.
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Since system (1.6)–(1.9) is linear, it is sufficient to pick u = u1 + u2, where u1 is
the control given by Theorem 1.1 for y0 and u2 is the control given by Theorem 1.2
for y1.

Our results are given for the linear KdV equation (1.6), and it would be desirable
to obtain similar results for the nonlinear KdV equation (1.1). We mention that exact
controllability results for nonlinear heat equations of the form ∂ty = ∂2xy+f(x, y, ∂xy)
(f denoting any analytic function) were obtained recently in [8]. Due to the presence
of the nonlinear term f(x, y, ∂xy), the flatness approach could not be used anymore. It
was replaced in [8] by the investigation of a Cauchy problem in x and a “jets analysis.”
The exact controllability of the nonlinear KdV equation (1.1) will be investigated
elsewhere with the same approach as in [8].

The paper is outlined as follows. Section 2 is devoted to the null controllability of
the linear KdV equation. The flatness property is established in Proposition 2.1. The
smoothing effect for the linear KdV equation from L2(−1, 0) to G

1
2 ([−1, 0]) is derived

in Proposition 2.2. The section ends with the proof of Theorem 1.1. Section 3 is
concerned with the study of the reachable states. The flatness property is extended to
the limit case s = 3 in Proposition 3.1. Theorem 1.2 then follows from Proposition 3.1
and some version of Borel theorem borrowed from [12].

2. Null controllability by the flatness approach. In this section, we are
concerned with the null controllability of (1.6)–(1.9).

2.1. Flatness property. Our first task is to establish the flatness property,
namely, the fact that the solution of (1.6)–(1.8) can be parameterized by the “flat
ouput” ∂2xy(0, .). More precisely, we consider the ill-posed system

∂ty + ∂3xy + a∂xy = 0, x ∈ (−1, 0), t ∈ (0, T ),(2.1)

y(0, t) = ∂xy(0, t) = 0, t ∈ (0, T ),(2.2)

∂2xy(0, t) = z(t), t ∈ (0, T ),(2.3)

and we prove that it admits a solution y ∈ G
s
3 ,s([−1, 0] × [0, T ]) whenever z ∈

Gs([0, T ]) and 1 ≤ s < 3.
The trajectory y and the control input u can be written as

y(x, t) =
∑
i≥0

gi(x)z(i)(t),(2.4)

u(t) = y(−1, t) =
∑
i≥0

gi(−1)z(i)(t),(2.5)

where the generating functions gi, i ≥ 0, are defined as in [11]. More precisely, the
function g0 is defined as the solution of the Cauchy problem

g′′′0 (x) + ag′0(x) = 0, x ∈ (−1, 0),(2.6)

g0(0) = g′0(0) = 0,(2.7)

g′′0 (0) = 1(2.8)

(where ′ = d/dx), while the function gi for i ≥ 1 is defined inductively as the solution
of the Cauchy problem

g′′′i (x) + ag′i(x) = −gi−1(x), x ∈ (−1, 0),(2.9)

gi(0) = g′i(0) = g′′i (0) = 0.(2.10)
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It is well known that gi for i ≥ 1 can be expressed in terms of g0 and gi−1 as

(2.11) gi(x) = −
∫ x

0

g0(x− ξ)gi−1(ξ) dξ.

Remark 2.1.
1. If a = 0, then it follows from direct integrations of (2.6)–(2.8) and (2.9)–(2.10)

that

(2.12) gi(x) = (−1)i
x3i+2

(3i+ 2)!
, x ∈ [−1, 0], i ≥ 0.

2. If a > 0, then the solution of (2.6)–(2.8) reads

(2.13) g0(x) =
1

a
(1− cos(

√
ax)).

To ensure the convergence of the series in (2.4), we first have to establish some
estimates for ‖gi‖L∞(−1,0).

Lemma 2.1. Let a ∈ R+. Then for all i ≥ 0

(2.14) |gi(x)| ≤ |x|3i+2

(3i+ 2)!
∀x ∈ [−1, 0].

Proof. If a = 0, then (2.14) is a direct consequence of (2.12). Assume now that
a > 0 and let us prove (2.14) by induction on i. It follows from (2.13) that

(2.15) 0 ≤ g0(x) ≤ x2

2
, ∀x ∈ [−1, 0],

so that (2.14) is true for i = 0. Assume now that (2.14) is true for some i − 1 ≥ 0.
Then, integrating by parts twice in (2.11) and using (2.7), we see that

gi(x) = −
[
g0(x− ξ)

∫ ξ

0

gi−1(ζ)dζ

]x
0︸ ︷︷ ︸

=0

−
∫ x

0

g′0(x− ξ)
(∫ ξ

0

gi−1(ζ)dζ

)
dξ

= −
[
g′0(x− ξ)

∫ ξ

0

(∫ ζ

0

gi−1(σ)dσ

)
dζ

]x
0︸ ︷︷ ︸

=0

−
∫ x

0

g′′0 (x− ξ)︸ ︷︷ ︸
cos
(√

a(x−ξ)
)
(∫ ξ

0

(∫ ζ

0

gi−1(σ)dσ

)
dζ

)
dξ.

