N

N

Normally-Off Computing and Checkpoint/Rollback for
Fast, Low-Power, and Reliable Devices
Sophiane Senni, Lionel Torres, Pascal Benoit, Abdoulaye Gamatié, Gilles

Sassatelli

» To cite this version:

Sophiane Senni, Lionel Torres, Pascal Benoit, Abdoulaye Gamatié, Gilles Sassatelli. Normally-Off
Computing and Checkpoint/Rollback for Fast, Low-Power, and Reliable Devices. IEEE Magnetics
Letters, 2017, 8, pp.1-5. 10.1109/LMAG.2017.2712780 . hal-01767897

HAL Id: hal-01767897
https://hal.science/hal-01767897
Submitted on 18 Apr 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01767897
https://hal.archives-ouvertes.fr

JOURNAL OF KTgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
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Since the advent of complementary metal oxide semiconductors (CMOS), the number of transistor per die never stops increasing
to reach today several billion of transistors. As a result, design and fabrication of smart devices able to run at high speed has been
possible. However, the power consumption of systems-on-chip has significantly increased due to the high density integration and
the high leakage power of current CMOS transistors. As a result, a heat dissipation wall makes difficult further improvement in
performance. Having high autonomy for battery-powered devices becomes a real challenge. To deal with these issues, STT-MRAM
technology is seen as a promising solution. In addition to its attractive performance features, STT-MRAM can bring non-volatility
inside a system to allow full data retention after a complete shutdown while keeping a fast wake-up time. Considering two 32-bit
embedded processors, this paper shows how STT-MRAM can improve energy efficiency and reliability of future embedded systems
thanks to normally-off computing and checkpointing/rollback techniques. Finally, a detailed analysis is performed to evaluate the

cost related to the backup/recovery of the system.

Index Terms—Spintronic memory and logic, embedded processor.

I. INTRODUCTION

HE scaling limits of complementary metal oxide semi-
conductors (CMOS) are mainly due to the high heat dissi-
pation observed in current systems-on-chip. As a consequence,
speed and density are limited and the thermal constraints
oblige the system to be partially turned off by using power
gating techniques. However, this solution is clearly constrained
by the inherent volatility of CMOS devices, since turning
off the memory part also means losing the execution state.
For beyond CMOS systems, the spin-transfer-torque magnetic
random access memory (STT-MRAM) is a promising solution
by combining non-volatility, high density, low leakage and
competitive access time compared to CMOS-based memories
such as static random access memory (SRAM) and flash
memory. Recently, new technologies known as spin-hall-effect
MRAM ([1], [2], [3]) and voltage-controlled MRAM ([4],
[5], [6]) appear to be promising for fast and ultra-low power
applications. Since these technologies are quite young and
require further development, they are not considered in this
work. On the contrary, several prototypes demonstrated the
maturity of the STT-MRAM technology ([7], [8], [9], [10]).
Considering two 32-bit embedded processors (The MIPS-
like SecretBlaze [11] and the ARM-like Amber [12]), this
paper shows how perpendicular STT-MRAM can help to
design fast, low-power and reliable devices. The rest of the
paper is organized as follows: Section II gives the basics of
STT-MRAM technology. Section III presents the experimental
setup to evaluate a non-volatile processor based on STT-
MRAM. Section IV describes two features introduced by the
non-volatility of STT-MRAM for future computing: normally-
off computing and rollback. Section V shows a detailed perfor-
mance/energy analysis of the considered embedded processors

Manuscript received 24 January 2017, revised 3 May 2017, accepted 16
May 2017. Corresponding author: M. Senni (email: senni@lirmm.fr).

based on STT-MRAM considering various architecture scenar-
i0s. Section VI concludes this paper.

Compared to the state of the art, this work validated the
normally-off computing and rollback techniques on two differ-
ent 32-bit embedded processors, which clearly strengthen our
approach. Moreover, this work has also validated a recovery of
the system at run time (e.g. in the case of a soft error), contrary
to other related works which only considered the recovery
process after a shutdown of the system.