It follows that

|gi(x)| ≤
∣∣∣∣∣
∫ x

0

(∫ ξ

0

(∫ ζ

0

|gi−1(σ)|dσ
)
dζ

)
dξ

∣∣∣∣∣
≤
∣∣∣∣∣
∫ x

0

(∫ ξ

0

(∫ ζ

0

σ3i−1

(3i− 1)!
dσ

)
dζ

)
dξ

∣∣∣∣∣ =
|x|3i+2

(3i+ 2)!
,

as desired.
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We are now in a position to solve system (2.1)–(2.3).

Proposition 2.1. Let s ∈ [1, 3), z ∈ Gs([0, T ]), and y = y(x, t) be as in (2.4).
Then y ∈ G s

3 ,s([−1, 0]× [0, T ]) and it solves (2.1)–(2.3).

Proof. We need to estimate the behavior of the constants in the equivalence of
norms in Wn,p([−1, 0]) as n → ∞. For n ∈ N, p ∈ [1,∞], and f ∈ Wn,p(−1, 0), we
denote ‖f‖p = ‖f‖Lp(−1,0) and

‖f‖n,p =

n∑
i=0

‖∂ix f‖p.

The following result will be used several times. Its proof is given in appendix, for the
sake of completeness.

Lemma 2.2. Let p ∈ [1,∞] and P = ∂3x + a∂x, where a ∈ R+. Then there exists
a constant K = K(p, a) > 0 such that for all n ∈ N,
(2.16)(

1 +
1

a

)−1
(1 + a)−n

n∑
i=0

‖P if‖p ≤ ‖f‖3n,p ≤ Kn
n∑
i=0

‖P if‖p, ∀f ∈W 3n,p(−1, 0).

We closely follow [9]. Pick any z ∈ Gs([0, T ]) for some s ∈ [0, 3). We can find some
numbers M > 0 and R < 1 such that

|z(i)(t)| ≤M (i!)s

Ri
∀i ∈ N, ∀t ∈ [0, T ].

Pick any m,n ∈ N. Then

(2.17) ∂mt P
n(gi(x)z(i)(t)) =

{
z(i+m)(t)(−1)ngi−n(x) if i− n ≥ 0,
0 if i− n < 0.

Assume that i ≥ n. Setting j = i − n and N = n + m, so that j + N = i + m, we
have that∣∣∣∂mt Pn(gi(x)z(i)(t)

)∣∣∣ ≤M (i+m)!s

Ri+m
1

(3(i− n) + 2)!
≤M (j +N)!s

Rj+N
1

(3j + 2)!
·

Let

S :=
∑
i≥n

|∂mt Pn(gi(x)z(i)(t))|.

Using the classical estimate (j + N)! ≤ 2j+N j!N ! and the equivalence (3j)! ∼
33j+

1
2 (2πj)−1(j!)3 which follows at once from the Stirling formula, we obtain that

S ≤M
∑
j≥0

(j +N)!s

Rj+N
1

(3j + 2)!

≤M ′
∑
j≥0

(2j+N j!N !)s

Rj+N
2π(j + 1)

(3j + 2)(3j + 1)33j+
1
2 (j!)3

≤M ′′ (N !)s

( R2s )N
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for some positive constants M ′,M”. Indeed, since s < 3, we have that∑
j≥0

(2jj! )s

Rj
2π(j + 1)

(3j + 2)(3j + 1)33j+
1
2 (j!)3

< +∞.

Using again the fact that N ! = (n+m)! ≤ 2n+mn!m!, we arrive at

S ≤M ′′n!sm!s

Rn2R
m
1

with R1 = R2 = R/4s. Let K be as in Lemma 2.2 for p =∞. Then we have∑
i≥n

‖∂mt (gi(x)z(i)(t))‖3n,∞ ≤ Kn
∑
i≥n

∑
0≤j≤n

‖∂mt P j(gi(x)z(i)(t))‖∞

≤M ′′Kn
∑

0≤j≤n

(
j!sm!s

Rj2R
m
1

)

≤M ′′′ n!s

R′n2

m!s

Rm1

for some R′2 > 0 and some M ′′′ > 0. This shows that the series of derivatives
∂mt ∂

l
x(gi(x)z(i)(t)) is uniformly convergent on [−1, 0]× [0, T ] for all m, l ∈ N, so that

y ∈ C∞([−1, 0]× [0, T ]) and it satisfies for l ≤ 3n

|∂mt ∂lx y(x, t)| ≤M ′′′ n!s

R′n2

m!s

Rm1
∀x ∈ [−1, 0], ∀t ∈ [0, T ]

for some constant M ′′′ > 0. Note that

n!s ∼
(

2πn(3n)!

33n+
1
2

) s
3

·

It follows that if l ∈ {3n− 2, 3n− 1, 3n}, then n!s/R′n2 ≤ C ′l!
s
3 /R′′l2 for some C ′ > 0

and R′′2 > 0. This yields

|∂mt ∂lx y(x, t)| ≤ C ′M ′′′m!s

Rm1

l!
s
3

R′′l2
∀x ∈ [−1, 0], ∀t ∈ [0, T ],

as desired. The fact that y solves (2.1)–(2.3) is obvious.

2.2. Smoothing effect. We now turn our attention to the smoothing effect.
We show that any solution y of the initial value problem (1.6)–(1.9) with u ≡ 0 and
y0 ∈ L2(−1, 0) is a function Gevrey of order 1/2 in x and 3/2 in t for t > 0.

Proposition 2.2. Let y0 ∈ L2(−1, 0) and u(t) = 0 for t ∈ R+. Then the solution

y of (1.6)–(1.9) satisfies y ∈ G
1
2 ,

3
2 ([−1, 0] × [ε, T ]) for all 0 < ε < T < ∞. More

precisely, there exist some positive constants K,R1, R2 such that

(2.18) |∂nt ∂px y(x, t)| ≤ Kt− 3n+p+3
2

n!
3
2

Rn1

p!
1
2

Rp2
∀p, n ∈ N, ∀t ∈ (0, T ], ∀x ∈ [−1, 0].

Proof. Using (2.18) on intervals of length one, we can, without loss of generality,
assume that T = 1.
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Let us introduce the operator Ay = −Py = −∂3xy − a∂xy with domain

D(A) = {y ∈ H3(−1, 0); y(−1) = y(0) = ∂xy(0) = 0} ⊂ L2(−1, 0).

Then it follows from [16] that A generates a semigroup of contractions in L2(−1, 0)
and that a global Kato smoothing effect holds. More precisely, if y = etAy0 is the
mild solution issuing from y0 at t = 0, then we have for all T > 0

‖y(T )‖L2 ≤ ‖y0‖L2 ,(2.19) ∫ T

0

‖∂xy(., t)‖2L2 dt ≤ 1

3
(aT + 1)‖y0‖2L2 ,(2.20)

where ‖f‖L2 = (
∫ 0

−1 |f(x)|2dx)
1
2 . For simplicity, we denote ‖f‖Hp = (

∑p
i=0 ‖∂ixf‖2L2)

1
2

for p ∈ N.
For p ∈ {0, 1, 2, 3, 4}, we introduce the Banach spaces

X0 = L2(−1, 0), X1 = H1
0 (−1, 0),

X2 = {y ∈ H2(−1, 0); y(−1) = y(0) = ∂xy(0) = 0}, X3 = D(A),

and

X4 = {y ∈ H4(−1, 0), y(−1) = y(0) = ∂xy(0) = ∂3xy(−1) = ∂3xy(0) = 0},

Xp being endowed with the norm ‖ · ‖Hp for p = 0, . . . , 4.

Claim 1. There is a constant C = C(a) > 0 such that

(2.21) ‖y(., t)‖H1 ≤ C√
t
‖y0‖L2 ∀t ∈ (0, 1].

To prove Claim 1, we closely follow [15]. Picking any y0 ∈ X3 = D(A), we
have by a classical property from semigroup theory that y ∈ C([0, T ], D(A)) and that
z(., t) = Ay(., t) satisfies z(., t) = etAz(., 0). It follows by (2.19) that

‖z(., t)‖L2 ≤ ‖z(., 0)‖L2 ∀t ∈ (0, 1].

Summing with (2.19), this yields

‖y(., t)‖L2 + ‖Py(., t)‖L2 ≤ ‖y(., t)‖L2 + ‖Py0‖L2 , t ∈ (0, 1].

Using Lemma A.2, this yields

(2.22) ‖y0‖H3 ≤ C3‖y0‖H3 , t ∈ (0, 1]

for some C3 = C3(a) > 0. Using interpolation and noticing that x1 = [X0, X3] 1
3
, we

infer the existence of some constant C1 = C1(a) > 0 such that

(2.23) ‖y(., t)‖H1 ≤ C1‖y0‖H1 ∀y0 ∈ X1, ∀t ∈ (0, 1].

This yields ‖y(., t)‖2H1 ≤ C2
1‖y(., s)‖2H1 for 0 < s < t ≤ 1, which gives upon integration

over (0, t) for t ∈ (0, 1]

t‖y(., t)‖2H1 ≤ C2
1

∫ t

0

‖y(., s)‖2H1ds ≤ C2
1

3
((a+ 3)T + 1)‖y0‖2L2 ,

where we used (2.19)–(2.20). Thus (2.21) holds. The proof of Claim 1 is achieved.
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Claim 2. There is some constant C > 0 such that

(2.24) ‖y(., t)‖Hp+1 ≤ C√
t
‖y0‖Hp for p ∈ {0, 1, 2, 3}, y ∈ Xp, t ∈ (0, 1].

To prove Claim 2, we pick again y0 ∈ D(A) and set z(., t) = Ay(., t). We infer
from (2.21) applied to z(., t) that

‖Ay(., t)‖H1 = ‖z(., t)‖H1 ≤ C√
t
‖z(., 0)‖H1 =

C√
t
‖Ay0‖.

Combined with (2.21), this gives

(2.25) ‖y(., t)‖H1 + ‖(∂3x + a∂x)y(., t)‖H1 ≤ C√
t
(‖y0‖L2 + ‖Ay0‖L2).

We know from Lemma A.2 that for z ∈ H3(−1, 0)

‖z‖H3 ≤ C(‖z‖L2 + ‖Pz‖L2).

It follows that for z ∈ X4 (C denoting a positive constant that may change from line
to line and that do not depend on t and on y0)

‖z‖H4 ≤ C(‖z‖H3 + ‖∂4xz‖L2)

≤ C
(
‖z‖L2 + ‖Pz‖L2 + ‖∂x(∂3xz + a∂xz)‖L2 + a‖∂2xz‖L2

)
≤ C(‖z‖H1 + ‖Az‖H1).