II. SPIN TRANSFER TORQUE MRAM: BASICS

A bit of information is stored as the resistance of a magnetic
tunnel junction (MTJ) which consists of two ferromagnetic
layers separated by a thin insulating barrier (Figure 1). The
parallel (antiparallel) state causes a low (high) resistance value
and can be characterized as a logic zero (one). A read oper-
ation consists in measuring the resistance thanks to a sensing
current flowing through the MTJ. For the write operation, a
spin-polarized current flips the magnetization of the storage
layer by direct transfer of the spin angular momentum from
spin-polarized electrons. The direction of the current flow
through the MTJ determines the final state of the bit cell.

Regarding the last advances of the STT-MRAM technology,
IBM and SAMSUNG [13] demonstrated that a specific MTJ
stack with perpendicular magnetic anisotropy is capable of
delivering good STT performance down to 10~% write error
rate (WER) in a broad range of device sizes from 50nm to
11nm, on a statistically relevant sample of several hundred
of devices. They demonstrated an individual 11-nm device
switching down to WER = 7 x 10719 using only 7.5u.A.

III. EXPERIMENTAL SETUP

The first step to evaluate the integration of STT-MRAM
into the considered processors is to validate two capabilities
brought by the non-volatility: the normally-off computing for
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Fig. 1: STT-MRAM bit cell structure

TABLE I: STT-MRAM based flip-flop, cache and main mem-
ory performances

Memory element Latency (ns) Energy (pJ)

(45nm) Read Write Read Write

Flip-Flop [14] 0.2 4 0.012 0.5

Cache (8kB) [15] 1.5 10.5 53 268

Main memory (1M B) [15] 5 14 36 52
Checkpoint memory (4kB) [15] 1.06 10.3 8.7 34.5

TABLE II: Architecture scenarios

Scenario Architecture
Processor core (STT-MRAM based flip-flops)
sl No Cache Memory

Main Memory (1M B, STT-MRAM)
Processor core (STT-MRAM based flip-flops)
s2 Instruction/Data Cache (8kB each, write-trough, STT-MRAM)
Main Memory (1M B, STT-MRAM)
Processor core (STT-MRAM based flip-flops)
s3 Instruction/Data Cache (8k B each, write-trough, SRAM)
Main Memory (1M B, STT-MRAM)

near-zero leakage power during sleep mode, and the rollback
to be tolerant against soft errors and power failures. The
synthesizable hardware description language (HDL) codes of
the processors were modified to implement the aforemen-
tioned techniques. The registers retaining the state of the
processor were duplicated to emulate the non-volatile STT-
MRAM registers, and control logic were added to enable the
backup/recovery of the system state.

The second step is to quantify the cost in terms of speed,
energy and area of implementing the two prior capabilities.
Data from the current state-of-the-art of STT-MRAM based
FFs [14] are used to evaluate the cost at register level. On the
other hand, the cost at cache and memory levels are quantified
thanks to NVSim [15]. Tables I and II respectively detail the
performance data of each memory element based on STT-
MRAM and the three architecture scenarios considered in this
work. The performance data of the SRAM cache used in the
scenario 3 are 0.43ns, 0.4ns, 8pJ, and 7pJ respectively for
read latency, write latency, read energy, and write energy.