Combined with (2.25), this gives

(2.26) ‖y(., t)‖H4 ≤ C√
t
‖y0‖H3 ∀t ∈ (0, 1]

for all y0 ∈ X4, and also for all y0 ∈ X3 = D(A) by density.
Interpolating between (2.21) and (2.26), we obtain (2.24). The proof of Claim 2

is achieved.
Using Claim 2 inductively and spitting [0, t] into [0, t/3]∪ [t/3, 2t/3]∪ [2t/3, t], we

infer that

‖a∂xy(., t)‖L2 ≤ Ca√
t
‖y0‖L2 , t ∈ (0, 1],(2.27)

‖∂3xy(., t)‖L2 ≤ C√
t
3

∥∥∥∥∂2xy(., 2t

3

)∥∥∥∥
L2

(2.28)

≤

 C√
t
3

2 ∥∥∥∥∂xy(., t3
)∥∥∥∥

L2

≤

 C√
t
3

3

‖y0‖L2 .

Combining (2.27) and (2.29), we infer the existence of a constant C ′ = C ′(a) > 0
(say, C ′ ≥ 1, for simplicity), such that

(2.29) ‖Ay(t)‖L2 ≤ C ′

t
3
2

‖y0‖L2 for y0 ∈ L2(−1, 0), t ∈ (0, 1].
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For y0 ∈ D(An−1), z(t) = An−1y(t) satisfies z(., t) = etA(An−1y0) and thus

‖Any(., t)‖L2 = ‖Az(., t)‖L2 ≤ C ′

t
3
2

‖An−1y0‖L2 .

For y0 ∈ L2(−1, 0) and t ∈ (0, 1], splitting [0, t] into [0, tn ]∪ [ tn ,
2t
n ]∪ · · · ∪ [n−1n t, t], we

obtain

‖Any(., t)‖L2 ≤ C ′

( tn )
3
2

∥∥∥∥An−1y(n− 1

n
t

)∥∥∥∥
L2

≤ · · · ≤
(

C ′

( tn )
3
2

)n
‖y0‖L2

=
C ′n

t
3n
2

n
3n
2 ‖y0‖L2 ·

(2.30)

If p ∈ N is given, we pick n ∈ N such that 3n − 3 ≤ p ≤ 3n − 1. Then, by Sobolev
embedding, we have that

‖∂pxy(., t)‖L∞ ≤ C‖y(., t)‖Hp+1

≤ C‖y(., t)‖H3n

≤ C (‖y(., t)‖L2 + ‖Py(., t)‖L2 + · · ·+ ‖Pny(., t)‖L2)

≤ C
(

1 +
C ′

t
3
2

+ · · ·+ C ′n

t
3n
2

n
3n
2

)
‖y0‖L2

≤ CC
′n(n+ 1)n

3n
2

t
3n
2

‖y0‖L2 ·

Since

(n+ 1)
(3n)

3n
2

3
3n
2

≤ (1 + p
3 )

3
p+1
2

(p+ 3)
p+3
2 ≤ C ′′p 3

4

(e
3

) p
2

((p+ 1)!)
1
2

we see that there are some constants C ′′′ > 0 and R > 0 such that

|∂px y(x, t)| ≤ C ′′′

Rpt
p+3
2

(p!)
1
2 , p ∈ N, t ∈ (0, 1], x ∈ [0, 1].

From (2.30), we have that y ∈ C((0, 1], D(An)) for all n ≥ 0 and hence that y ∈
C∞([0, 1]× (0, 1]). Finally, for all n ≥ 0 and p ≥ 0, we have that

∂nt ∂
p
x y = (−1)nPn∂px y

= (−1)n(∂3x + a∂x)n∂px y

= (−1)n
n∑
q=0

(
n
q

)
an−q∂n+2q+p

x y

and hence, assuming R′ < 1,

|∂nt ∂px y(x, t)| ≤ C ′′
n∑
q=0

(
n
q

)
an−q

(n+ 2q + p)!
1
2

R′n+2q+pt
n+2q+p+3

2

≤ C ′′ (n+ 1)(2a)n(3n+ p)!
1
2

R′3n+p t
3n+p+3

2

≤ C ′′ (n+ 1)(2a)n2
3n+p

2 (3n!)
1
2 p!

1
2

R′3n+p t
3n+p+3

2

≤ K

t
3n+p+3

2

n!
3
2

Rn1

p!
1
2

Rp2
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for some K,C1, C2 ∈ (0,+∞) and for all t ∈ (0, 1] and all x ∈ [0, 1]. The proof of
Proposition 2.2 is complete.

It is actually expected that for y0 ∈ L2(−1, 0) and u ≡ 0, we have that

y ∈ G 1
3 ,1([−1, 0]× [ε, T ]) ∀ 0 < ε < T <∞.

Proving such a property seems to be challenging. The smoothing effect from L2 to
G1/3 is much easy to establish on R for data with compact support. The proof of the
following result is given in the appendix.

Proposition 2.3. Let y0 ∈ L2(R) be such that y0(x) = 0 for a.e. x ∈ R\ [−L,L]
for some L > 0. Let y = y(x, t) denote the solution of the Cauchy problem

∂ty + ∂3xy = 0, t > 0, x ∈ R,(2.31)

y(x, 0) = y0(x), x ∈ R.(2.32)

Then y ∈ G 1
3 ,1([−l, l]× [ε, T ]) for all l > 0 and all 0 < ε < T .

2.3. Proof of Theorem 1.1. Pick any y0 ∈ L2(−1, 0), T > 0, and s ∈ [ 32 , 3).
Let ȳ denote the solution of the free evolution for the KdV system:

∂tȳ + ∂3xȳ + a∂xȳ = 0, x ∈ (−1, 0), t ∈ (0, T ),(2.33)

ȳ(0, t) = ∂xȳ(0, t) = ȳ(−1, t) = 0, t ∈ (0, T ),(2.34)

ȳ(x, 0) = y0(x), x ∈ (−1, 0).(2.35)

It follows from Proposition 2.2 that ȳ ∈ G 1
2 ,

3
2 ([−1, 0] × [ε, T ]) for any ε ∈ (0, T ). In

particular, ∂2xȳ(0, .) ∈ G 3
2 ([ε, T ]) for any ε ∈ (0, T ). Pick any τ ∈ (0, T ) and let

z(t) = φs

(
t− τ
T − τ

)
∂2xȳ(0, t),

where φs is the “step function”

φs(ρ) =


1 if ρ ≤ 0,
0 if ρ ≥ 1,

e
− M

(1−ρ)σ

e
−M
ρσ +e

− M
(1−ρ)σ

if ρ ∈ (0, 1)

with M > 0 and σ := (s − 1)−1. As φs is Gevrey of order s (see, e.g., [13]) and
s ≥ 3/2, we infer that z ∈ Gs([ε, T ]) for all ε ∈ (0, T ). Let

y(x, t) =

{
y0(x) if x ∈ [−1, 0], t = 0,∑
i≥0 gi(x)z(i)(t) if x ∈ [−1, 0], t ∈ (0, T ].

Then, by Proposition 2.1, y ∈ G s
3 ,s([−1, 0] × [ε, T ]) for all ε ∈ (0, T ), and it satisfies

(2.1)–(2.3). Furthermore,

∂px y(0, t) = ∂px ȳ(0, t) ∀t ∈ (0, τ), ∀p ∈ {0, 1, 2},
so that

y(x, t) = ȳ(x, t) ∀(x, t) ∈ [−1, 0]× (0, τ),

by the Holmgren theorem. We infer that y ∈ C([0, T ], L2(−1, 0)) and that it solves
(1.6)–(1.9) if we define u as in (2.5). Note that u(t) = 0 for 0 < t < τ and that
u ∈ Gs([0, T ]). Finally y(., T ) = 0 for z(i)(T ) = 0 for all i ≥ 0. The proof of
Theorem 1.1 is complete.
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3. Reachable states.

3.1. The limit case s = 3 in the flatness property. The following result
extends the flatness property depicted in Proposition 2.1 to the limit case s = 3.

Proposition 3.1. Assume that z ∈ G3([0, T ]) with

(3.1) |z(j)(t)| ≤M (3j)!

R3j
∀j ≥ 0, ∀t ∈ [0, T ],

where R > 1, and let y = y(x, t) be as in (2.4). Then y ∈ G1,3([−1, 0]× [0, T ]) and it
solves (2.1)–(2.3).

Proof. We follow closely [12]. Pick any m,n ∈ N. By (2.17), we can assume that
i ≥ n. Setting j = 3i− 3n and N = 3n+ 3m, so that j +N = 3i+ 3m, we have that∣∣∣∂mt Pn(gi(x)z(i)(t)

)∣∣∣ ≤M (3i+ 3m)!

R3i+3m

1

(3(i− n) + 2)!
≤M (j +N)!

Rj+N
1

(j + 2)!
·

Let
S :=

∑
i≥n

|∂mt Pn(gi(x)z(i)(t))|.

If N ≤ 2, then S ≤ M
∑
j≥0R

−(j+N) < ∞ for R > 1. Assume from now on that
N ≥ 2. Then

S ≤M
∑
j≥0

(j + 3) · · · (j +N)

Rj+N

≤M
∑
k≥0

∑
kN≤j<(k+1)N

(j + 3) · · · (j +N)

Rj+N

≤M
∑
k≥0

N

(
(k + 2)N

)N−2
R(k+1)N

≤MNN−1
∑
k≥0

(
k + 2

Rk+1

)N
·

Pick any σ ∈ (0, 1) and let a := supk≥0
k+2

(R1−σ)k+1 < ∞. We infer from [12, Proof of

Proposition 3.1] that ∑
k≥0

(
k + 2

Rk+1

)N
≤ aN

RNσ − 1
,

so that

S ≤MNN−1 aN

RNσ − 1
≤M ′

( ae
Rσ

)N N !

N
3
2

for some constant M ′ > 0, by using the Stirling formula. Next, we have that

N ! = (3n+ 3m)! ≤ 23n+3m(3n)!(3m)!

and using again the estimate

(3m)!

m!3
∼ 33m

√
3

2πm
,
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we infer that

S ≤M ′′
( ae
Rσ

)3m+3n

23n+3m(3n)!

(
33m

m+ 1
(m!)3

)
1

(m+ n+ 1)
3
2

,

≤M ′′′ (3n)!

R3n
2

(m!)3

Rm1

1

(n+ 1)
3
2

for some positive constants M ′′,M ′′′, R1, and R2. There is no loss of generality in
assuming that R2 < 1. Let K be as in Lemma 2.2 for p =∞. Then we have∑

i≥n

‖∂mt (gi(x)z(i)(t))‖3n,∞ ≤ Kn
∑
i≥n

∑
0≤j≤n

‖∂mt P j(gi(x)z(i)(t))‖∞

≤M ′′′Kn
∑

0≤j≤n

(
(m!)3

Rm1

(3j)!