IV. NON-VOLATILE COMPUTING
A. Normally-off computing

The normally-off computing consists in saving the state of
the processor before a complete shutdown, then restoring the
state after a new power-up. To make this possible, it is required
to insert STT-MRAM at both register level and main memory
level. Among all of the flip-flops (FFs) of the SecretBlaze
(Amber), 1,986 (1,644) FFs contain the state of the processor.
A typical FF based on STT-MRAM is designed to have a

dual-storage facility (Figure 2a) [16]. The CMOS stage of the
FF uses cross-coupled inverters (latch) to store one data bit in
its electrical (volatile) form. On the other hand, the magnetic
stage uses a MTJ to store one non-volatile data bit. Such a
hybrid CMOS/MTI FF allows fast processing during active
mode, while the leakage power is significantly reduced during
sleep mode, especially thanks to the non-volatility of the MTJ.
Figure 2b shows a snapshot of a silicon prototype with two
FFs based on STT-MRAM (200 nm) and the 28nm fully
depleted silicon on insulator (FDSOI) CMOS technology. In
brief, assuming the FFs and the main memory of the processor
are based on STT-MRAM, then a backup/recovery of the
processor is as described in Algorithm 1.

Algorithm 1: Normally-off computing: backup/recovery

(1) For each FF, save the current state by writing the value from the
CMOS volatile stage into the non-volatile magnetic stage;

(2) Power down the processor. As the main memory is non-volatile,
data are preserved,

(3) Power up the processor. As the main memory is non-volatile, data
are available;

(4) For each FF, restore the state by reading the value from the
non-volatile magnetic stage to the volatile CMOS stage.

B. Checkpointing/Rollback mechanism

The rollback technique is the ability to restore a safe state
of the processor in the case of a system failure (Figure 3). This
work assumes that an error detection mechanism is available
into the processor architecture to identify errors during the
execution, for instance as proposed in [17]. To avoid resetting
the application, checkpoints can be created at runtime by
saving the state of the processor either periodically or at
strategic instant during the execution of the application. Then,
if a system failure occurs, the last checkpoint is recovered. To
keep a backup of the system state, a checkpoint has to retain
the state of the registers and the main memory. Thanks to the
dual-storage structure of the STT-MRAM FFs, a checkpoint
of the registers is performed by copying data from the volatile
CMOS stage to the non-volatile magnetic stage of each FF.

After a checkpoint, the main memory contents will most
probably be modified. For the rollback procedure, a dual-
bank memory architecture can be considered. One bank (main
memory) is dedicated to the execution of the application
whereas the other bank (checkpoint memory) is used for

restore clk rst
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Fig. 2: MRAM-based non-volatile flip-flop: (a) architecture
(b) silicon prototype (28nm FDSOI CMOS and 200nm STT-
MRAM)
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Fig. 3: Rollback principle

Buffer (N entries)

Address

NORMAL EXECUTION
- Only the main memory contents are modified
- Buffer to save addresses of modified memory
locations

Checkpoint

memory memory

ON

Buffer (N entries)

Address

CHECKPOINT

- Only the modified memory locations are
copied

Checkpoint
memory

ON

Buffer (N entries)

Address

- Only the modified memory locations are
restored

Checkpoint
memory

memory

ON ON

Fig. 4: Checkpointing/Rollback mechanism for main memory

the backup. It is worth noting that the checkpoint memory
would be smaller than the main memory in a real application.
Indeed, only a few memory locations are modified between
two checkpoints. The size of the checkpoint memory depends
on the application and the checkpointing period. Figure 4
describes how this work implements the backup of the main
memory. A buffer is used to save the addresses of the modified
memory locations during the execution of the application. If
a checkpoint is desired, only the modified memory locations
(from the last checkpoint) are backed up. If the address buffer
is full, a creation of a checkpoint is forced. In a similar way, if
a rollback is needed before the next checkpoint (e.g. because
of an execution error), only the modified memory locations
are restored. An alternative solution to perform a checkpoint at
memory level could be the use of a double context non-volatile
SRAM cell as proposed in [16]. Considering such a non-
volatile memory based on this cell, it is possible to optimize
the silicon area overhead and to greatly simplify the backup
of the main memory. In brief, assuming the aforementioned
considerations, then the checkpointing/rollback mechanism is
as described in Algorithm 2.