R3j
2

1

(j + 1)
3
2

)

≤M ′′′Kn (3n)!

R3n
2

(m!)3

Rm1

∑
j≥0

1

(j + 1)
3
2

·

This shows that the series of derivatives ∂mt ∂
l
x

(
gi(x)z(i)(t)

)
is uniformly convergent on

[−1, 0]× [0, T ] for all m, l ∈ N, so that y ∈ C∞([−1, 0]× [0, T ]) and that the function
y satisfies for l ≤ 3n

|∂mt ∂lx y(x, t)| ≤M ′′′′Kn (3n)!

R3n
2

(m!)3

Rm1
∀x ∈ [−1, 0], ∀t ∈ [0, T ]

for some constant M ′′′′ > 0. Finally, if l ∈ {3n− 2, 3n− 1, 3n}, then (3n)!(K/R3
2)n ≤

C ′l!/R′l2 for some C ′ > 0, R′2 > 0. This yields

|∂mt ∂lx y(x, t)| ≤ C ′M ′′′′ (m!)3

Rm1

l!

R′l2
∀x ∈ [−1, 0], ∀t ∈ [0, T ].

3.2. Proof of Theorem 1.2. Pick any R > R0 = e(3e)
−1

(1 + a)
1
3 and any

y1 ∈ RR. Our first task is to write y1 in the form

(3.2) y1(x) =
∑
i≥0

bigi(x), x ∈ [−1, 0].

Note that if (3.2) holds with a convergence in Wn,∞(−1, 0) for all n ≥ 0, then

∂2xP
ny1(0) =

∑
i≥0

bi∂
2
xP

ngi(0) =
∑
i≥n

bi∂
2
xgi−n(0) = bn.

Set
bn := ∂2xP

ny1(0) ∀n ≥ 0.

Since y1 ∈ RR with R > R0, there exists for any r ∈ (R0, R) a constant C = C(r) > 0
such that

|∂nx y1(x)| ≤ C n!

rn
∀x ∈ [−r, 0], ∀n ∈ N.

Using Lemma 2.2, we infer that

|bn| = |Pn∂2xy1(0)| ≤
(

1 +
1

a

)
(1 + a)n‖∂2xy1‖3n,∞ ≤ C ′(1 + a)n

(3n+ 2)!

r3n+2
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for some C ′ > 0 and all n ≥ 0. We need the following version of the Borel theorem,
which is a particular case of [12, Proposition 3.6] (with ap = [3p(3p − 1)(3p − 2)]−1

for p ≥ 1).

Proposition 3.2. Let (dq)q≥0 be a sequence of real numbers such that

|dq| ≤ CHq(3q)! ∀q ≥ 0

for some H > 0 and C > 0. Then for all H̃ > ee
−1

H, there exists a function
f ∈ C∞(R) such that

f (q)(0) = dq ∀q ≥ 0,

|f (q)(x)| ≤ CH̃q(3q)! ∀q ≥ 0, ∀x ∈ R.

Since r > R0, we can pick two numbers H ∈ (0, e−e
−1

) and C ′′ > 0 such that

|bn| ≤ C ′′Hn(3n)! ∀n ≥ 0.

By Proposition 3.2, there exists a function f ∈ G3([0, T ]) and a number R > 1 such
that

f (i)(T ) = bi ∀i ≥ 0,(3.3)

|f (i)(t)| ≤ C ′′ (3i)!
R3i

∀i ≥ 0, ∀t ∈ [0, T ].(3.4)

Pick any τ ∈ (0, T ) and let

g(t) = 1− φ2
(
t− τ
T − τ

)
for t ∈ [0, T ].

Note that g ∈ G2([0, T ]) and that g(T ) = 1, g(i)(T ) = 0 for all i ≥ 1. Setting

z(t) = g(t)f(t) ∀t ∈ [0, T ],

we have that z ∈ G3([0, T ]) and that

z(i)(T ) = bi ∀i ≥ 0,(3.5)

z(i)(0) = 0 ∀i ≥ 0,(3.6)

|z(i)(t)| ≤ C ′′′ (3i)!
R3i

∀i ≥ 0, ∀t ∈ [0, T ](3.7)

for some C ′′′ > 0. (The fact that the constant R > 0 in (3.7) is the same as in (3.4)
is proved as in [12, Lemma 3.7].) Let y be as in (2.4). Then by Proposition 3.1 we
know that y ∈ G1,3([−1, 0]× [0, T ]) and that it solves (2.1)–(2.3). Let u(t) = y(−1, t)
for t ∈ [0, T ]. Then u ∈ G3([0, T ]) and y solves (1.6)–(1.9) with y0 = 0, by (3.6).
Furthermore, we have by (3.5) that

y(x, T ) =
∑
i≥0

gi(x)z(i)(T ) =
∑
i≥0

bigi(x), x ∈ [−1, 0].