C. Validation

A complete backup/recovery of the system state has been
validated through register-transfer level simulations for the
Secretblaze and the Amber processors. A checkpoint/rollback
procedure is demonstrated in Figure 5 which shows the output
terminals of both processors running the Data Encryption

Algorithm 2: Checkpointing/Rollback mechanism

(1) Create checkpoints during the execution of the application;
(2) A system failure is detected;
(3) Stall the processor;
(4) Restore the last checkpoint consisting in;
- Restoring the state of the FFs by reading the value from the
non-volatile magnetic stage into the volatile CMOS stage;
- Restoring the main memory contents by copying data from the
checkpoint memory to the main memory;
(5) Resume the execution of the application.

Terminal output (Amber)

Amber Boot Loader v20141030165559
j 0x00008000

Terminal output (SecretBlaze)
testing blowfishin chc mode

:==-> Encrypted. :----> data to cipher:

i decrypted.  Checkpoint Hi MRAM!

',f‘; testing blowfish in cfb64 mode f—; dataciphered: ~ Checkpoint
=i Encrypted. 2 xbyale’
& decrypted. 2 data deciphered:

testing blowfish in ofb64 mode Hi MRAM!

[ Encrypted. [T cipher:
decrypted. Hi MRAM!
testing blowfish in cfb64 mode data ciphered:
Encrypted. xbyale’
decrypted. data deciphered:
testing blowfish in ofb64 mode Hi MRAM!
Encrypted.
decrypted.

Fig. 5: Checkpoint/rollback validation

Standard (DES) and the blowfish cipher algorithms. In both
cases, a rollback is carried out at runtime, then the applications
are properly re-executed from the checkpoint.

V. ANALYSIS OF STT-MRAM BASED EMBEDDED
PROCESSOR

This section analyzes the cost of integrating the normally-
off computing and rollback features into the considered pro-
cessors. All the results are summarized in Tables III and IV.
The core frequency is set to 50M H z, and this work assumes a
checkpoint memory size of 4kB. The cost has been evaluated
separately for each memory element (i.e. FFs, cache, and main
memory), then the total cost for the complete system has been
reported. This work assumes the backup/recovery processes of
the FFs, cache, and main memory are carried out in parallel.
Therefore, the latency cost at system level represents the
highest latency between the three memory elements. For the
energy cost at system level, a simple addition is performed.

A. Register level

Considering data from Table I, each FF consumes 500 f.J
(12fJ) to save (restore) the state of the CMOS stage into
(from) the non-volatile magnetic stage. As a result, the energy
cost to backup the system at register level comes to about 1n.J
for both processors, and the recovery energy comes to 24p.J
and 19.7pJ respectively for the Secretblaze and the Amber.

Regarding the backup latency, it is worth noting that backing
up all the FFs at the same time can lead to a high peak current,
which could cause electrical integrity issues. Therefore, a
progressive backup is considered in this work. A maximum
of 500 FFs are backed up (in parallel) at a time. As 4ns is
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TABLE III: Cost of the normally-off computing: backup/recovery

Backup Restore
Memory element Latency Energy Latency Energy
sl s2 s3 sl s2 s3 sl s2 s3 sl s2 s3
. (Secretblaze) ) 993pJ ) 24pJ
Flip-Flops (Amber) 16ns 822p.J 0.8ns 19.7pJ
Cache (8kB) 0s 0J Os warmup 0J [ warmup
Main memory (1M B) Os 0J Os 0J
(Secretblaze) 993pJ 24pJ 24pJ + warmup
Total (Amber) 16ns 822pJ 0.8ns 0.8ns + warmup 19.7pJ 19.7pJ + warmup