From the proof of Proposition 3.1, we know that for all l,m ∈ N, the sequence of partial
sums of the series

∑
i≥0 ∂

m
t ∂

l
x(gi(x)z(i)(t)) converges uniformly on [−1, 0] × [0, T ] to
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∂mt ∂
l
x y, and hence for all n ≥ 0

Pny(0, T ) =
∑
i≥0

biP
ngi(0) =

∑
i≥n

bigi−n(0) = 0,

∂xP
ny(0, T ) =

∑
i≥0

bi∂xP
ngi(0) =

∑
i≥n

bi∂xgi−n(0) = 0,

∂2xP
ny(0, T ) =

∑
i≥0

bi∂
2
xP

ngi(0) =
∑
i≥n

bi∂
2
xgi−n(0) = bn = ∂2xP

ny1(0).

To conclude that
y(x, T ) = y1(x) ∀x ∈ [−1, 0],

it is sufficient to prove the following

Claim 3. If h ∈ G1([−1, 0]) is such that Pnh(0) = ∂xP
nh(0) = ∂2xP

nh(0) = 0
for all n ∈ N, then h ≡ 0.

Indeed, we notice that P 0 = id and that Pn = ∂3nx + · · · , ∂xPn = ∂3n+1
x + · · · ,

and ∂2xP
n = ∂3n+2

x + · · · , where · · · stands for less order derivatives. Then we obtain
by induction that ∂3nx h(0) = ∂3n+1

x h(0) = ∂3n+2
x h(0) = 0 for all n ≥ 0, so that h ≡ 0.

This completes the proof of Claim 3 and of Theorem 1.2.

Appendix A.

A.1. Proof of Lemma 2.2. We first need to prove two simple lemmas. We still
use the notation P = ∂3x + a∂x.

Lemma A.1. Let a ∈ R+ and p ∈ [1,∞]. Then for all n ∈ N, we have

(A.1) ‖Pnf‖p ≤ (1 + a)n‖f‖3n,p ∀f ∈W 3n,p(−1, 0).

Proof. The proof is by induction on n. For n = 0, the result is obvious. If it is
true at rank n− 1, then

‖Pn−1(Pf)‖p ≤ (1 + a)n−1‖Pf‖3n−3,p
≤ (1 + a)n−1 (‖f ′′′‖3n−3,p + a‖f ′‖3n−3,p) ≤ (1 + a)n‖f‖3n,p.

Lemma A.2. Let a ∈ R+ and p ∈ [1,∞]. Then there exists a constant C1 =
C1(p, a) > 0 such that

(A.2) ‖f‖3,p ≤ C1(‖f‖p + ‖P f‖p) ∀f ∈W 3,p(−1, 0).

Proof. The seminorm
|||f ||| := ‖f‖p + ‖Pf‖p

is clearly a norm in W 3,p(−1, 0). Let us check that W 3,p(−1, 0), endowed with the
norm ||| · |||, is a Banach space. Pick any Cauchy sequence (fn)n≥0 for ||| · ||| . Then

|||fm − fn||| = ‖fm − fn‖p + ‖Pfm − Pfn‖p → 0, as m,n→ +∞.

Since Lp(−1, 0) is a Banach space, there exist f, g ∈ Lp(−1, 0) such that

(A.3) ‖fn − f‖p + ‖Pfn − g‖p → 0, as n→∞.

Since fn → f in D′(−1, 0), Pfn → Pf in D′(−1, 0) as well, and Pf = g. Thus f ′′ =∫
g(x)dx − af ∈ Lp(−1, 0), and f ∈ W 2,p(−1, 0). This yields f ′ ∈ W 1,p(−1, 0) and
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f ′′′ = g−af ′ ∈ Lp(−1, 0), and hence f ∈W 3,p(−1, 0). Note that (A.3) can be written
|||fn−f ||| → 0. This proves that (W 3,p(−1, 0), |||·|||) is a Banach space. Now, applying
the Banach theorem to the identity map from the Banach space (W 3,p(−1, 0), ‖ · ‖3,p)
to the Banach space (W 3,p(−1, 0), ||| · |||), which is linear, continuous, and bijective,
we infer that its inverse is continuous; that is, (A.2) holds.

Let us prove Lemma 2.2. We proceed by induction on n. Both inequalities in
(2.16) are obvious for n = 0. Assume now that both inequalities in (2.16) are satisfied
up to the rank n − 1. Let us first prove the left inequality in (2.16) at the rank n.
Pick any f ∈ W 3n,p(−1, 0). Then, by the induction hypothesis and Lemma A.1, we
obtain

n∑
i=0

‖P if‖p =

n−1∑
i=0

‖P if‖p + ‖Pnf‖p

≤
(

1 +
1

a

)
(1 + a)n−1‖f‖3n−3,p + (1 + a)n‖f‖3n,p

≤
(

1 +
1

a

)
(1 + a)n‖f‖3n,p,

as desired.
For the right inequality in (2.16), we write

‖f‖3n,p = ‖f‖3n−3,p + ‖∂3n−2x f‖p + ‖∂3n−1x f‖p + ‖∂3nx f‖p

≤ Kn−1
n−1∑
i=0

‖P if‖p + ‖∂3n−3x f‖3,p.(A.4)

But it follows from Lemma A.2 that

‖∂3n−3x f‖3,p ≤ C1(‖∂3n−3x f‖p + ‖P∂3n−3x f‖p)
≤ C1(‖∂3n−3x f‖p + ‖∂3n−3x P f‖p)
≤ C1(‖f‖3n−3,p + ‖Pf‖3n−3,p)

≤ C1K
n−1

(
n−1∑
i=0

‖P if‖p +

n∑
i=1

‖P if‖p
)

≤ 2C1K
n−1

n∑
i=0

‖P if‖p.