TABLE IV: Cost of the

checkpointing/rollback

Backup (Checkpoint) Restore (Rollback)
Memory element Latency Energy Latency Energy
sl s2 s3 sl s2 s3 sl s2 s3 sl s2 s3
. (Secretblaze) 993pJ 24pJ
Flip-Flops (Amber) 16ns 822p. 0.8ns 19.7pJ
Cache (8kB) 0s 0J 0s 5.12/s + warmup 0J [ 19.6nJ + warmup | 0.376n.J + warmup
Main memory (1M B)
Checkpoint memory (4% B) 15.7ps 72.2nJ 15.4ps 62.2nJ
(Secretblaze) 73.2n)
Total (Amber) 15.7 us 73] 15.4 us 15.4 s + warmup | 62.2nJ 81.8nJ + warmup 62.6n] + warmup

required to back up one FF, it will take 16ns to save all the
FFs for both processors. This corresponds to one clock cycle
latency if the system frequency is lower or equal to 62.5 M H z.
On the other hand, it only takes 0.8ns to restore all the FFs
(500 FFs restored at a time, 0.2ns restore time per FF).

B. Cache level

During a backup, there is no cost associated to the cache
memory, even for the scenario 3 which considers a volatile
SRAM cache since a write-through policy is used. When
restoring the system state, a first cost is related to the warmup.
The second cost is related to the flush process to avoid memory
inconsistency after a rollback at run time. The considered
cache architecture has 256 lines. This work implemented the
cache flush process by invalidating one cache line per clock
cycle. As a result, the latency cost of the rollback at cache
level comes to 5.12us. In terms of energy, the rollback costs
19.6nJ and 0.376n.J respectively for the second and the third
scenarios. It is worth noting that to invalidate a cache line, only
a write into the tag array is required. Therefore, the energy
costs reported in Table IV for the cache correspond to the
energy of 256 writes into the tag array.

C. Main memory level

For normally-off computing, there is no cost related to the
main memory. Since the latter is based on STT-MRAM, data
are preserved before a complete shutdown of the system. For
the checkpointing/rollback implementation, the cost to perform
a checkpoint will depends on the number of bytes it is required
to save into the checkpoint memory. In this work, the worst
case is considered (i.e. the size of the checkpoint memory
which is 4k B). The memory architecture is implemented with
a 32-bit word width. Therefore, the energy cost to backup
4k B (i.e. 1024 words) is represented by the equation 1, where
Nyords>» Eread, and FEy.i4e are respectively the number of

words to backup, the read energy per access of the main
memory and the write energy per access of the checkpoint
memory. As a result, considering the data in Table I, the
backup energy cost at main memory level comes to 72.2n.J for
both processors. In a similar way, the restore energy comes to
62.2n.J. Regarding the latency, creating/restoring a checkpoint
takes about 16us. It is worth noting that this work does not
consider the cost related to error correction code (ECC) to
minimize errors. However, it has been demonstrated that every
cell out of a 8Mb STT-MRAM chip could be written without
the use of ECC down to a pulse length of 4.5ns [18].

ey

EBackup = words X (Eread + Ewrite)

D. Area analysis

Although MRAM is denser than SRAM thanks to its small
bit cell structure, the drawback of this technology is the high
peripheral circuitry area due to the large CMOS transistors
required to generate sufficient write current. As a result, a
ratio of 1.5 to 3 is noticed between hybrid CMOS/MTJ FFs
and standard CMOS FFs [14]. The STT-MRAM cache area of
scenario 2 (0.048mm?) is also bigger than the SRAM cache
area of scenario 3 (0.026mm?) by a ratio of 2. On the other
hand, the STT-MRAM based 1M B main memory is clearly
denser (0.98mm?) than its SRAM equivalent (2.5mm?) by a
ratio of 2.5. This is because the area of the cell array occupies
a large proportion of the total memory area compared to the
area of the peripheral circuitry [19].

VI. CONCLUSION

This paper showed how STT-MRAM could help designing
energy-efficient and reliable devices thanks to the normally-
off computing and the checkpointing/rollback mechanisms.
Perspectives of this work is to strengthen the results by

building a real silicon prototype of a non-volatile processor
based on STT-MRAM.
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