Combined with (A.4), this yields

‖f‖3n,p ≤ (1 + 2C1)Kn−1
n∑
i=0

‖P if‖p.

It is sufficient to pick K := 1 + 2C1.

A.2. Proof of Proposition 2.3. Let Ai denote the Airy function defined as
the inverse Fourier transform of ξ → exp(iξ3/3). Then it is well known (see, e.g., [7])
that Ai is an entire (i.e., complex analytic on C) function satisfying

(A.5) Ai′′(x) = xAi(x) ∀x ∈ C.

To prove that y ∈ G 1
3 ,1([−l, l] × [ε, T ]), we need first check that the Airy function is

itself Gevrey of order 1/3.
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Claim 4. Ai ∈ G 1
3 ([−l, l]) for any l > 0.

Let us prove Claim 4. Differentiating k+1 times in (A.5) and letting x = 0 results
in

Ai(3+k)(0) = (Ai′′)(k+1)(0) = (k + 1)Ai(k)(0) ∀k ∈ N.

Note that Ai′′(0) = 0 by (A.5) and that

Ai(0) =

[
3

2
3 Γ

(
2

3

)]−1
6= 0, Ai′(0) = −

[
3

1
3 Γ

(
1

3

)]−1
6= 0.

We infer that for all k ∈ N

Ai(3k)(0) = Ai(0)

k−1∏
j=1

(1 + 3j), Ai(3k+1)(0) = Ai′(0)

k−1∏
j=1

(2 + 3j), Ai(3k+2)(0) = 0.

As was noticed in [11, Remark 2.7], we have

si i! ≤
i∏

j=1

(r + js) ≤ si(i+ 1)! ∀s ∈ N, ∀r ∈ [0, s].

Thus there is some constant C1 > 0 such that∣∣∣Ai(3k+q)(0)
∣∣∣ ≤ C13kk! ∀k ≥ 0, ∀q ∈ {0, 1, 2}.

From the Stirling formula we have (3k)! ∼
√
3

2πk (3kk!)3 so that

(A.6) |Ai(n)(0)| ≤ C2[(n+ 1)!]
1
3 ≤ C3

n!
1
3

Rn
∀n ∈ N

for any R ∈ (0, 1) and some constants C2, C3 > 0. The following result comes from
[10, 14].

Lemma A.3. Let s ∈ (0, 1) and let (an)n≥0 be a sequence such that

|an| ≤ C
n!s

Rn
∀n ≥ 0

for some constants C,R > 0. Then the function f(x) =
∑
n≥0 an

xn

n! is Gevrey of
order s on [−l, l] for all l > 0 with

|f (m)(x)| ≤ C

∑
k≥0

(2sl)k

Rkk!1−s

 2sm

Rm
m!s ∀m ∈ N, ∀x ∈ [−l, l].

It follows from (A.6) and Lemma A.3 that the Airy function is Gevrey of order 1/3
on each interval [−l, l] with

|Ai(m)(x)| ≤ C4(R, l)
2
m
3

Rm
m!

1
3 ∀m ∈ N, ∀x ∈ [−l, l].

Claim 4 is proved. Let us go back to the proof of Proposition 2.3. The fundamental
solution of the simplified linear Korteweg–de Vries equation (2.31) is given by

(A.7) E(x, t) =
1

(3t)
1
3

Ai

(
x

(3t)
1
3

)
,
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so that the solution of (2.31)–(2.32) for an initial value y0 ∈ L2(R) supported in
[−L,L] reads

y(x, t) = [E(., t) ∗ y0](x) =
1

(3t)
1
3

∫ L

−L
Ai

(
x− s
(3t)

1
3

)
y0(s) ds.

It is clear that y is of class C∞ on Rx× (0,+∞)t. Pick any l > 0 and any 0 < ε < T .
Since y solves (2.31), we have for all x ∈ [−l, l], t ∈ [ε, T ] and p, q ∈ N that

|∂px∂qt y(x, t)| = |∂p+3q
x y(x, t)|

≤ K 2
p+3q

3

(3t)
1+p+3q

3 Rp+3q
(p+ 3q)!

1
3 ‖y0‖L1(−L,L)

≤ K 2
p+3q

3

(3ε)
1+p+3q

3 Rp+3q

(
2p+3qp!(3q)!

) 1
3 ‖y0‖L1(−L,L)

≤ K ′

Rp1R
q
2

p!
1
3 q!‖y0‖L1(−L,L)

for some constants K,K ′, R1, R2 > 0 which depend on l, L, ε, and T . The proof of
Proposition 2.3 is complete.

Acknowledgments. This work was done when the second author (IR) was
visiting CAS, MINES ParisTech.

REFERENCES

[1] M. A. Caicedo, R. de A. Capistrano Filho, and B.-Y. Zhang, Neumann boundary control-
lability of the Korteweg-de Vries equation on a bounded domain, SIAM J. Control Optim.,
55 (2017), pp. 3503–3532.

[2] E. Cerpa, Control of a Korteweg-de Vries equation: A tutorial, Math. Control Relat. Fields,
4 (2014), pp. 45–99.

[3] E. Cerpa, I. Rivas, and B.-Y. Zhang, Boundary controllability of the Korteweg-de Vries
equation on a bounded domain, SIAM J. Control Optim., 51 (2013), pp. 2976–3010.
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